Extensions to Web Service Techniques for
Integrating Jini into a Service-Oriented
Architecture for the Grid

Yan Huang and David W. Walker

Department of Computer Science
Cardiff University
PO Box 916
Cardiff CF24 3XF
United Kingdom
{Yan.Huang,David}@cs.cardiff.ac.uk

Abstract. This paper discusses how to adapt Jini to create an OGSA-
compliant system for Grid computing by introducing Web services tech-
niques into the Jini system. Service Workflow Language (SWFL), an
extension to WSFL for describing jobs composed of interacting Web
services, is presented. SWFL provides a simple and succinct way of de-
scribing the conditional and loop constructs of Java, and supports more
general data mappings than WSFL. In addition, a tool for automatically
generating Java code to execute a composite job described in SWFL is
described.

1 Introduction

This paper describes how Jini services can be integrated with Web services within
a common Service-Oriented Architecture (SOA) for Grid computing. This com-
mon SOA permits the transparent interaction of Jini services and Web services,
thereby extending the usefulness and applicability of both approaches. The main
benefits of this work are: (1) Jini services will be accessible from outside of a
Jini community; (2) Jini services will be invocable in the same way as other
Web services; and, (3) Jini services will be able to be integrated with other Web
services.

Web services have arisen as an essential component of the infrastructure
of e-Business, and enable business-to-business transactions via the Internet. In
general, these B2B transactions take place directly between computer programs,
rather than between computer programs and users.

A Web service has five essential attributes [5]: It can be described using a
standard service description language, usually Web Service Description Lan-
guage (WSDL) [1]; it can be published to a registry of services, usually a UDDI
(Universal Description, Discovery, and Integration) registry; it can be discovered
by searching the service registry; it can be invoked, usually remotely, through a
declared API; and, it can be composed with other Web services.

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2659, pp. 254-263, 2003.
© Springer-Verlag Berlin Heidelberg 2003

Extensions to Web Service Techniques 255

A WSDL document describes one or more Web services, each of which is
made up of multiple messages, port types, and bindings. A message gives an
abstract definition of the input and output data of a Web service. A port type is
used to describe the functionality of a Web service in terms of a set of operations.
A binding associates a concrete protocol and data format with a port type. The
Simple Object Access Protocol (SOAP) is a widely used protocol for Web service
messaging, and uses an XML data encoding and HTTP transfer protocol. The
binding may also specify the security mechanism for the port’s communications.

The Jini networking system aims to support the rapid configuration of devices
and software within a distributed computing environment [2]. These devices and
software are made available to remote clients as Jini services. Jini is one of
the network technologies that are suitable for building the middleware for Grid
computing. A central theme of Grid computing is the sharing of resources within
a virtual organization through direct transactions between computer programs
[4]. This has led to the emerging concept of a Grid service and to the Open Grid
Services Architecture (OGSA) which is currently being developed on the basis
of Web service concepts and technologies [3]. In this approach, Grid services
are regarded as specialized extensions of Web services, and support new types
of problem-solving applications that are composed of services. In this paper, a
Jini-based Grid will be developed into a OGSA-compliant system. This is done
by combining Web service and Jini service SOAs.

Jini’s SOA is very similar to that used by Web services. By using Jini lookup
services, Jini services can be published, discovered, and invoked and so possess
three of the five essential attributes of a Web service enumerated at the start
of this section. However, the other two of the five essential attributes, service
description and composition, are not part of the basic Jini system. In addition,
Web services use XML-based messaging which is not prescribed (nor prohibited)
by the Jini communication model.

The simplest way to combine the Web service and Jini service SOAs is by reg-
istering services using both the service registry and lookup service mechanisms.
The service registry works in the world external to the Jini community, and the
lookup service works within the Jini community. Thus, correspondingly, there
are two sorts of publish operations, two sorts of find or discovery operations, and
two sorts of bind or invoke operations.

Henceforth, a request for a Jini service through the non-Jini mechanism will
be called an indirect service request, and a request for a Jini service through a Jini
lookup service will be called a direct service request. An indirect service request
finds the service requested by sending a query based on the service description
to the service registry and a task description based on a service flow language
is formed, also based on the service description. An agent service called the
Workflow Engine accepts the indirect service request, translates the request into
a service request understandable by Jini, and makes sure the request is carried
out and the results sent back to the requestor.

256 Y. Huang and D.W. Walker
2 Service Workflow Language

In many cases it is desirable to create a job or application by composing multiple
services. Such applications can be represented by a graph of interacting services
that must be specified in a job description'. Thus, not only a service description
language, but also a job description language, are needed to standardize the
description of both services and composite jobs.

In May 2001, IBM’s WSFL [6] and Microsoft’s draft of XLANG [7] were re-
leased as languages for describing the composition of Web services. Although the
intended uses of WSFL and XLANG are broadly the same, they have completely
different structures: WSFL directly represents the control and data flow of an
application in terms of its workflow graph; XLANG is closely based on the use of
Java-like language constructs to describe a job. In August 2002, a combined ver-
sion of WSFL and XLANG, called Business Process Execution Language for Web
Services (BPEL4WS) [9], was published that largely inherited the programming-
oriented approach of XLANG, rather than the graph-based approach of WSFL.
BPEL4WS is effective for representing service-based composite applications for
which the order of execution of the services is pre-defined. However, it does
not have the same flexibility as WSFL, in which the only constraints on the
order of execution of services are implicit in the workflow graph. Having a pre-
defined service execution order, as in XLANG and BPEL4WS, is not suitable
for representing a distributed application, where the ability to dynamically par-
tition and schedule services at runtime is important in order to exploit potential
parallelism and to make best use of the available distributed resources. WFSL,
however, does allow this capability, and hence provides a flexible and effective
basis for representing a Grid application.

Service Workflow Language (SWFL) extends WSFL in two important ways:

1. SWFL improves the representation of conditional and loop control con-
structs. Currently WSFL can handle if-then-else, switch, and do-while con-
structs and permits only one service within each conditional clause or loop
body. SWFL also handles while and for loops, and permits sequences of
services within conditional clauses and loop bodies.

2. SWFL permits more general data mappings than WSFL. SWFL can describe
data mappings for arrays and compound objects.

SWEFL can describe the conditional and loop control constructs of the Java
programming language. The motivation for SWFL was to develop a tool for
automatically converting the workflow description of a composite job into a Java
program for running it. This tool, SWFL2Java, is also described in this paper.

As an example, consider loop control constructs. WSFL provides loop control
flow through the optional exitCondition attribute of an activity. Exit condi-
tions are represented with an XPath-based syntax. If on completion of the ac-
tivity the exit condition evaluates to false, then the activity is run again. This
continues until, after the activity has been run some number of times, the exit

! Here a job is a composition of interacting services.

Extensions to Web Service Techniques 257

condition evaluates to true, after which control flows to the next activity. For
example:

<activity name="LoopActivity"
exitCondition="XPathl > XPath2"/>

For clarity, attributes not relevant to the example have been omitted. The
activity LoopActivity will be run repeatedly until the exit condition evaluates
to true. This is equivalent to the following Java code:

do {
LoopActivity O ;
} while (X1 > X2)

Now consider the for loop. Since a for loop can be rewritten in terms of
a while loop, and since the latter can be represented in WSFL, then it would
appear that a for loop can also be represented in WSFL. However, there is a
problem. Suppose we have a for loop that iterates on a certain activity. Then
the body of the corresponding while loop contains that activity, followed by an
new activity that simply updates the loop control variable. In WSFL an exit
condition can be associated with only one particular activity, so there can be
only one activity within a loop. Furthermore, if the activity in a for loop takes
the loop control variable as one of its inputs, which is often the case, WSFL
provides no way to represent the internal dataflow inside the body of the loop.

The difficulties in representing certain types of conditional and loop control
constructs in WSFL have led us to develop SWFL. SWFL is a new job descrip-
tion language that makes three main extensions to WSFL, affecting the ele-
ments wsfl:activityType, wsfl:controlLinkType, and wsfl:datalLinkType,
and the definition of a new element, SWFL: jmapType. In SWFL, conditional and
loop processes are treated as special activities, which allows their data and con-
trol flow to be defined more clearly. They are added into the jactivityType
element. The resulting jactivityType XML schema is as follows:

<xsd:complexType name="jactivityType">
<xsd:choice>
<xsd:element name="normal" type="wsfl:activityType"/>
<xsd:element name="while" type="loopType"/>
<xsd:element name="dowhile" type="loopType"/>
<xsd:element name="for" type="loopType"/>
<xsd:element name="if" type="controlType"/>
<xsd:element name="switch" type="controlType">
<xsd:key name="CasePortName">
<xsd:selector xpath="case"/>
<xsd:field xpath="@port"/>
</xsd:key>
</xsd:element>
</xsd:choice>
<xsd:attribute name="operation" type="NCName"/>
</xsd:complexType>

258 Y. Huang and D.W. Walker

In the above jactivityType schema, the activity type is extended to six
kinds of activities. These are: normal, if, while, dowhile, for and switch.
The normal activity is the same as an activity defined in WSFL, and is of type
wsfl:activityType. The others are newly-defined activity types corresponding
to the conditional and loop constructs in the Java programming language.

The for, while and dowhile activities are all of type loopType. loopType
is an extension of wsdl:operationType through the addition of a new element
called expression and a new attribute called setParallel. A loop activity has
input and output elements to specify its input and output data. In while and do-
while loops the element expression is a Boolean expression based on the input
message of the loop activity. However, in the case of a for loop, the expresssion
element is represented by three statements separated by semicolons in the form:
initial statement ; Boolean expression ; increment statement. This Java-based
format currently allows only simple for loops of the type given is the following
example. The loop control variable used in the statements is from the input
message of the activity. Specifying the loop control variable as one of the parts
of the output message of the loop activity allows the activity within the loop,
as well as activities after the loop, to accept the loop control variable as input.
As an example, consider the following for loop activity:

<wsdl:message name="forloopMessage'>
<wsdl:part name="outO" type="string"/>
<wsdl:part name="outl" type="int"/>
<wsdl:part name="index" type="xsd:integer"/>
</wsdl:message>

<activity name="forActivity">
<for setParallel="no">
<input message="forloopMessage"/>
<output message="forloopMessage"/>
<expression>
<! [CDATA[index=0;index<100;index++]]1>
</expression>
</for>
</activity>

In this example there is a part element named index in the message in-
put to the for activity which is used in the expression of the activity. The
setParallel attribute of the activity is used to indicate whether the iterations
of the for activity can be performed in parallel. If setParallel is set to “yes” a
scheduler could arrange for the loop iterations to be done in parallel on different
machines that provide the service in the loop body.

Normally an activity has one control input port and one control output port,
but conditional and loop activities have multiple output control ports. A loop
activity has two output control ports. As long as the loop condition is satisfied,
control flows to the sequence of activities inside the loop body; otherwise, control
flows to an activity after the loop body.

Extensions to Web Service Techniques 259

For if and switch activities there is a control output port for each condi-
tional clause. The following is an example of a switch statement in Java:

switch(int0){
case 10: ...; break;
case 20: ...; break;
case 30: ...; break;
default: ...;

¥

In this example, the switch has four cases so there are four output control
ports to which control can flow on exiting the activity. The corresponding de-
scription in SWFL is as follows:

<SWFL:switch expression="int0">
<SWFL:input name="switchInputMessage" message="switchMessage"/>
<SWFL:output name="switchOutputMessage" message="switchMessage/">
<SWFL:case port="0">10</SWFL:case>
<SWFL:case port="1">20</SWFL:case>
<SWFL:case port="2">30</SWFL:case>
<SWFL:defaultCase port="default"/>

</SWFL:switch>

The attribute expression specifies the expression controlling the switch
statement which must be of type byte, short, int, or char, and is from the
input message of the switch activity. The value of each case must be a literal
with the same type as the expression attribute. The port attribute of the case
element is used to specify for that case the port of the switch activity that a
control link flows out of.

The if conditional activity is very similar to the switch activity, as may be
seen in the following example an if activity defined in SWFL:

<SWFL:if>
<SWFL:input name="ifInputMessage" message="ifMessage"/>
<SWFL:output name="ifOutputMessage" message="ifMessage/">
<SWFL:case port="0"><![CDATA[int0 < 0]]></SWFL:case>
<SWFL:case port="1">int0==0</SWFL:case>
<SWFL:defaultCase port="default"/>

</SWFL:if>

An if activity does not have an expression attribute. Instead, the value
of the case element is a Boolean expression composed from data in its input
message and from literals.

The introduction of SWFL: controlType and SWFL:1loopType activities having
multiple control output ports, makes it necessary to specify which port of the
source activity a control link flows out if the source activity is a conditional
or loop activity. SWFL: jcontrolLinkType extends wsfl:controlLinkType by
adding an optional attribute called controlPort to the controlLink element
which is used only when the source activity of the control link is a conditional

260 Y. Huang and D.W. Walker

or loop activity. It specifies which control output port of the source activity is
the source of the control link.

The WSFL syntax for data mapping is sufficient to define the mapping in a
data link when the mapped data is a one-layer complexType (i.e., the elements
in the complexType are simpleType), and is not an element of an array. This
means that WSFL can handle only cases in which the input to an activity is
a primitive datatype or an object containing primitive datatypes. Also WSFL
allows only one data mapping in a data link. This means that an activity can
accept data from only one source activity. SWFL provides a new definition of
data mapping, SWFL: jmapType, that overcomes these limitations.

In the specification of SWFL:jmapType the attributes sourceMessage and
targetMessage specify the source message and the target message of a data
link to which the data map applies. A SWFL: jmapType can have multiple part
elements, each corresponding to a different data mapping. A part has two
sub-elements of type SWFL:dataPartType, named sourcePart and targetPart,
which are used to specify a particular data element in a message. SWFL:dataPartType
specifies a particular path leading to the final data element involved in the data
mapping. It can contain any number of item elements. An item element has
either a field element to specify a field of a complex type, or an index element
to specify an element of an array.

In the example of SWFL:mapType below there is one data mapping: the data
ul.a.b[5] is mapped tou2.c in Java notation. ul is a part of the sourceMessage.
The mapped data is the 5th element of the array b which is a field of a. a itself
is a field of part ul. u2 is a part of targetMessage and c is a field of u2.

<SWFL: jmap sourceMessage="sourceMessage" targetMessage="targetMessage">
<SWFL:part name="part0">
<SWFL:sourcePart name="ul">
<SWFL:item><SWFL:field name="a"/></SWFL:item>
<SWFL:item><SWFL:field name="b"/></SWFL:item>
<SWFL:item><SWFL:index dimension="0" index="5"/></SWFL:item>
</SWFL:sourcePart>
<SWFL:targetPart name="u2">
<SWFL:item><SWFL:field name="c"/></SWFL:item>
</SWFL:targetPart>
</SWFL:part>
</SWFL: jmap>

3 Implementation Aspects

We have discussed how a job composed of interacting services can be represented
by the SWFL job description language. The main motivations for developing
SWFL were to describe Java-oriented conditional and loop constructs, to permit
sequences of more than one service within conditional clauses and loop bod-
ies, and to overcome limitations inherent in WSFL’s data mapping approach.
In addition, we have developed: (1) a tool called SWFL2java that converts the

Extensions to Web Service Techniques 261

description of a job in SWFL into executable Java code; and, (2) a Workflow
Engine that provides an execution environment to run the composite job.

The details of SWFL2Java are discussed elsewhere [8], however, we will give
here an overview of the implementation. In SWFL2Java a SWFL document is not
translated directly into a Java program but is stored in an intermediate form as
a Java FlowModel object. This is made up of two Java Graph objects: DataGraph
and ControlGraph. The former stores the data flow structure of the flow model,
and the latter stores its control flow structure. One reason for storing the job
description in this intermediate form is to be able to interact readily with Java-
based tools for the visual composition of Web services. In such tools a composite
job is represented as a graph in which activities/services correspond to nodes, and
data links and control links correspond to different kinds of directed edges. The
graph can be stored as a FlowModel object and converted to and from SWFL,
as well as into a Java program. Another reason for using the FlowModel form is
to reduce the overhead when the same job is used many times and scheduled on
different resources. In such cases it is easier to generate the Java code from the
intermediate form rather than starting from the original SWFL.

Given a graphical FlowModel of arbitrary structure to be transformed into
a Java Jini-based distributed program, the following three issues have to be
addressed: how to find all the services; how to decide the order of execution
of services based on the flow model; and, how to automatically name all the
variables, class names, and methods.

Normally the first thing a Jini-based distributed program does is to discover
the services that are going to be used in the program. Thus, to automatically
create a Java Jini-based program from a graphical flow model, service discovery
is the first issue to be addressed. Service discovery is performed by an assistant
class called ServiceFinder. The ServiceFinder thread takes a list of services and
discovers each using a ServiceDiscoveryManager. Once a service is discovered,
its Serviceltem is downloaded and stored.

After all the services needed in the program have been found and stored, the
main program is generated. The problem here is determining the order in which
tasks are processed by services. This order is deduced from the control graph
using the Task Processing Sequential Order Generation algorithm described in
[8].

In automatically generating a Java program several naming issues need to
be decided. In the automatically produced program, the class name takes the
form FlowModel_ XXX where XXX is the name of the flow model. The class has
a constructor and an ezecute() method that runs the job specified in the flow
model. The parameters of the ezecute() method are determined by flowSource
in the flow model. The parameter names are the same as the corresponding part
names of the flowSource message. The return variable of an activity takes the
form XXX_return in which XXX is the name of the activity.

Here we provide an example of a Java program automatically created by
SWFL2Java.

import net.jini.core.lookup.Serviceltem;

262 Y. Huang and D.W. Walker

import net.jini.core.lookup.ServiceTemplate;
import java.util.HashMap;
import SWFL2Java.XML2Graph.ServiceFinder;
public class FlowModel_Examplel{
private HashMap taskTemplateMap = null;
private ServiceFinder serviceFinder = null;
public FlowModel_Examplel(){
this.taskTemplateMap = new HashMap();
this.setTaskTemplateMap() ;
this.serviceFinder = new ServiceFinder(this.taskTemplateMap) ;
Thread thread = new Thread(this.serviceFinder);
thread.start();
try{
thread. join(2*60%1000) ;
} catch (java.lang.InterruptedException e){
System.out.println("Failure in finding services.");
System.exit(-1);

}
private void setTaskTemplateMap(){
this.taskTemplateMap.put("task_1", new ServiceTemplate(null,
new Class[]{services.Matrix.MatrixInterface.class}, null));
this.taskTemplateMap.put("task_0", new ServiceTemplate(null,
new Class[]{services.Math.MathInterface.class}, null));
}
public double[][] execute(int size, double[][] B)
throws java.rmi.RemoteException{
for(int in0=0; inO<size; inO++){
for(int in1=0; inl<size; ini++){
services.Math.MathInterface task_0 =
(services.Math.MathInterface)
(this.serviceFinder.getServiceItem("task_0") [0].service);
double task_O_return = task_0.function(inl ,in0);
B[inO] [in1] = task_O_return;

}

services.Matrix.MatrixInterface task_1 =
(services.Matrix.MatrixInterface)
(this.serviceFinder.getServiceItem("task_1") [0].service);

double[][] task_1_B = task_1.inverse(B);

return task_1_B;

4 Conclusions

This paper has discussed several technical issues involved in updating a Jini
system into a OGSA-compliant system and has focused on one of the most
important issues — defining an XML-based description language for describing

Extensions to Web Service Techniques 263

composite service-based Grid applications. SWFL, an extension to WSFL, is
such a language that describes Java-oriented conditional and loop constructs
and enhances WSFL’s data mapping facility. Whereas WSFL can represent only
if-then-else, switch, and do-while constructs, SWFL can also represent while and
simple for loop constructs. SWFL also permits sequences of more than one ac-
tivity within conditional clauses and loop bodies. SWFL enhances WSFL’s data
mapping capabilities by handling compound objects and arrays, and by permit-
ting activities to accept input data from more than one source activity.

Given an SWFL job description, the SWFL2Java tool can generate a repre-
sentation of the corresponding data and control link structure in the form of
a Java FlowModel object. From this the corresponding Java program can be
automatically generated.

SWFL can also be used to describe composite jobs made up of both Jini and
Web services. The work described in this paper is part of a larger programme of
research to introduce Web service technology into the Jini service architecture,
thereby enabling Jini services and Web services to interoperate. Implementation
details of this interoperation of services will be given in a subsequent paper.

References

1. Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana,
“Web Services Description Language (WSDL) 1.1,” available as a W3C note at
http://www.w3c.org/TR/wsdl/, March 2001.

2. W. K. Edwards and T. Rodden, “Jini Example By Example,” published by Prentice
Hall, 2001.

3. Tan Foster, Carl Kesselman, Jeffrey Nick, and Steven Tuecke, “The
Physiology of the Grid: An Open Grid Services Architecture for Dis-
tributed Systems Integration,” January, 2002. This is available online at
http://www.globus.org/research /papers/ogsa.pdf.

4. Tan Foster, Carl Kesselman, and Steven Tuecke, “The Anatomy of the Grid: En-
abling Scalable Virtual Organizations,” The International Journal of High Perfor-
mance Computing Applications, Vol. 15, No. 3, pages 200-222, Fall 2001.

5. K. Gottschalk, S. Graham, H. Kreger, and J. Snell, “Introduction to Web Services
Architecture,” IBM Systems Journal, Vol. 41, No. 2, 2002.

6. F.Leymann, “Web Services Flow Lauguage (WSFL 1.0)”, available at http://www-
4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf, May 2001.

7. S. Thatte, “XLANG: Web Services for Business Process Design.” Available at
http://www.gotdotnet.com/team /xml_wsspecs/xlang-c/default.htm, 2001.

8. Yan Huang, “The Role of Jini in a Service-Oriented Architecture for Grid Comput-
ing,” PhD thesis, Department of Computer Science, Cardiff University, December
2002.

9. F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, S. Weer-
awarana “Business Process Execution Language for Web Services”, available
at http://www-106.ibm.com/developerworks/webservices/library /ws-bpel/, Au-
gust 2002.

	1 Introduction
	2 Service Workflow Language
	3 Implementation Aspects
	4 Conclusions

