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Abstract. The Lanczos algorithm is a well known procedure to compute
few eigenvalues of large symmetric matrices. We slightly modify this
algorithm in order to obtain the eigenvalues of Hamiltonian matrices H =
JS with S symmetric and positive definite. These matrices represent a
significant subclass of Hamiltonian matrices since their eigenvalues lie on
the imaginary axis. An implicitly restarted procedure is also considered
in order to speed-up the convergence of the algorithm.

1 Introduction

Many applications require the numerical approximation of the eigenvalues of a
2n × 2n real Hamiltonian matrix H = JS where

J =
(

O In

−In 0

)
and S is a large and sparse symmetric matrix. As an example, we cite the solution
of the continuous-time algebraic Riccati equations [9,11] of the form

Q + ATX + XA − XGX = 0,

where A, G and Q are known n × n matrices, G and Q symmetric, and the
solution X is also symmetric.

It is well known that the considered eigenvalues are symmetric with respect
to the real and imaginary axes. In this paper we are particularly interested in a
subclass of Hamiltonian matrices where S is symmetric and positive definite. In
this case the eigenvalues lie (two by two symmetrically with respect to the origin)
along the imaginary axis. These matrices arise in many application fields that
deal with evolutionary problems whose solutions satisfy a certain conservation
law, typically the energy of the system (see, for example, [5]). In the rest of the
paper we refer to these matrices as positive definite Hamiltonian matrices [2].

All the numerical methods for the eigenvalues computation of Hamiltonian
matrices use symplectic transformations in order to maintain the Hamiltonian
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structure of the matrix. In fact, if P is symplectic (that is, PTJP = J) and H
is Hamiltonian, then also P−1HP is Hamiltonian. For this reason, most of the
existing algorithms are symplectic modifications of more general approaches as,
for instance, the symplectic QR method in [6,7,13] and the symplectic iterative
methods [3,4].

In particular, the symplectic Lanczos algorithm in [4] where the directions
generated by the procedure are symplectic rather than orthogonal, is strictly
related to the method introduced in this paper. The idea inherited this algorithm
is the following: let

S =
(
S11 S12
ST
12 S22

)
with S11 and S22 symmetric, the matrix H may be represented in the form

H =
(

ST
12 S22

−S11 −S12

)
≡
(
V W
Z −V T

)
.

The approach in [4], as well as those in [1,10] which define canonical forms for
the Hamiltonian matrices, transform the above matrix in(

V1 W1
−V T

1

)
with V1 triangular and V1 and W1 having few nonnull diagonals. This is called
a Hamiltonian triangular form for the matrix H.

Conversely, based on a theoretical result in [2], for positive definite Hamilto-
nian matrices we derive a canonical form (W2 tridiagonal)(

W2
−I

)
by means of a transformation that we prove to be symplectic. We will explain
how to derive this form in Section 2. Then in Section 3, following the results
presented in [4,8], we derive an implicit restarting technique that can be easily
applied to the considered class of matrices.

2 Tridiagonal Canonical Form

In [2] existence results on a diagonal form for Hamiltonian matrices H = JS with
S positive definite is given. In the same paper, this result is also rearranged in
order to obtain the following symplectic transformation in the simplest canonical
form.

Theorem 1. Given a real Hamiltonian matrix H = JS with S symmetric and
positive definite, a real symplectic matrix Z exists such that

HZ = Z

(
D1

−D1

)
≡ ZJ

(
D1

D1

)
(1)

with D1 > 0 diagonal.
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Even if the proof of Theorem 1 is presented in [2], it is interesting to sketch
its main steps. As a remark, we recall that:

– if A is a symmetric matrix, then all the eigenvalues are real and an orthogonal
matrix U exists such that

AU = UΛ;

– if A is a skew-symmetric matrix, then all the eigenvalues are pure imaginary
and a unitary matrix U = [U1 U1] exists such that

AU = iU

(
Λ1

−Λ1

)
.

Moreover, from V =
√

2[Re(U1) Im(U1)] one has

AV = V J

(
Λ1

Λ1

)
, V TV = I,

that is, a skew-symmetric matrix is similar to a positive definite Hamiltonian
matrix by means of an orthogonal matrix.

Proof. Let us start from the decomposition of the symmetric and positive definite
matrix S in diagonal form, that is S = QΛQT , with Q orthogonal and Λ positive.
Then

(JS)JQ = (JQΛQT )JQ = JQ(ΛQTJQ)

shows that JS is similar to ΛQTJQ by means of the transformation matrix
JQ. Now, since the matrix Λ1/2QTJQΛ1/2 is skew-symmetric, it will admit the
following similarity transformation

Λ1/2QTJQΛ1/2 = V J

(
D1

D1

)
V T , (2)

and hence

ΛQTJQ = Λ1/2
(
Λ1/2QTJQΛ1/2

)
Λ−1/2 = (Λ1/2V )J

(
D1

D1

)
(Λ1/2V )−1.

Let U = JQΛ1/2V . One has that

UTJU = −(V TΛ1/2QTJ)J(JQΛ1/2V ) = V TΛ1/2QTJQΛ1/2V

= V TV J

(
D1

D1

)
V TV = J

(
D1

D1

)
and therefore the matrix

Z = U

(
D

−1/2
1

D
−1/2
1

)
= JQΛ1/2V

(
D

−1/2
1

D
−1/2
1

)
is symplectic and satisfies (1). ��
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Equation (1) allows us to easily obtain the eigenvalues of JS as iλj and
−iλj , where λj is a diagonal element of D1. On the other hand, as it occurs in
the case of symmetric matrices, the above theorem cannot be used to compute
the eigenvalues numerically. For this reason, different approaches need to be
introduced.

We now observe that −S1/2JSJS1/2 is symmetric and positive definite, then
it is possible to apply to this matrix the Lanczos algorithm, that is one should
compute a matrix Zk+1 = [Zk zk+1] which is defined by means of k+1 orthogonal
columns and a tridiagonal matrix Tk such that

−S1/2JSJS1/2Zk = ZkTk + βk+1zk+1e
T
k ,

where ek is the last unit vector of IRk. Then, from Vk+1 = S−1/2Zk+1 =
[Vk vk+1], one has

− H2Vk = VkTk + βk+1vk+1e
T
k (3)

with Vk of size 2n × k and such that

V T
k SVk = Ik. (4)

If −iλj , for j = 1, . . . , n, are the eigenvalues of H, then the eigenvalues of H2

are −λ21,−λ21,−λ22,−λ22, . . . , that is, H2 has double eigenvalues with a subspace
of size 2 associated. This means that, if no breakdown has previously occurred,
this algorithm theoretically will stop after n steps, providing a tridiagonal sym-
metric and positive definite matrix T . In fact, from

− H2V = V T, V TSV = In, (5)

one has

−V TSH2V = V TSV T = T

and −SH2 is symmetric and positive definite.
Hence the eigenvalues of H2 may be obtained applying an algorithm for sym-

metric and positive definite matrices to a half sized matrix T . Unfortunately, the
decomposition (3)-(4) is not stable and can be only used to compute a limited
number of extremal eigenvalues. Otherwise, it needs continue reorthogonaliza-
tions which make necessary to store all the columns of V.

Anyway, from a theoretical point of view, we derive the following symplectic
transformation which is numerically more reliable than that defined in Theorem
1.

Theorem 2. Given a real Hamiltonian matrix H = JS with S symmetric and
positive definite, a real symplectic matrix U exists such that

HU = U

(
T

−I

)
≡ UJ

(
I
T

)
with T symmetric and positive definite tridiagonal matrix.
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Proof. Let

W = −HV, (6)

from (5) one has

HW = V T (7)

and, consequently,

H[V W ] = [−W V T ] = [V W ]
(

T
−I

)
. (8)

The matrix U = [V W ] is symplectic, that is

UTJU =
(

V TJV V TJW
WTJV WTJW

)
= J.

In fact, from (6) one has JW = SV and

V TJW = V TSV = I.

Moreover, V TJV = O since each column vi of V may be expressed in terms of
an even polynomial of degree 2(i−1) in H, that is vi = pi−1(H2)v1, and for any
integers i and l

vT
i Jvl = vT

1 (pi−1(H2))TJpl−1(H2)v1 = vT
1 (pi+l−1(H))TJpi+l−1(H)v1 = 0

being, for any vector v of appropriate length, vTJv = 0. Finally, WTJW = O
for a similar reasoning. ��

The above theorem states that U transforms the matrix H in a matrix

J

(
I
T

)
which corresponds to the tridiagonal form of symmetric matrices. This is the
simplest canonical transformation which can be computed for Hamiltonian ma-
trices and proves the existence of a canonical form for positive definite Hamilto-
nian matrices which is slightly different from the one obtained in Theorem 1. In
fact, from T = Q1D

2
1Q

T
1 , with D1 diagonal and Q1 orthogonal, it results that

diag(Q1, Q1) is symplectic and(
QT
1
QT
1

)(
T

−I

)(
Q1

Q1

)
=
(

D2
1

−I

)
≡ J

(
I
D2

1

)
.

Now we derive an algorithm for the computation of matrices U and T in
Theorem 2. Let Vk = [v1, . . . , vk] and
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Tk =


α1 β2

β2 α2
. . .

. . . . . . βk

βk αk

 , (9)

the generic row of (3) is

−H2vj = βjvj−1 + αjvj + βj+1vj+1

and allows us to compute vj+1. The coefficient βj is computed in order to have
vT

j Svj = 1, while αj derives from

0 = vT
j Svj+1 =

1
βj+1

(vT
j SHwj − αj) =

1
βj+1

(−vT
j H

TSwj − αj),

where wj = −Hvj in analogy with (6).
The complete algorithm to obtain the tridiagonal form is the following:

ṽ1 arbitrary
β1 = (ṽT

1 Sṽ1)
1/2

for j = 1, 2, . . . , n
vj = ṽj/βj

wj = −Hvj

αj = wT
j Swj

if j = 1
ṽj+1 = Hwj − αjvj

elseif j < n
ṽj+1 = Hwj − αjvj − βjvj−1

end
βj+1 = (ṽT

j+1Sṽj+1)1/2

if βj+1 = 0, stop
end

We observe that αj > 0 and βj ≥ 0. The algorithm stops before n steps if
βj = 0 (i.e., ṽj = 0), that is, when ṽ1 belongs to an invariant subspace of H2.
The vectors wj need not to be stored, while the vj are required for any reorthog-
onalization. If the above algorithm is applied to matrices JS with S nondefinite,
then ṽT

j Sṽj should be less than zero and the procedure breaks. A modification
of the algorithm in order to overcome this problem will be investigated in future.

3 Implicit Restarting

As observed previously, the Lanczos method is widely used to compute only a
small subset of the eigenvalues. In this case, the algorithm is stopped after a fixed
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number k of iterations, then it restarts with a different initial vector v1 obtained
by the performed iterations. The idea is just to compute the new starting vector
in order to obtain, after k steps, βk+1 = 0, that is an invariant subspace which
allows us to compute k eigenvalues.

The implicit restarted Lanczos algorithm shows several advantages since the
storage requirement is fixed, there are no spurious eigenvalues, and deflation
techniques similar to those applied to the QR algorithm may be applied [8].

As an example, we now analyze how it is possible to apply this technique to
the Lanczos algorithm described in the previous section. Let us start from k+ 2
steps of equation (3)

−H2Vk+1 = Vk+1Tk+1 + βk+2vk+2e
T
k+1,

where ek+1 represents the last unit vector of IRk+1. Then, for a given real pa-
rameter µ and from Tk+1 − µI = QR we have the following equalities

(−H2 − µI)Vk+1 = Vk+1(Tk+1 − µI) + βk+2vk+2e
T
k+1

(−H2 − µI)Vk+1 = Vk+1QR + βk+2vk+2e
T
k+1

(−H2 − µI)(Vk+1Q) = (Vk+1Q)RQ + βk+2vk+2e
T
k+1Q

−H2(Vk+1Q) = (Vk+1Q)(RQ + µI) + βk+2vk+2e
T
k+1Q

(10)

where RQ+µI is a symmetric and positive definite tridiagonal matrix. The last
equation cannot be however considered as obtained by a Lanczos procedure since

βk+2e
T
k+1Q = [β̂k+1e

T
k β̃k+2], (11)

that is, it has two elements different from zero (instead of one, see (9)). Anyway,
equation (10) is useful to define the vector v+1 = (Vk+1Q)e1 (e1 is the first unit
vector of IRk+1) as the starting vector of the new Lanczos iterations. Its relation
with v1 is

(−H2 − µI)v1 = ρ1v
+
1

where ρ1 is the (1,1) element of R, is obtained by applying the second equation
of (10) to e1 and from Re1 = ρ1e1.

Let us now partition the matrices Vk+1Q = [V +
k ṽk+1] and

RQ + µI = QTTk+1Q =

(
T+

k β̃k+1ek

β̃k+1e
T
k α̃k+1

)
. (12)

Substitution of (11) and (12) in the last equation of (10) gives

− H2[V +
k ṽk+1] = [V +

k ṽk+1 vk+2]

 T+
k β̃k+1ek

β̃k+1e
T
k α̃k+1

β̂k+1e
T
k β̃k+2

 . (13)

The first k columns of (13) may be rewritten in the form
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− H2V +
k = V +

k T+
k + β+k+1v

+
k+1e

T
k (14)

where

v+k+1 =
1

β+k+1
(β̃k+1ṽk+1 + β̂k+1vk+2)

and β+k+1 is such that (v+k+1)
TSv+k+1 = 1. Hence equation (14) represents the

implicit application of k steps of the Lanczos algorithm to the starting vector
v+1 .

This technique may be iterated. Starting from (14), we repeat one additional
step of the Lanczos iteration and then again the implicit method until βk+1 ≈ 0.

The application of p shifts µ1, µ2, . . . , µp is straightforward and is used to
speed-up the computation of k eigenvalues simultaneously. We summarize its
use in the following algorithm.

compute v1, . . . , vk, ṽk+1, α1, . . . , αk, β2, . . . , βk+1 by
means of k steps of the Lanczos algorithm

while |βk+1| is greater than a fixed tolerance
compute vk+1, . . . , vk+p, ṽk+p+1, αk+1, . . . , αk+p,
βk+2, . . . , βk+p+1 by means of p additional steps
of the Lanczos algorithm

vk+p+1 = ṽk+p+1/βk+p+1
construct the matrix Tk+p as in (9)
choose the parameters µ1, µ2, . . . , µp

Q = Ik+p; T̃ = Tk+p

for i = 1, . . . , p
QiRi = T̃ − µiI
T̃ = QT

i T̃Qi

Q = QQi

end
define qk+p,k as the (k + p, k) element of Q
define β̃k+1 as the (k + 1, k) element of T̃
β̂k+p+1 = βk+p+1qk+p,k

[V +
k V̂p] = Vk+pQ

define v̂k+1 as the first column of V̂p

define v1, . . . , vk as the k columns of V +
k

ṽk+1 = β̃k+1v̂k+1 + β̂k+p+1vk+p+1
define α1, . . . , αk and β2, . . . , βk as the main diagonal
and the lower diagonal of T̃

βk+1 = (ṽk+1Sṽk+1)1/2

end



A Symplectic Lanczos-Type Algorithm to Compute the Eigenvalues 147

The matrix-by-matrix operations are not expensive since k and p are small
with respect to n. This means that the computational cost of the overall algo-
rithm depends only on the number of iterates in the Lanczos method.

The choice of the parameters µj gives rise to different strategies. For example,
if we set µj , j = 1, . . . , p, as p of the eigenvalues of Tk+p, that is, if we use the
exact shift selection strategy [12], then T̃ has the following structure(

T+
k

Dp

)
,

where Dp is diagonal with µ1, . . . µp as main diagonal entries. This strategy gives
good results, especially when used to compute the largest eigenvalues in modulus
of the positive definite Hamiltonian matrix.

4 Conclusions

The Lanczos process has been modified in order to compute the eigenvalues of
positive definite Hamiltonian matrices. The obtained algorithm is symplectic
and requires half of the workspace of the original algorithm. Moreover, since
the procedure gives a symmetric and positive definite matrix, known techniques
for this class of matrices (for example, the implicit restarting) can be used to
improve the computation.
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