Experimental Grid Access for Dynamic
Discovery and Data Transfer in Distributed
Interactive Simulation Systems

Alfredo Tirado-Ramos®, Katarzyna Zajac?, Zhiming Zhao!, Peter M.A. Sloot!,
Dick van Albada', and Marian Bubak?3

! Faculty of Sciences, Section Computational Science,
University of Amsterdam
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
{alfredolzhiming|sloot}@science.uva.nl,
2 Institute of Computer Science, AGH, al.Mickiewicza 30,
30-059 Krakéw, Poland
{kzajac | bubak}@uci.agh.edu.pl
3 Academic Computer Centre -CYFRONET, Nawojki 11,
30-950 Krakéw, Poland

Abstract. Interactive Problem Solving Environments (PSEs) offer an
integrated approach for constructing and running complex systems, such
as distributed simulation systems. New distributed infrastructures, like
the Grid, support the access to a large variety of core services and re-
sources that can be used by interactive PSEs in a secure environment.
We are experimenting with Grid access for interactive PSEs built on
top of the High Level Architecture (HLA), a middleware for interactive
simulations. Our current approach is such that once a PSE simulation
has been executed in the framework, mechanisms from both HLA and
Grid middleware are used to broker resources, for job submission ser-
vices, performance monitoring services, and security services for efficient
and transparent execution.

We are experimenting with the Web-based Open Grid Services Archi-
tecture (OGSA) for HLA RTI Federate registration and discovery, as
well as for data transmission. We have found that Grid Services give
the possibility to allow for dynamic modification capabilities of HLA
Federates, though the dynamic discovery of Federates and the use of
Service Data (metadata) for service introspection is not trivial. Also,
we have found that opening many data transmission channels between
HLA Federates to one destination affects the number of connections you
can make with other destinations.

Keywords: PSE, interactive, Grid, OGSA, HLA

1 Introduction

Problem Solving Environments (PSEs) are integrated computational systems
that allow scientists to define complex problems, find the required nearest com-

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2657, pp. 284-292] 2003.
© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile (Ø©M)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Experimental Grid Access for Dynamic Discovery 285

ponents and resources available, and utilize them efficiently. PSEs offer an in-
tegrated approach for constructing and running complex systems, such as dis-
tributed simulation and decision support systems. New distributed infrastruc-
tures, like the Grid [11], support the access to a large variety of core services
and resources in a secure environment.

In this paper we report on some preliminary findings from our approach to
Grid access for interactive PSEs built on top of a mature middleware for in-
teractive simulations, the High Level Architecture (HLA) [T4]. We investigate
mechanisms and issues in existing implementations of HLA Runtime Infrastruc-
ture (RTI) [16] and the new Open Grid Service Architecture (OGSA) [19] to
allow interactive applications and distributed components to communicate in
near real-time.

OGSA [19] extends the Web Services [23] terminology to include Grid con-
cepts, and to manage the creation and termination of resources as services. Its
main focus is on the definition of abstract interfaces that allow services to coop-
erate without too much concern about the actual protocols being used. OGSA
has currently a very general approach; it does not distinguish interactive services
from batch services, and does not provide special support for near real-time in-
teractive systems. This is left to higher-level services built on top of it. OGSA
is also a specification which is still under development, changing continuously in
response to feedback from the user community.

On the other hand, HLA is a stable solution for lower-level services for dis-
tributed and interactive simulation systems. Implementations of the HLA RTI
are based on the Common Object Request Broker Architecture (CORBA)[22]
middleware. Although HLA and CORBA offer features for developers of inter-
active and distributed applications, existing implementations lack the flexibility
we believe essential for Grid-based interactive applications.

In [26] we proposed a three-level approach to this problem. In the first step we
focus on automatic discovery of HLA RTT processes that coordinate distributed
components of interactive applications. Next, we investigate efficient Grid-based
data transfer protocols as a promising alternative for current RTI communica-
tion. Finally, we completely replace RTT by Grid technology mechanisms. As a
proof-of-concept example, we use the European CrossGrid [5] biomedical simula-
tion application, which requires near real-time steering of simulation parameters
during runtime of the simulation executing on the Grid. For underlying HLA-
based services, we use an agent-oriented software architecture, the Interactive
Simulation System Conductor (ISS-Conductor), which is based on HLA for im-
plementing and interconnecting distributed interactive simulation components.

This paper is organized as follows: Section [briefly introduces the Globus
open Grid services infrastructure and the HLA-based ISS Conductor Framework,
Section Bl describes our approach for Grid Service migration and our preliminary
findings. We conclude in Section d with a brief discussion of current issues and
future work.

286 A. Tirado-Ramos et al.

2 Grid Services and the HLA-Based Interactive
Simulation Infrastructure

2.1 Open Grid Services

Grid Services, as defined by OGSA [19], integrate Grid technologies [I1] from the
Globus Toolkit [12] with Web Services mechanisms [23] to construct a Grid-based
distributed framework. A Grid Service instance is a potentially transient service
that conforms to a set of conventions, expressed as Web Service Description
Language (WSDL) [24] interfaces, extensions, and behaviors.

Grid Services provide controlled management of the distributed and often
long-lived state that is commonly required in sophisticated distributed appli-
cations. OGSA also introduces standard factory and registration interfaces for
creating and discovering Grid services. The Globus Open Grid Service Infrastruc-
ture (OGSI) [2I] implementation of OGSA is intended to expose status informa-
tion as well as probed, measured, or discovered platform information according
to well-defined Service Data Descriptions in their Service Type WSDL. Also,
the Extensible Markup Language (XML) format [25] is used for data storage in
different kinds of repositories, like XML databases, simple file system cache, and
in-memory cache.

2.2 The HLA-Based ISS Conductor

We are using the HLA-based ISS-Conductor as our prototypical interactive sim-
ulation infrastructure for Grid-access experimentation. The ISS Conductor is
an agent-oriented software architecture based on HLA for implementing and
interconnecting distributed interactive simulation components [27/28]. In ISS-
Conductor, we use a layered interconnection mechanism: at the lower-level, mes-
sages between modules are carried by Communication Agents (ComAs), and at
the higher-level, application logic is controlled by Module Agents (MAs). The
software bus is normally the run-time infrastructure of the communication mid-
dleware adopted by the ComAs. The interaction scenarios between modules are
represented as knowledge bases, which can be bound to MAs at run-time. In the
current implementation of ISS-Conductor, the RTI 1.3NGV5 of HLA [I5] is the
communication interface between ComAs, and Amzi Prolog [3] is used to imple-
ment the reasoning engines in the MAs. ISS-Conductor is part of Polder [1§], a
distributed computing environment built by the University of Amsterdam.

3 A Grid-Enhanced HLA RTI Infrastructure

3.1 Migration Approach

We believe that Grid Services have the potential to bring remote and decentral-
ized Federate service discovery and invocation to HLA-based simulation systems.
We have targeted the issue of the discovery of control Federate components ini-
tially. We call this the RTT Layer Migration [26].

Experimental Grid Access for Dynamic Discovery 287

Federate discovery mechanisms in HLA use either a multicast discovery pro-
tocol, which does not scale well on large Wide Area Network Grid environ-
ments, or performs discovery via the specification of the RTI Executive Process
(RTIexec) endpoint using a naming service. We consider this mechanism not
very convenient for our purposes, because, for instance, having to know the end-
point in advance is not an acceptable restriction in Grid environments. As a first
step, we are investigating the use of Grid services to address this issue.

As a finer grain approach, we investigate the use of Grid core services for the
transport of actual Federate data, once the RTIexec information has been made
available via a Grid Service. We call this the Federation Layer Migration. We
experiment with Globus GridFTP and Globus I/O implementation extensions
for interfacing with the RTT logical bus. It is important to note that Grid com-
munications are basically peer-to-peer (P2P), which means that the destination
information, well encapsulated within HLA, has to be found on the application
layer. As a third step and future work, we plan to reimplement most of HLA
communications using Grid technologies.

3.2 Federate Information Description

For our first migration approach, we publish the RTIexec as a Grid service. Grid
Services basically inherit from a common base class, ServiceSkeleton, which in-
cludes the basic functionality to be provided by all Grid Services. All Grid Ser-
vices contain, this way, a ServiceDataContainer holding Service Data elements
exposed by the service for introspection. Therefore, to provide our service we
inherit from ServiceSkeleton and implement the WSDL PortType named set of
abstract operations and messages interface to expose. The Grid service informa-
tion is initially used for Federate and Federation initialization, in a simple pull
mode. The information provided by the Grid service includes endpoint informa-
tion of the RTTexec execution (i.e., machine address and port number), name of
the executing Virtual Organization (VO) for selecting the appropriate RTIexec
to join, and RTIexec version number.

We have identified two possible approaches for exposing RTIexec information
description. In the first approach we wrap the RTIExec as a service, and pro-
vide the information description via a set of self-describing PortType operations
(e.g., GetRtiExecMachineName, GetRtiExecPortNumber, GetRtiExecVoName,
GetRtiExecVersionNumber) in our WSDL definition. PortTypes are therefore
used for defining the service interface, and Service Data is used just for provid-
ing service metadata and state data. In the second approach, we also take the
RTTexec process as a whole, and wrap it as a service (OGSARTIExecService)
with a basic Grid Service PortType, thus we provide the RTIexec information
description as Service Data, offering a more extensible mechanism.

3.3 Federate Discovery

We believe that Grid Services have the potential to address the problem of re-
mote and decentralized Federate discovery and invocation. Indeed, the OGSA

288 A. Tirado-Ramos et al.

community is currently working on High Level Index Services [13] that will
provide mechanisms for publication and query Service Data. Among others, a
notification mechanism is mentioned as one of the ways of obtaining such infor-
mation.

We identify different levels of granularity for Federate discovery mechanisms
using Grid technologies. So far we have identified two possibilities for service reg-
istry; one is to use a high-level Community Registry service for VO and RTTExec
Service registration and inspection (based on OGSA Registry PortType), and the
other is to build a kind of UserInteractiveService functionality that orchestrates
subscriptions and publications.

In the first approach, Federate information is accessed via a Community
Registry Service based on OGSA higher level service implementations. Here a
VORegistryService implements OGSA Registry PortType to allow remote ser-
vices to publish their Grid Service Handles (GSHs) into a public repository, and a
ContainerRegistryService implements a service that exposes currently available
services.

For the second approach, we take advantage of RTT algorithms to reuse and
extend them. RTT mechanisms are restricted to exchanging data and event ob-
jects which structure and attributes are described explicitly in the configuration
file. Nevertheless, RTI implementations do provide users with advanced mecha-
nisms for matching subscriptions to publications. For instance, the translation of
the HLA object description format into OGSA service data and representation
of regions in the OGSA model is an approach that may provide RTI users with
more flexible solution. This issue is strongly dependent on the final version of
the OGSA specification [19], though, which is still evolving.

3.4 HLA Communication Infrastructure for Large Data Transfers

Within HLA two kinds of data can be exchanged between Federates, namely data
objects and events. However, as mentioned before, current HLA implementations
are generally restricted to the CORBA communication protocol [22]. In order to
investigate interoperability issues related to our approach, we experiment with
different data exchange protocols within the RTT framework.

We believe that Grid Services should give the ability to choose from a number
of protocols, according to needs of particular distributed applications. We de-
cided to experiment with GridFTP concepts [2] for our proof-of-concept medical
interactive application. Such application requires large data transfers between
simulation and visualization modules, currently carried out through a RTT logical
bus.

Our ideas for building interoperable runtime communication infrastructure
for interactive services is based on a bottom-up approach. At the bottom layer
we are investigating P2P techniques. We start with adapting GridFTP solutions
for our purposes, since there is a strong need for interactive applications to allow
transfer of large volumes of simulation data in near real-time.

The RTT software bus is designed to simplify communications. It uses data
distribution management algorithms [I7] to efficiently route publications to sub-

Experimental Grid Access for Dynamic Discovery 289

scriptions. Since the RTT software bus is going to be build on the top of P2P com-
munications, it is useful to distinguish between the actual data transfer and the
control channel that will be used by higher RTT levels responsible for Data Dis-
tribution Management (DDM) matching [17]. The basic communications stack
is presented in figure [I

matchning module(HLA DDM functionality)

control channel for setting up communication

parallel communication data channels

Fig. 1. Basic communication stack in RTT design

The actual communication is presented as the bottom layer (Data channel
Layer), and is performed by data channels between publisher and subscriber. On
this level we apply TCP optimization techniques used also in GridFTP (parallel
data channels, tuning of TCP buffer). For gathering data from multiple channels,
we reuse the extended block mode concept [2].

The next control layer (Control Channel Layer) allows matching of the mod-
ules to actually setup the communication. In this architecture, each Federate in
the distributed federation has to provide a HLA-like PortType with functional-
ity similar to the behavior of the passive side of GridFTP [2]. This PortType
will be responsible for opening a listening socket, and returning the port it is
listening to. A separate listening socket is needed for each ”federate to federate”
communication. This listening socket is then used by the active federate (see
figure [2)) for creating multiple parallel channels between itself and the passive
Federate. The channels can then be used for constantly sending the simulation
data, and will remain open until an explicit operation is invoked. The use of
basic FTP and GridFTP concepts for separation of control and data channels
allows the basic architecture shown in figure [2] to be very easily redesigned, to
satisfy also the the upper layer of the communication stack.

The upper layer (DDM Matching Layer) is responsible for matching subscrip-
tions and publications. The HLA-like PortType is used by the RTIExec Service
that performs actual matching, rather then directly by another federation.

3.5 Federate Layer Migration and Related Issues

As a the third step, we redesign some of the functionality of RTI components
to build an event-based fully Grid functional service. We support discovery and
data transfer for interactive applications, and fulfill the requirements of high
level Grid services [20]. The interface of the service is defined by translating
existing HLA’s RTTAmbasador Application Programming Interface into WSDL.
The functionality of the RTT library will be encapsulated within the Grid Service,

290 A. Tirado-Ramos et al.

Federate 1 LN \; RTIExec performs
portType i matchin,
. \ Service betweeng
thread 1 listen | federates (N:M)
conn 1 g
conn 2 3 PORT
conn 3 portType

thread 2 listen] Federate 2
conn 1 | Service
conn 2 | GridService
conn 3 | portType
Federate
Service
Gr1d]§erv1ce 1 invoking creation of new connection (between fed 2 and fed1)
portType 2 return listening port needed for creation of permanent connection

3 create permanent connections (three times)
using listening port from step 2

Fig. 2. The HLA communication architecture for large data transfer

which can be itself a distributed high level service. The internal design requires
further investigation of DDM algorithms, like effective matching subscriptions
to publications as well as ownership and time management issues [16].

4 Discussion and Future Work

Currently, HLA requires explicit description of data and event objects that
will be exchanged before the actual federation starts execution. This cannot
be changed during runtime, and is specified in the Federate configuration file,
which is quite a big drawback. We believe that Grid Services give the possibility
to allow for dynamic modification capabilities.

One of our interests is to address this problem by providing a specialized
discovery service for supporting interactive applications. For instance, one of the
main questions for us is to what extend will the OGSI-compliant Index Service
[13] satisfy the requirements of near real-time response (such as caching and
aggregation of information). Initially, we work with one well-known registry to
bind the local Federates with the services and modify the HLA RTI configuration
file, since we do not expect to migrate RTI execution at runtime at the moment.
We have found that the current OGSI implementation of the OGSA Registry
PortType, even though unstable, works well for simple ServiceData queries. In
the near future, we plan to investigate the use of OGSA discovery topologies
and intelligent searching agents for more complex dynamic discovery.

Federate interface application components that want to join the federation
have to provide a FederationAmbassador interface. The actual data and event
sending is performed directly. We have found that opening many channels to

Experimental Grid Access for Dynamic Discovery 291

one destination affects the number of connections you can make with other des-
tinations, so we are also working on ways to allow the system to adjust to such
constraints depending on number and location of remote processes. We are in-
vestigating mechanisms within RTT that will also provide information coherency
and interoperability with the OGSI reference implementation.

In the near future we plan to investigate time and ownership management.
This will allow services to exchange responsibility for published data as well as
synchronize time between them.

Acknowledgments. The authors wish to thank Maciek Malawski for help-
ful discussions about OGSA. This research is partly funded by the European
Commission the IST-2001-32243 Project “CrossGrid”.

References

1. The Anatomy of the Grid: Enabling Scalable Virtual Organizations. I. Foster, C.
Kesselman, S. Tuecke. International J. Supercomputer Applications, 15(3), 2001.

2. GridFTP Protocol Specification. W. Allcock, J. Bester, J. Bresnahan, A. Cherve-

nak, L. Liming, S. Meder, S. Tuecke. GGF GridFTP Working Group Document,

September 2002.

Amzi Inc., Amzi Prolog Homepage, http://www.amzi.com, 2002

4. Belleman R.G., and Shulakov R.: High Performance Distributed Simulation for
Interactive Simulated Vascular Reconstruction, International Conference on Com-
putational Science (ICCS), Lecture Notes in Computer Science (LNCS) volume
2331, p. 265-274, 2002, Springer-Verlag, Berlin.

5. Bubak M., Malawski M., and Zajac K:: Towards the CrossGrid Architecture. In: D.
Kranzlmeller, P. Kacsuk, J. Dongarra, J. Volker (Eds.) Recent Advances in Parallel
Virtual Machine and Message Passing Interface, Proc. 9th Eurpean PVM/MPI
Users’ Group Meeting, Linz, Austria, September/October 2002, LNCS 2474, pp.
16—24.

6. CrossGrid — Development of Grid Environment for interactive Applications, EU
Project, IST-2001-32243, www.eu-crossgrid.org

7. The DataGrid Project, http://www.eu-datagrid.org/

8. Frey J., Tannenbaum T., Foster 1., Livny M., and Tuecke S.: “Condor-G: A Com-
putation Management Agent for Multi-Institutional Grids”, Journal of Cluster
Computing volume 5, pages 237246, 2002.

9. Foster I: “What is the Grid? A three checkpoints list”. Grid Today Daily News
And Information For The Global Grid Community July 22, 2002: VOL. 1 NO. 6

10. Foster 1., Kesselman C.: Introduction to Grid Computing http://www.globus.org

11. Foster I., Kesselman C., Tuecke S.: The Anatomy of the Grid: Enabling Scal-
able Virtual Organizations. in:International J. Supercomputer Applications, 15(3),
2001.

12. The Globus Toolkit, http://www.globus.org/toolkit

13. Status and Plans for Globus ToolkitTM 3.0, http://www.globus.org/toolkit/gt3-
factsheet.html

14. The HLA Working Group, http://www.sisostds.org/stdsdev/hla/

15. Defence Modelling and Simulation Office (DMSO), High Level Architecture (HLA)
homepage, http://hla.dmso.mil/

w

292

16.

17.

18.

19.

20.

21.

22.

23.
24.
25.
26.

27.

28.

29.

A. Tirado-Ramos et al.

High Level Architecture Run-Time Infrastructure RTI 1.3-Next Generation Pro-
grammer’s Guide. https://www.dmso.mil/public/transition/hla/

Van Hook, D. J., Calvin, J.O.: “Data Distribution Management in RTT 1.3,” 98S-
SIW-206, 1998 Spring Simulation Interoperability Workshop, March 9-13, 1998.
Iskra K.A., Belleman R.G., van Albada G.D., Santoso J., Sloot P.M.A., Bal H.E.,
Spoelder H.J.W. and Bubak M.: The Polder Computing Environment, a system
for interactive distributed simulation, Concurrency and Computation: Practice and
Experience((Special Issue on Grid Computing Environments) in press), 2002
Grid Service Specification. S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham,
C. Kesselman; Open Grid Service Infrastructure WG, Global Grid Forum, Draft
2, 7/17/2002.

OOpen Grid Services Architecture Working Group (OGSA WG),
http://www.ggf.org/ogsa-wg/

OGSI Technology Preview Release,
http://www.globus.org/ogsa/releases/TechPreview/

Ryan C.O., and Levine D.L.: Applying a Scalable CORBA Events Service to Large-
scale Distributed Interactive Simulations In: Proceedings of the 5 th Workshop on
Object-oriented Real-time Dependable Systems. Monterey, CA.

Web Services, http://www.w3.0org/2002/ws/

Web Services Description Language (WSDL) 1.1, http://www.w3.org/TR/wsdl
Extensible Markup Language (XML), http://www.w3.org/XML/

Zajac K., Tirado-Ramos A., Zhao Z., Sloot P., Bubak M: A Grid Service Approach
to HLA-based Distributed Simulation Frameworks for Interactive Problem Solving
Environments, accepted for First European Across Grids Conference, Santiago de
Compostela, Spain, 13—-14 Feb, 2003.

Zhao Z., Belleman R.G., van Albada G.D., Sloot P.M.A.: State Update and Sce-
nario Switch in an Agent Based Solution to Constructing Interactive Simulation
Systems, Proceedings of the Communication Networks and Distributed Systems
Modeling and Simulation Conference, 2002

Zhao Z., Belleman R.G., van Albada G.D., Sloot P.M.A.: AG-IVE an agent based
solution to constructing Interactive Simulation Systems, Proceedings of the second
inter-action conference of computational science (ICCS02), Amsterdam, NL, 2002
Zhao Z., Belleman R.G.,van Albada G.D. and Sloot P.M.A.: AG-IVE: an Agent
based solution to constructing Interactive Simulation Systems, in P.M.A. Sloot;
C.J.K. Tan; J.J. Dongarra and A.G. Hoekstra, editors, Computational Science —
ICCS 2002, Proceedings Part I, in series Lecture Notes in Computer Science, vol.
2329, pp. 693-703. Springer Verlag, April 2002. ISBN 3-54043591-3.

	Introduction
	Grid Services and the HLA-Based Interactive Simulation Infrastructure
	Open Grid Services
	The HLA-Based ISS Conductor

	A Grid-Enhanced HLA RTI Infrastructure
	Migration Approach
	Federate Information Description
	Federate Discovery
	HLA Communication Infrastructure for Large Data Transfers
	Federate Layer Migration and Related Issues

	Discussion and Future Work

