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Abstract. We show that knowledge-based techniques are as effective as math-
ematical techniques when satisfying constraints for solving manpower alloca-
tion problems. These techniques can be used to fulfill the corresponding local
and global constraints based on the dynamic programming algorithm. It uses
tools borrowed from genetic and simulated annealing algorithms, and fuzzy logic
methodologies. The schedules produced by our algorithm match the best sched-
ules produced by human experts.

1 Introduction

Manpower allocation (MA) problems are combinatorial optimisation problems with
constraints that must be satisfied to arrive at feasible solutions (schedules). Tradition-
ally, daily schedules in work places were prepared by hand [2, 6]. This class of problem
arises in the management of manpower for organizations that provide round-the-clock
services – assigning employees to the numerous available designated deployment posts.
Consequently, scheduling manpower resources such as nurses, physicians, maintenance
crew, and security personnel is important, as good schedules run entire organizations
efficiently. Essentially, this task requires expertise and experience. It is necessary to en-
sure that the resultant schedules optimally match the skills of the available resources to
the various conditions and requisites of the deployment posts.

Stochastically, there are many ways to achieve an algorithm that produces good
schedules. Among the most promising are the methodologies that construe the use of
linear and non-linear programming [7], genetic [4], simulated annealing [10], and artifi-
cial intelligence (AI) [1, 8] algorithms. These approaches attempt to find the lowest cost
solutions that optimize given cost functions with respect to the associated constraints.
Most researches on scheduling algorithms have concentrated mainly on regular perfor-
mance measures in which an objective function is defined in terms of a set of resources
(manpower) and a set of tasks (deployment posts). All the methods and techniques
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portrayed in this paper contribute to coming up with realistic and feasible rosters for
scheduling manpower to various available deployment posts. The rest of the paper is
organized as follows.

In Section 2, we define the structuring of our constraints for interpreting MA prob-
lems using knowledge-based techniques. Optimal schedule determination on more global
perspectives through Sauer’s [12] reactive and interactive scheduling representations is
discussed in Section 3. In Section 4, we discuss the rule-based methodologies for back-
tracking through fuzzy logic techniques. In Sections 5, we discuss our results.

2 Problem Formulation

Brachman’s [1] description of AI suggests two ways in which knowledge-based tech-
niques can be implemented to solve the constraints in MA problems. Firstly, each re-
source’s abilities and the requisites of the various posts for allocation must form the
knowledge representation that can be reasoned to reflect human intelligence. Secondly,
it suggests that the only way such techniques can behave in this manner is if they con-
tain formal mechanisms for representing knowledge and employ inference techniques
that model computationally based structures.

We can define the MA problem as follows. There is a given set of manpower re-
sources ÿ, each of whom has zero or more skills, and is identified by their distinctive
ranks of seniority. Let þ denote a set of skills, and ý a set of ranks. Let ÿÿþ ÿ ýþ repre-
sent the set of resources with skills þ and rank ý. The set ÿ is made up of ü categories
representing ü different types of employee management. For example, the resources
employed by a particular company are either in the “full-time”, “part-time”, or “tempo-
rary” staff category.

There is also a given set of deployment posts û ; each of which has one distinct
requirement, and a range of possible ranks for accommodation. Let ú denote a set of re-
quirements, such that û ÿúÿýþ represents the set of deployment posts with a requirement
ú, and an accommodation of ranks ý. Some of these deployment posts can be further
grouped by the descriptive nature of their job specifications. Let ù be a set of similarly
grouped deployment posts, so that ù þ û . It is noted here, that there also exists a set
of optional deployment posts in û that do not require to be filled immediately.

The resources to be scheduled must match their skills against the requirements of
the deployment posts, and their ranks must be within the range that can be accom-
modated by those posts. This skill-rank composition constraint is imposed so that we
can make direct constraint matchings between the resources and the deployment posts.
Also, further global constraint rules are necessary, and are described below.

– Deployment Post Prioritisation Constraints. Mandatory deployment posts must
take precedence over optional ones.

– Officer-In-Charge (OIC) Constraints. There must be at least one OIC for any groups
of similar posts in ù.

– Categorical Constraints. Each set of similar posts ù should have more than one
category amongst the resources assigned
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MA problems may be formulated as a grid network [6], where each node repre-
sents a slot in the roster. The deployment posts’ references form the horizontal con-
straints, while the resources’ references form the vertical constraints. This method re-
lates closely to the standard Constraint Satisfaction Problem (CSP). Unfortunately, it
has been proven that CSP is NP-complete, even though the underlying network is a
grid.

The output is a feasible solution with all resources assigned to the various deploy-
ment posts for any given workday. An assignment is deemed feasible if it satisfies the
skill-rank composition constraints without leaving out any resources. On top of that, the
assignment is considered practical if it also satisfies the three global roster constraints
defined in the previous section.

2.1 Knowledge Representations and Relations

We can develop sufficiently precise base-notations for representing knowledge through
the use of logical representation schemes, which employ semantics to describe a world
in terms of objects and their binary associations [13]. These association types relate
objects (resources and posts) to their generic types (skills and ranks), and force a dis-
tinction between the objects and the generic types.

Inferences and deductions can be subsequently obtained through direct matching
processes. Matching as a knowledge-based operation is used for classification, confir-
mation, decomposition, and correction. The utilization of a uniform representation of
knowledge in this technique enables the construction of tools that can verify desired
properties of the knowledge representation [9].

Each element in the setsÿÿþÿýþ and ü ÿûÿýþ is represented as a 32-bit binary strain.
In this paper, we assume the number of ranks and skills, related to the resources and
the posts, to be fewer than 15. However, our method is not restricted to this assumption
and can be applied to an arbitrary number of ranks and skills. The lowest 15 bits of this
binary strain represent the various ranks a particular resource can have, while the highest
15 bits represent the skills. This exact configuration is used to represent the ranks that
can be accommodated by the deployment posts, as well as the requirements needed to
make up the job specifications. In addition to this pattern, one of the middle two bits is
reserved to note a preferred flag for calculating a preferred probability value. This bit
is set to follow the reference knowledge given by human experts, should the resource
or the post referred to by the strain has an additional preference in the categorical
requirements.

We can assume that þ is directly related to û, since the skills of a resource can
be matched up against the requirement of a deployment post. A relations-matrix ú
is referred to throughout this paper as a 2D matrix; with references to the deployment
posts forming the rows, and references to the manpower resources forming the columns.
The construction of ú is detailed in the next section.

We start by creating feasible solutions with pre-assigned, randomly generated re-
sources for a set of deployment. These are then shuffled and fed as input to a database
to test the implementation of our prototype. These random data resources are controlled
by variables that include the total number of resources in relation to each rank, the dis-
tribution of ranks, and the distribution of skills. The information for the deployment
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posts is also random. This ensures that the algorithm being tested is able to work on
any set of data ÿ, for any set of information þ . We then set the final objective for the
entire process, to minimize the number of un-assigned resources, while satisfying all
local and global constraints.

2.2 Applying the Knowledge-Based MA Algorithm

Lau and Lua [6] gave a high level description of their rostering algorithm, on which they
based their approach by using constraint set variables. Their algorithm has the following
steps: Step 1. Perform feasibility checks; Step 2. Consider rostering constraints; Step
3. Generate a solution; Step 4. Apply local improvements.

Step 1 to 3 describes the Dynamic Programming (DP) algorithm, while Step 4 is a
backtracking rule-based mechanism that allows for additional improvements to be made
to a feasible solution. We used the DP algorithm in the following context.

Firstly, we retrieve the information defined in ÿ and þ from the databases, and ini-
tialize their binary strains. Following which, we use the DP algorithm to perform the
feasibility checks, solve the rostering constraints, and generate a feasible solution. This
solution is checked to see if practical satisfaction is achieved (see 2. Problem Formu-
lation). Failing this, Step 4 is executed to make local improvements by un-allocating
resources that are perceived to have non-practical assignments. Lau and Lua termed
this as the “relax & enrich” strategy of Schmidt in [6]. This is done through the use of
additional constraints for an additional set of preferences to be met separately to avoid
possible conflicts with the present ones. These constraints are part of the local improve-
ment procedures. The process is then repeated until the number of unassigned resources
reduces to zero.

3 Implementation and Methodologies

The DP algorithm above begins by building up the matrix ý and shuffling the refer-
ences to the resources and the posts for controlled fairness.

We used a knowledge-based technique to perform a local search for perfect matches
between the row and column references ofý . Each cell iný , referred to by a particular
row and column, corresponds to a particular deployment post and resource respectively.
A perfect match is found if the rank and skills possessed by a resource, matches that of
the rank accommodations and the skill requirement of the deployment post as defined
in Equation (1). The bit patterns defined in Figure 1 are used to contrast this matching
process. A value of 1 is awarded to ý ÿüû úþ should a perfect match be found, and 0
otherwise; here ü and ú are the row and column references to the relations matrix ý .

ý ÿüû úþ ý

ÿ
üû if ÿÿù þ øþ ý ÷ü ö û where øû ùû ÷ û ÿûþ

ûû otherwise
(1)

The result of the perfect matches allows the building of a more global relation be-
tween the resources and the posts. The DP rule for this relation is defined by Equation
(2), where ü and ú are the row and column references to the relations matrix ý . The
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number in each cell ofÿ describes the degree of relation between its rows and columns.
The higher this number is, the better the relation.

ÿ ÿþý üþ ý ûúùÿûúùÿon row þü ûþýûúùÿon column ü ü ûþþü û (2)

Probability functions are used to overcome the situation when more than one solu-
tion becomes inevitable. Our probability function resolves the outcome of a decision
making process through a set of pre-determined rules. It ensures optimality of the local
results with respect to the global outcome. We split this decision making into two sepa-
rate components contributing to the final probability: the measure of suitability, and the
preferred probability. The measure of suitability refers physically as to whether or not a
particular resource is suitable to handle a particular post. The preferred probability, on
the other hand, tries to model the human perception of preferred-ness in allocating the
best resource to a particular post.

To calculate the measure of suitability of a candidate for a deployment post, we can
build a reference probability vector from the deployment post information through its
nature of binary strains arrangement. A value of 0.45 is allotted at every occurrence of a
positive value in the strain (1 being positive, and 0 being negative). We then take the dot
product of this reference vector with a candidate from the column element. The result
of which will be the measure of suitability for the candidate to the deployment post.

In calculating the preferred probability, the value of the preferred bit in the strain
is checked. If the preferred bit in the deployment post’s strain information matches the
category type of a particular candidate, a full 0.50 is awarded. Otherwise, a random
number between 0.00 and 0.25 is given to the preferred probability value.

Starting at ÿ ÿûý ûþ, the entire first row and column are searched for cells with the
highest degree of relation. These identified cells are then used as guides in obtaining the
best probability rate, before allocating a selected column ü (the most suitable resource
candidate from the identified range) to a selected row þ, (deployment post) as a complete
assignment. Following this, that entire row þ and column ü are crossed out from any
further comparisons.

The next iteration starts on the immediate row and column neighbour,ÿ ÿþüûý üü
ûþ, and ends when either the row or column elements of ÿ are exhausted. The whole
process is then repeated; rebuilding a new relations matrixÿ , after removing the entries
of all successfully allocated resources and posts.

All the simulations in the experiment ended with all candidate resources allocated a
post. It was also noted that it took fewer than 20 iterations to generate a feasible solution
for a deployment problem with 12 distribution of ranks and 340 manpower resources.
However, the scope of this algorithm at this point is limited only to solving the local
constraints of the MA problem. These feasible solutions have yet to go through Step 4
of the MA algorithm for completeness.

4 Rule-Based Methodologies for Backtracking

A more global approach is imperative in coming up with a better overall solution than
above. Sauer [12] classified the task of scheduling to be either reactive or interactive.
In reactive scheduling, all events occurring in the scheduling environment have to be
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regarded, and then adapting the schedule to new situations with appropriate actions to
handle each of the events. Interactive scheduling, on the other hand, means that several
decisions about the constraints have to be taken by the expert human-scheduler. In the
context of the MA problems, combining the two classes results in more effective and
practical solutions. The knowledge-based techniques paired with the appropriate rule-
based methodologies define the reactive and interactive representation to solving the
local and global constraints respectively.

Gudes et al. [5] highlights the backtracking mechanism as a strategy to realize a
new set of recommending rules. These rules suggest the de-allocation of one resource,
and the allocation of another. The context here requires a different set of rule-lists to
trigger the de-allocation procedure. In most backtracking scenarios, the completed ros-
ter is examined to identify assignments that are not “humanly” practical, that need to
be taken off and reallocated elsewhere. For example, there can be too many officers-
in-charge (OIC) for a group of similar deployment posts. The collective viewpoint to
effect this de-assignment is to inspect the roster segregated into its associated groups,
by the descriptive nature of the job specifications.

Zadeh’s [14] conceptualization of fuzzy logic gives rule-based methodologies the
ability to infer from the information resident in the knowledge-base. A membership
function over a lattice of propositions can be formulated to encompass a wide range of
logics of uncertainty. These logics make up the global rules for backtracking in our MA
algorithm. These are in anticipation of the following general rule of logic:

If ÿNumber of resourcesþ AND ÿRankþ Then ÿDe-Allocate resourcesþ

Applying this general rule of logic requires the fuzzy logic concept of using mem-
bership functions with various associated degrees-of-freedom (DOF). A membership
function is a graphical representation of the magnitude of participation of each input
reference. It associates a weighting with each of the inputs that are to be processed,
define functional overlaps between these inputs, and ultimately determine their influ-
ence on the fuzzy output sets of the final output conclusion. Once the functions are
inferred, scaled, and combined, they are defuzzified into rationalized output values that
determine the decision-making.

A triangular shaped membership function is the most common one used in many
control systems, mainly because of its mathematical simplicity. Plugging in prescribed
input parameters from the horizontal axis, and projecting vertically gives the rational-
ized value of its associated DOF. By computing the logical product of the membership
weights for each active rule, a set of fuzzy output response magnitudes are produced.
All that remains is to combine and defuzzify these output responses, as an interpretation
to our implementation of the backtracking mechanism.

Going by human semantics, and preparing for the general rule of logic, we can
tabulate the input linguistic rules to give the appropriate output action rule. These output
rules are suggested by the experts, and are shown in Table 1. For example, if there are
several resources with high ranks, then we need to de-allocate several of the already
assigned resources.
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Resources Low Rank High Rank
Too Few None Few
Several None Several

Too Many Few A lot

Table 1. Rule-base relations between the input linguistic parameters and the output actions.

4.1 Fuzzification and De-fuzzification

The Fuzzification procedure converts the input parameters to a related fuzzy value with
the associated DOF. We then used Mamdani’s Maximum-Minimum Centre of Area
method to calculate the output equivalence with respect to the rule-base given in Ta-
ble 1 [8]. This de-fuzzification results in the actual number of resources to be removed
with an attached DOF.

Our global backtracking rules look through each individual group of the segregated
deployment posts with their assignments. The backtracking procedure parses informa-
tion to pick out the number of resources and their associated ranks. The rule-base is
then inferred, through fuzzy logic techniques described in Section 4, to determine the
number of resources to de-allocate, and to await future assignments. This algorithm will
continue to allocate and de-allocate resources to and from their posts in a generalized
swapping manner, due to its absolute random nature of selection. The iteration will stop
only when all resources are completely assigned.

The combined knowledge- and rule-based methodologies were tested with numer-
ous sample data that are typical in representing the real-world situation. Randomised
data for resources and posts were also generated to test the firmness of the algorithm.

Figure 1  depicts a  typical result at each iteration step of the MA algorithm. We
observe the distinctive sections in the figure where the knowledge-base techniques suc-
cessfully reduced the number of un-allocated resources. At stipulated intervals, the rule-
base methodologies kicked-in to de-allocate the resources that were deemed impractical
for the roster. In fewer than 30 iterations, the solution generated by the MA algorithm
is converted from feasible to a practical one.

5 Implementation and E xperimental Results

We tested the robustness of the combined MA algorithm with the new addition of the
dynamic rules through various numbers of randomly generated resources and posts.
Figure 2 illustrates a histogram of results obtained from simulating 209 resources and
posts. The histogram depicts the resultant data obtained by running 1023 different sam-
ples.

The histogram also indicates that a large proportion of the samples took less than 60
iterations before arriving at feasible and practical solutions. Depending on the tightness-
level of correlation between the random resources and the random posts, the behaviour
of the algorithm displays variations in its number of iterations when generating a roster.
MA-type problems are NP-complete in nature [6], and there exists multiple solutions for
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Fig. 1. Behaviour of the MA algorithm on the total un-allocated resources against the number of
resources removed at each iteration. Data: Number of Posts = 151, Number of Resources = 103,
Number of Ranks = 8.

any sample space that are optimal. Hence we can assume that the first optimal solution
achieved is the accepted solution to be analyzed.

Mutalik et al. [10] and Ghoshray and Yen [3] used mathematical techniques in their
approaches to solving constraints of optimisation problems. On the other hand, our
knowledge- and rule-base improvement techniques use processor time for picking out
identical strains, calculating probability functions (this is done only when more than
one solution becomes inevitable), and resolving inference rules. All of the strains were
preloaded into memory at initialization, thus making the comparison process simple but
efficient.While the mathematical techniques in commercial scheduling softwares [13,
11] deal with non-integers to calculate the constraint function definitions, the error ac-
quired at each function grows if the results obtained from one expression are reused
again for another.Contrary to this, our knowledge-based techniques compare simple bi-
nary strains, and only deal with a one-off probability function for their decision-making.
Clearly, the error rate here is not an issue.
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