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Abstract. The theoretical framework we proposed, based on first-order
temporal logic, permits to define the main notions used in temporal data
mining (event, temporal rule) in a formal way. The concept of consis-
tent linear time structure allows us to introduce the notions of general
interpretation and of confidence. These notions open the possibility to
use statistical approaches in the design of algorithms for inferring higher
order temporal rules, denoted temporal meta-rules.

1 Introduction

The domain of temporal data mining focuses on the discovery of causal relation-
ships among events that may be ordered in time and may be causally related.
The contributions in this domain encompass the discovery of temporal rule, of
sequences and of patterns. However, in many respects this is just a terminologi-
cal heterogeneity among researchers that are, nevertheless, addressing the same
problem, albeit from different starting points and domains.

Although there is a rich bibliography concerning formalism for temporal
databases, there are very few articles on this topic for temporal data mining.
In [T2J3] general frameworks for temporal mining are proposed, but usually the
researches on causal and temporal rules are more concentrated on the method-
ological or algorithmic aspect, and less on the theoretical aspect. In this article,
we start with an innovative formalism based on first-order temporal logic, which
permits an abstract view on temporal rules. This formalism allows the applica-
tion of an inference phase in which higher order temporal rules (denoted temporal
meta-rules) are inferred from local temporal rules, the lasts being extracted from
different sequences of data. Using this strategy, known in the literature as higher
order mining [4], we can guarantee the scalability of our system (the capacity to
handle huge databases), by applying standard statistical and machine learning
tools. In the same time, the analysis of higher order temporal rules may put in
evidence changes in extracted rules over time, that is, changes in the model of
the data. The algorithms we proposed for extracting temporal meta-rules are
not dependent on a particular knowledge discovery methodology as long as the
local temporal rules, generated by this methodology, may be expressed in our
formalism.
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The rest of the paper is structured as follows. In the next section, the first-
order temporal logic formalism is extensively presented (definitions of the main
terms — event, temporal rules, confidence — and concepts — consistent linear time
structure, general interpretation). The notion of temporal meta-rules and the
algorithms for inferring such high order rules are described in Section 3. Finally,
the last section summarizes our work and lists some possible future directions.

2 The Formalism of Temporal Rules

Time is wubiquitous in information systems, but the mode of
representation/perception varies in function of the purpose of the analysis
[5I6]. Firstly, there is a choice of a temporal ontology, which can be based either
on time points (instants) or on intervals (periods). Secondly, time may have
a discrete or a continuous structure. Finally, there is a choice of linear vs.
nonlinear time (e.g. acyclic graph). For our methodology, we chose a temporal
domain represented by linearly ordered discrete instants.

Definition 1. A single-dimensional linearly ordered temporal domain is a struc-
ture Tp = (T, <), where T is a set of time instants and "<” a linear order on

T.

A first-order temporal language L is constructed over an alphabet contain-
ing function symbols (including constants), predicate symbols, variables, logi-
cal connectives, temporal connectives and qualifier symbols. A function symbol
(predicate symbol) is a lower (upper) case letter followed by a string of lower
case letters and/or digits. A constant is a zero-ary function symbol and a zero-
ary predicate is a proposition symbol. An upper case letter represents a variable.
There are several special binary predicate symbols {=, <, <, >, >} known as re-
lational symbols. The basic set of logical connectives is {A, =} from which one
may express V, — and «>. The basic temporal connectives are X (next time) and
U (until) from which we may derive F (sometime) and G (always).

Consider now a restricted first-order temporal language L. which contains
only n-ary function symbols (n > 0), n-ary predicate symbols (n > 1, so no
proposition symbols), the set of relational symbols {=, <, <,>, >}, a single log-
ical connective {A} and a temporal connective of the form Xy, k € Z, where k
strictly positive means nezt k times, k strictly negative means last k times and
k = 0 means now.

The syntax of L defines terms, atomic formulae and compound formulae,
which are defined inductively by the usual rules. A Horn clause is a formula of
the form By A---A By, — By,1 where each B; is a positive (non-negated) atom.
The atoms B;, ¢ = 1,...,m are called implication clauses, whereas B,,;1 is
known as the implicated clause. Syntactically, we cannot express Horn clauses
in our language L because the logical connective — is not defined. However,
to allow the description of rules, which formally look like a Horn clause, we
introduce a new logical connective, —, which practically will represent a rewrite
of the connective A. Therefore, a formula in L of the form p — ¢ is syntactically
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equivalent with the formula p A g. When and under what conditions we may use
the new connective, one precise in the next definitions.

Definition 2. An event (or temporal atom) is an atom formed by the predicate
symbol E followed by a bracketed n-tuple of terms (n > 1) E(t1,ta,... ,t,). The
first term of the tuple, t1, is a constant representing the name of the event and
all others terms are function symbols. A short temporal atom (or the event’s
head) is the atom E(t1).

Definition 3. A constraint formula for the event E(t1,ta,...t,) is a conjunc-
tive compound formula, C1 ACy A --- A\ Cy, where each C; is a relation implying
one of the terms t;.

For a short temporal atom FE(t;), the only constraint formula that is permit-
ted, denoted short constraint formula, is t; = ¢, where ¢ is a constant.

Definition 4. A temporal rule is a formula of the form Hy N---NHp, — Hppy1,
where Hy, 1 1s a short constraint formula and the H; are constraint formulae,
prefived by the temporal connectives X_i, k > 0. The maximum value of the
index k is called the time window of the temporal rule.

Remark. The reason for which we did not permit the expression of the implication
connective in our language is related on the truth table for a formula p — ¢:
even if p is false, the formula is still true, which is unacceptable for a temporal
rationing of the form cause— effect.

Practically, the only atoms constructed in L are temporal atoms and the
only formulae constructed in L are constraint formulae and temporal rules. As
a consequence of the Definition Bl a conjunction of relations Cy A Cy A -+ A Cy,
each relation prefixed by temporal connectives X_, k > 0, may be rewritten as
Coiy N+ AN Con—1) = Cy(n), — 0 being a permutation of {1..n} — only if there
is a short constraint formula Cy(,) prefixed by Xo.

The semantics of L is provided by an interpretation I over a domain D. The in-
terpretation assigns an appropriate meaning over D to the (non-logical) symbols
of L. Usually, the domain D is imposed during the discretisation phase, which is
a pre-processing phase used in almost all knowledge extraction methodologies.
Based on Definition 2, an event can be seen as a labelled (constant symbol 1)
sequence of points extracted from raw data and characterized by a finite set of
features (function symbols to, - - - , ¢,). Consequently, the domain D is the union
D, U Dy, where the set D, contains all the strings used as event names and the
set Dy represents the union of all domains corresponding to chosen features.

To define a first-order linear temporal logic based on L, we need a structure
having a temporal dimension and capable to capture the relationship between a
time moment and the interpretation I at this moment.

Definition 5. Given L and a domain D, a (first order) linear time structure
is a triple M = (S,2,), where S is a set of states, x : N — S is an infinite
sequence of states (so, S1y-+- y8n,...) and S is a function that associates to each
state s an interpretation (s) of all symbols defined at s.
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In the framework of temporal data mining, the function < is a constant and it
is equal to the interpretation I. In fact, the meaning of the events, constraint
formulae and temporal rules is not changing over time. What is changing over
time is the value of the meaning. Given a first order time structure M, we denote
the instant 4 (or equivalently, the state s;) for which I(P) = true by i = P,
i.e. at time instant ¢ the formula P is true. Therefore, i = E(t1,... ,t,) means
that at time 7 an event with the name ¢; and characterized by the global features
ta, ... ,t, started. A constraint formula is true at time i if and only if all relations
are true at time 4. A temporal rule is true at time i if and only if i = H,, 11
and i = (H1 A--- A Hy,). (Remark: i = P AQ if and only if i = P and i = Q;
i = XpP if and only if i + k = P).
Now suppose that the following assumptions are true:

A. For each formula P in L, there is an algorithm that calculates the value of
the interpretation I(P) in a finite number of steps.

B. There are states (called incomplete states) that do not contain enough in-
formation to calculate the interpretation for all formulae defined at these
states.

C. Tt is possible to establish a measure, (called general interpretation) about the
degree of truth of a compound formula along the entire sequence of states

(80,81,... ,Sn,...).

The first assumption express the calculability of the interpretation I. The second
assumption express the situation when only the body of a temporal rule can be
evaluated at time moment i, but not the head of the rule. Therefore, for the
state s;, we cannot calculate the interpretation of the temporal rule and the only
solution is to estimate it using a general interpretation. This solution is expressed
by the third assumption. (Remark: The second assumption violates the condition
about the existence of an interpretation in each state s;, from Definition bl But it
is well known that in data mining sometimes data are incomplete or are missing.
Therefore, we must modify this condition as ”S is a function that associates to
almost each state s an interpretation (s) of all symbols defined at s 7).

However, to ensure that this general interpretation is well defined, the linear
time structure must present some property of consistency. Practically, this means
that if we take any sufficiently large subset of time instants, the conclusions we
may infer from this subset are sufficiently close from those inferred from the
entire set of time instants. Therefore,

Definition 6. Given L and a linear time structure M, we say that M is a con-
sistent time structure for L if, for every n-ary predicate symbol P, the limit
A
co(P) = lim #A exists, where A = {i € {0,... ,n}|i = P} and # means "car-
n—oo N
dinality”. The notation co(P) denotes the confidence of P

Now we define the general interpretation for an n-ary predicate symbol P as:

Definition 7. Given L and a consistent linear time structure M for L, the gen-
eral interpretation Ig for an n-ary predicate P is a function D™ — true x [0, 1],
Ic(P) = (true, co(P)).
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The general interpretation is naturally extended to constraint formulae, prefixed
or not by temporal connectives. There is only one exception: for temporal rules
the confidence is calculated as a limit ratio between the number of certain appli-
cations (time instants where both the body and the head of the rule are true) and
the number of potential applications (time instants where only the body of the
rule is true). The reason for this choice is related to the presence of incomplete
states, where the interpretation for the implicated clause cannot be calculated.
A useful temporal rule is a rule with a confidence greater than 0.5.

Definition 8. The confidence of a temporal rule Hy A -+ AN Hy, — Hp,q1 i the
A
limit lim %, where A = {i € {0,... ,n}|i = Hi A+~ ANHy AN Hpp1} and

n— oo

B={ie{0,... ,n}|i=Hi A AHp).

For different reasons, (the user has not access to the entire sequence of states,
or the states he has access to are incomplete), the general interpretation cannot
be calculated. A solution is to estimate I using a finite linear time structure,
i.e. a model.

Definition 9. Given L and a consistent time structure M = (S, z,), a model

for M is a structure M = (T, %) where T is a finite temporal domain {iy, . .. yint,
T is the subsequence of states {x;,,... ,x;,} (the restriction of  to the temporal
domain T') and for each ij,j = 1,... ,n, the state x;; is a complete state.

Now we may define the estimations for the general interpretation and for the
confidence of a temporal rule, giving a model :

Definition 10. Given L and a model M for M, an estimator of the general
interpretation for an n-ary predicate P, I (P), is a function D™ — true x [0,1],

assigning to P the value true with a confidence equal to the ratio 4T where

A={ie T\z’~: P}. The notation co(P, M) will denote the estimated confidence
of P, given M.

Definition 11. Given a model M = (T, %) for M, the estimation of the con-

A
fidence of the temporal rule Hy N\ --- AN Hy, — Hyyq1 is the ratio %, where

A={ieTli=H A ANHy ANHp1} and B={i € T|i= H  A--- A Hp,}.

2.1 A General Methodology

A general methodology for temporal rules extraction may be structured in two
phases. The first, called discretisation phase, transforms sequential raw data
into sequences of events and establishes the set of temporal atoms that can be
defined syntactically in L. In addition, during this phase, a linear time structure
is defined: at each time moment i, the state contains as information the set of
events started at i. The second phase, called inference phase, extract temporal
rules from the set of all events. To guarantee the scalability of the methodology,
this phase is divided in two steps:
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A. application of a first induction process, using different models M for M, to
obtain different sets of temporal rules, and

B. application of a second inference process, using the previously inferred tem-
poral rules, to obtain the final set of temporal meta-rules.

Among different approaches that can be applied to extract rules from a set
of events - Association Rules[7], Inductive Logic Programming|[§], Classifica-
tion Trees[9] - we proposed (see [I0[1I]) the classification tree approach. Con-
sequently, the first induction process consists in creating multiple classification
trees, each based on a different training set. Choosing a training set is equivalent
to choose a model. All the states from these models are complete states, because
the algorithm that construct the tree must know, for each time moment, the set
of predictor events and the corresponding dependent event.

Once the classification tree constructed, the outcome of the test contained in
each node becomes a relation and the set of all relations situated on a path from
root to a leaf becomes a constraint formula. This constraint formula becomes
a temporal rule by adding temporal connectives . The confidence of temporal
rule is calculated according to the Definition 11. (Remark: the classification tree
approach guarantees the extraction of useful temporal rules from a given model,
but do not guarantee the extraction of all useful temporal rules from this model).
The second inference process is designed to obtain temporal meta-rules, which
are temporal rules in accordance with the Definition 4, but supposed to have a
small variability of the estimated confidence among different models. Therefore,
a temporal meta-rule may be applied with the same confidence in any state,
complete or incomplete. The process of inferring temporal meta-rules is related
to a new approach in data mining, called the higher order mining, i.e. mining
from the results of previous mining runs. According to this approach, the rules
generated by the first induction process are first order rules and those gener-
ated by the second inference process (i.e. temporal meta-rules) are higher order
rules. The formalism we proposed does not impose what methodology to use
to discover first order temporal rules. As long as these rules may be expressed
according to the Definition 4, the strategy (including algorithms, criterions, sta-
tistical methods) developed to infer temporal meta-rules might be applied.

3 Temporal Meta-rules

Suppose that for a given model M we dispose of a set of temporal rules, ex-
tracted from the corresponding classification tree. It is very likely that some
temporal rules contain constraint formulae that are irrelevant, i.e. by deleting
these relations, the general interpretation of the rules remain unchanged. In the
frame of a consistent time structure M, it is obviously that we cannot delete a
relation from a temporal rule (noted TR) if the resulting temporal rule (noted
TR™) has a general interpretation with a lower confidence. But for a given model
M, we obtain an estimate of co(T'R), which is co(TR, M). This estimator hav-
ing a binomial distribution, we can calculate a confidence interval for co(TR)
and, consequently, we accept to delete a relation from TR if and only if the



Higher Order Temporal Rules 329

lower confidence limit of co(T'R™, M) is greater than the lower confidence limit
of co(TR, M).

The estimator co(T'R, M) being a ratio, #A/#B, a confidence interval for
this value is constructed using a normal distribution depending on #A and #B
(more precisely, the normal distribution has mean m = #A/#B and variance
0% = w(1—m)/#B). The lower limit of the interval is L, (4, B) = m— 2,0, where
Zo 1S a quantile of the normal distribution for a given confidence level a. The
algorithm which generalize a single temporal rule TR, by deleting one relation,
is presented in the following:

Algorithm 1 Generalization 1-delete

Step 1. Let TR = Hi N -+ NHp, = Hppy1. Let X = UCy, where C; are all
relations that appear in the constraint formulae of the implication clauses.
Rewrite TR, by an abuse of notation, as X — H,,11. If n = #X, denote by
Ci,...,Cy the list of all relations from N.

Step 2. Foreachi=1,...,n do

NT =RN-— Ci7 TR,L_ =N" Hm+1

A={i €eTli=NNHy41},B={ieT|i=N}
A—={i€Tli= N AH,1},B-={ieT|i=N"}
co(TR, M) = #A/#B, co(TR; ,M) =#A~/#B~
If Lo(A,B) < Lo(A™,B™) then store TR

Step 3. Keep only the generalized temporal rule TR, for which Lo(A~,B™) is
minimal.

The core of the algorithm is the Step 2, where the sets used to estimate the
confidence of the initial temporal rule, TR, and of the generalized temporal rule,
TR ,ie. A, B,A” and B™, are calculated. The complexity of this algorithm is
linear in n. Using the criterion of lower confidence limit, (or LCL), we define the
temporal meta-rule inferred from T'R as the temporal rule with a maximum set of
relations deleted from R and having the minimum lower confidence limit greater
than L, (A4, B). An algorithm designed to find the largest subset of relation that
can be deleted will have an exponential complexity. A possible solution is to
use the Algorithm [ in successive steps until no more deletion is possible, but
without having the guarantee that we will get the global minimum.

Suppose now that we dispose of two models, M; = (Tl,ﬁcl) and M, =
(Ty, &), and for each model we have a set of temporal rules with the same
implicated clause H (sets denoted S, respectively Ss). Let S be a subset of the
reunion S USe. f TR; € S, 5 =1,...,n, TR; = Hi A--- N Hy,, — H, then
denote

Aj:{i€T1UT2|i:>H1/\.../\Hmj/\H},A:UA]‘,
Bj:{’iETl UTQ|i:>H1/\.../\Hmj},B:UBj,
C={ichUT|i= H}.
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The performance of the subset S can be summarized by the number of false
positives (time instants where the implication clauses of each temporal rule from
S are true, but not the clause H) and the number of false negatives (time instants
where the clause H is true, but not at least one of the implication clauses of
the temporal rules from S). Practically, the number of false positives is fp =
#(B — A) and the number of false negatives is fn = #(C — B). The worth
of the subset S of temporal rules is assessed using the Minimum Description
Length Principle (MDLP). This provides a basis for offsetting the accuracy of a
theory (here, a subset of temporal rules) against its complexity. The principle is
simple: a Sender and a Receiver have both the same models M, and ]\;[2, but the
states from the models of the Receiver are incomplete states (the interpretation
of the implicated clause cannot be calculated). The sender must communicate
the missing information to the Receiver by transmitting a theory together with
the exceptions to this theory. He may choose either a simple theory with a great
number of exceptions or a complex theory with fewer exceptions. The MLDP
states that the best theory will minimize the number of bits required to encode
the total message consisting of the theory together with its associated exceptions.

To encode a temporal rule from S, we must specify its implication clauses
(the implicated clause being the same for all rules, there is not need to encoded
it). Because the order of the implication clauses is not important, the number
of required bits is divided by xlogy(m!), where m is the number of implication
clauses and k is a constant depending on encoding procedure. The number of
bits required to encode the set S is the sum of encoding length for each temporal
rule from S divided by & log,(n!) (the order of the n temporal rules from S is not
important). The exceptions are encoded by indicating the sets false positive and
false negative. If b = #B and N = #(T, + T5) then the number of bits required

is x log, ((}’p)) + K logs ((1\%17))7 because we have (;’p) possibilities to choose

the false positives among the cases covered by the rules and (fo) possibilities

to indicate the false negatives among the uncovered cases. The total number of
bits required to encode the message is then equal to theory bits + exceptions
bits.

Using the criterion of MDLP, we define as temporal meta-rules inferred from
a set of temporal rules (implying the same clause and extracted from at least
two different models), the subset S that minimizes the total encoding length.
The algorithm that find this subset S has the same complexity as the algorithm
which find the largest subset of relations to be deleted, (so exponential), but
in practice we may use different non-optimal strategies (hill-climbing, genetic
algorithms, simulated annealing), having a polynomial complexity.

Because the two definitions of temporal meta-rules differ not only in crite-
rion (LCL, respectively MLDP), but also in the number of initial models (one,
respectively at least two), the second inference process is applied in two steps.
During the first step, temporal meta-rules are inferred from each set of temporal
rules based on a single model. During the second step, temporal meta-rules are
inferred from each set of temporal rules created during the step one and hav-
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ing the same implicated clause (see Fig. [[). There is another reason to apply
firstly the LCL criterion: the resulted temporal meta-rules are less redundant
concerning the set of implication clauses and so the encoding procedures, used
by MLDP criterion, don’t need an adjustment against this effect.

Temporal meta-rules
- final sets -

Second inference process
MDLP criterion
Temporal meta-rules © © _____ ©
4+

Second inference process H
LCL criterion ! 1

i
i
romperaies < 5 ——m-- —_—

4 A 4
First induction process : :
Models for consistent y
M,
g o s M, M,

Fig. 1. Graphical representation of the second inference process

4 Conclusions

The theoretical framework we proposed, based on first-order temporal logic, per-
mits to define the main notions (event, temporal rule, constraint) in a formal
way. The notion of the consistent linear time structure allows us to introduce
the notions of general interpretation and of confidence. These notions open the
possibility to use probabilistic concepts and allow, at the same time, to formal-
ize an inference process in which temporal meta-rules are derived from locally
temporal rules. This process is related to a new research area for data mining,
the higher order mining, which opens new perspectives on the analysis of mining
results and their evolution. The algorithms we proposed for inferring higher or-
der temporal rules are based on two different criterion, Lower Confidence Limit
and Minimum Description Length Principle. In both cases, the complexity of
the optimal solution is exponential and so,in practice, it is recommended to use
non-optimal, but polynomial, strategies.

It is important to mention that the condition of the existence of the limit, in
the definition of consistent linear time structure, is a fundamental one: it express
the fact that the linear time structure M represents a homogenous model and
therefore the conclusions (or inferences) based on a finite model for M are con-
sistent. However, at this moment, we do not know methods which may certified
that a given temporal structure is consistent. In our opinion, the only feasible
approach to this problem is the development of methods and procedure for de-
tecting the change points in the model, and, in this direction, the analysis of
temporal meta-rules seems a very promising starting point.
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