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Abstract.  Displacement matrix elements of the Morse oscillators are widely
used in physical and chemical computation.  Many papers have been published
about the analytical expressions of the displacement matrix elements.  People
still use an integration method rather than the analytical expressions to calculate
the displacement matrix elements.  Analytical expressions of the diagonal and
off diagonal displacement matrix elements <v+m|qn|m> with intermediate vari-
ables are derived, where v, m and n are non-negative integers and n • 6.  Calcu-
lation with these expressions is superior to that with numerical integration in
precision, calculation speed and convenience.

1   Introduction

The Morse potential is the most popular anharmonic diatomic potential model in mo-
lecular spectroscopy and molecular dynamics.  The matrix elements are widely used in
calculation of transition energies, intensities and relative physical observables.  Many
physical quantities, such as dipole moment function, are functions of displacement,
which gives to displacement matrix elements (abbreviated as matrix elements there-
after) extra importance.  The Morse potential is expressed as [1]

2( ) (1 )aqV q D e−= −  , (1)

where D is the dissociation energy and a is the scaling factor.  The first advantage of
the Morse oscillator is that its simple energy level equation represents very well the
actual molecular energy levels and its parameters can easily be found from observed
transition energies.  Another advantage is the relatively simple expressions of its ana-
lytical wave functions, from which the analytical matrix elements are obtained [2 - 9].
Many previous papers have dealt with the analytical expressions of the Morse matrix
elements.  Heaps and Herzberg derived the analytical matrix elements for the n = 1
and 2 [2].  Herman and Rubin obtained general expressions for the matrix elements
[3].  However, these expressions have never gain broad acceptance because of their
cumbersome formulation [10].  The algorithm of the analytical expressions is poor [8].
The analytical expressions involve computational difficulties of significant rounding
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off errors due to near cancellation terms in the summations [3, 5, 7].  Too much cal-
culation is required for only some matrix elements of analytical expressions [5, 6, 8].
Only a few expressions for the diagonal [4, 5, 7] and off diagonal matrix elements [4,
8] among the published analytical matrix elements are more convenient than an inte-
gral method.  Thus, a numerical integration method was thought more convenient than
the analytical expressions to calculate the matrix elements [11].  On the other hand,
accuracy of the numerical integration will deteriorate with increase of m, n and v [6].
We have previously derived compact expressions of the matrix elements <v|qn|0> for n
• 6 without summations [12] and used in a simulation program of CH stretching
methyl internal rotation [13].  But, in that paper, those expressions are limited to the
calculation with the ground state.

In this paper, we derive general expressions for the diagonal and off diagonal ma-
trix elements <v+m|qn|m> for n • 6, which are used in our spectroscopic calculations.
To keep the expressions compact and calculation fast, intermediate variables are intro-
duced.  For verification, these analytical matrix elements are compared with those
from numerical integrations of the analytical wave functions.

2   Morse Oscillator

The Schrödinger equation associated to the Morse oscillator is given by [1]
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The vibrational energy levels are given by [1]

2( 1/ 2) ( 1/ 2)vE v v xω= + − +� �  , (3)

where v is the quantum number, ω is the frequency and x is the anharmonicity, which
can be expressed with the parameters D and a.  Either the parameter pair (ω, x) or (D,
a) uniquely determines a Morse oscillator.  The frequency and anharmonicity are
usually obtained from the observed transitions fitted to the Birge-Sponer equation,

0 / ( )v v x vxν ω← = + +  . (4)

Three intermediate parameters, /k xω= , 2 1k vβ = − −  and exp( )y k aq= −  are

used in the wave function formulation.  The orthonomal wave functions are non-
degenerate and are given by [1]

/ 2 / 2| ( )y
v vv N e y L yβ β−>=  , (5)

where the normalisation constant is given by

1/ 2[ ( 1) / ( )]vN a v k vβ= Γ + Γ −  , (6)
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where • is the gamma function.  In the solution, a generalised Laguerre polynomial is
used, which is defined as [14]
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Generalised Laguerre polynomials can be calculated from the following recur-
rences [14]

0 ( ) 1L yβ =  , (8)

1 ( ) 1L y yβ β= + −  , (9)

1 2( ) (2 1 ) ( ) ( 1 ) ( )v v vvL y v y L y v L yβ β ββ β− −= − + − − − +  . (10)

3   Displacement Matrix Elements

The Morse matrix elements <v+m|qn|m> can be calculated with numerical integra-
tions of the wave functions in Eq. (5) or with the analytical expressions [see ref 2 - 9].
The deriving procedure of the analytical matrix elements can be divided into two parts

[4].  The matrix elements of yλ  are calculated first and then, the matrix elements of
nq  are calculated with the relationship:
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(11)

The matrix elements of yλ  were given as:
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In evaluating the off diagonal matrix elements <v+m|qn|m>, where v > 0, both

gamma functions (1 )vλΓ − −  and polygamma functions ( ) (1 )i vψ λ− −  are used,

where i is a non negative integer. They have poles at • = 0, which can be solved with
the following two equations:

0(1 ) / (1 ) | ( 1) ( )vv v vλψ λ λ →− − Γ − − = − Γ  , (13)

(1 ) ( ) cot[( ) ]v v vψ λ ψ λ π λ π− − = + + +  . (14)
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The matrix elements of nq  are calculated by combining Eqs. (11) and (12).  The

number of terms in the matrix elements increases dramatically as n increases.  To keep
the expressions compact, the following intermediate variables are introduced
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The off diagonal matrix elements can then be expressed as
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For the diagonal matrix elements the following intermediate variables are used,

( 2 1) ( 1) / ( )dx k m m k m= − − Γ + Γ −  , (24)

( 1) / ( 1)cx k m i m i= Γ − − − Γ − +  , (25)
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The diagonal matrix elements <m|qn|m> can thus be written as
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The matrix elements with the ground state <v|qn|0> were derived previously [12]
and are listed for comparison.  With the following intermediate variables

0 ( 1) ( 2 1) ( ) ( 1) / ( 1) ( 1)vy k v v k v v k v k= − − − Γ Γ − − − − Γ −  , (33)
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the off diagonal matrix elements are expressed as
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The diagonal matrix elements are expressed with intermediate variables
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The general expressions of the off diagonal matrix elements <v+m|qn|m> in Eqs.
(18) – (23) and the matrix elements <v|qn|0> in Eqs. (35) – (40) have the same coeffi-
cients in the corresponding expressions, the summation only appearing in the general
expressions.  The same pattern occurs by comparing the diagonal matrix elements
<m|qn|m> in Eqs. (27) – (32) with the matrix elements <0|qn|0> in Eqs. (42) – (47).
The n is limited to 6 in our work, and can be extended further simply, however the
term of the expression increases with the n increasing.  The matrix elements
<v+m|qn|m> are verified by numerical comparison with those from the analytical
matrix elements <v|qn|0> and those from numerical integration.  For example, the
same result <6|q6|0> = 0.00000123459177 Å6 is obtained from the Eqs. (23), (40) and
numerical integration (with reduced mass 0.97959254204827 amu, frequency 2988.84
cm-1 and anharmonicity 51.59 cm-1).  However, the calculation with the numerical
integration needs much more time than that with the analytical expressions.  High
accuracy is achieved in our expressions without the sign alternation in the summation,
which causes the round off errors in previous expressions [4, 5, 7].

4   Conclusion

The analytical expressions of the Morse matrix elements <v+m|qn|m> for n • 6 have
been derived and programmed with the input of the reduced mass, frequency and
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anharmonicity.  Intermediate variables are employed to keep the expressions compact
and computation fast.  Our expressions are exact and verified with a numerical inte-
gration method.  Compared with the previous analytical matrix elements, great accu-
racy, simplicity and fast computation are achieved with these expressions.
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Appendix: Polygamma Function

The polygamma functions are extensively used in the expressions.  The asymptotic
formula is given as follows [14]
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(48)

where B2j are the Bernoulli numbers.  For most molecules [15], k value or the argu-
ment z is large enough, so that only very few terms are required to gain a high accu-
racy.


