
Monitoring and Performance Analysis of Grid
Applications�

Bartosz Balís1, Marian Bubak1,2, W�lodzimierz Funika1, Tomasz Szepieniec2,
and Roland Wismüller3,4

1 Institute of Computer Science, AGH, al. Mickiewicza 30, 30-059 Kraków, Poland
2 Academic Computer Centre – CYFRONET, Nawojki 11, 30-950 Kraków, Poland

3 LRR-TUM – Technische Universität München, D-80290 München, Germany
4 Institute for Software Sciences, University of Vienna, A-1090, Wien Austria

{bubak,funika,balis}@uci.agh.edu.pl, wismuell@in.tum.de
phone: (+48 12) 617 39 64, fax: (+48 12) 633 80 54 phone: (+49 89) 289-28243

Abstract. This paper presents main ideas and design details of a
performance analysis tool – G-PM and a grid application monitoring
system – OCM-G for applications running on the Grid which are
under development within the EU CrossGrid project. Besides of the
operation of G-PM’s components, we overview its internal interfaces.
G-PM enables not only standard measurements, but also comprises
application-specific metrics and high-level measurements. The OCM-G
is aimed to provide services via which tools supporting application
development are enabled to gather information, manipulate, and detect
events that occur when applications are running. The functionality of
the OCM-G is available via a standardized interface, On-line Monitoring
Interface Specification (OMIS).

Keywords: Grid computing, monitoring, performance analysis, mea-
surement tools, interactive applications, instrumentation

1 Introduction

A new EU project – CrossGrid [5] – extends existing Grid technologies by interac-
tive applications. Besides providing the necessary Grid services and the testbed,
four interactive Grid applications are developed in the CrossGrid: simulation of
vascular blood flow, flooding crisis support tools, data mining in High Energy
Physics, and meteorology / air pollution simulation.

Even with a good knowledge of the application’s code, its detailed runtime
behavior in a grid environment is often hard to figure out because of the dy-
namic nature of this infrastructure. To support this task, a tool is being de-
veloped, named G-PM, which besides of the the standard performance metrics,
allows to determine higher-level performance properties and application specific
metrics, like e.g. the response time and its breakdown. The G-PM tool will use
� This work was partly funded by the European Commission, project IST-2001-32243,

CrossGrid [5]

P.M.A. Sloot et al. (Eds.): ICCS 2003, LNCS 2657, pp. 214–224, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.
Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.

ALLGEMEIN --
Dateioptionen:
 Kompatibilität: PDF 1.3
 Für schnelle Web-Anzeige optimieren: Nein
 Piktogramme einbetten: Nein
 Seiten automatisch drehen: Nein
 Seiten von: 1
 Seiten bis: Alle Seiten
 Bund: Links
 Auflösung: [2400 2400] dpi
 Papierformat: [594.962 841.96] Punkt

KOMPRIMIERUNG --
Farbbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Graustufenbilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 300 dpi
 Downsampling für Bilder über: 450 dpi
 Komprimieren: Ja
 Automatische Bestimmung der Komprimierungsart: Ja
 JPEG-Qualität: Maximal
 Bitanzahl pro Pixel: Wie Original Bit
Schwarzweiß-Bilder:
 Downsampling: Ja
 Berechnungsmethode: Bikubische Neuberechnung
 Downsample-Auflösung: 2400 dpi
 Downsampling für Bilder über: 3600 dpi
 Komprimieren: Ja
 Komprimierungsart: CCITT
 CCITT-Gruppe: 4
 Graustufen glätten: Nein

 Text und Vektorgrafiken komprimieren: Ja

SCHRIFTEN --
 Alle Schriften einbetten: Ja
 Untergruppen aller eingebetteten Schriften: Nein
 Wenn Einbetten fehlschlägt: Abbrechen
Einbetten:
 Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 Nie einbetten: []

FARBE(N) --
Farbmanagement:
 Farbumrechnungsmethode: Farbe nicht ändern
 Methode: Standard
Geräteabhängige Daten:
 Einstellungen für Überdrucken beibehalten: Ja
 Unterfarbreduktion und Schwarzaufbau beibehalten: Ja
 Transferfunktionen: Anwenden
 Rastereinstellungen beibehalten: Ja

ERWEITERT --
Optionen:
 Prolog/Epilog verwenden: Ja
 PostScript-Datei darf Einstellungen überschreiben: Ja
 Level 2 copypage-Semantik beibehalten: Ja
 Portable Job Ticket in PDF-Datei speichern: Nein
 Illustrator-Überdruckmodus: Ja
 Farbverläufe zu weichen Nuancen konvertieren: Ja
 ASCII-Format: Nein
Document Structuring Conventions (DSC):
 DSC-Kommentare verarbeiten: Ja
 DSC-Warnungen protokollieren: Nein
 Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja
 EPS-Info von DSC beibehalten: Ja
 OPI-Kommentare beibehalten: Nein
 Dokumentinfo von DSC beibehalten: Ja

ANDERE --
 Distiller-Kern Version: 5000
 ZIP-Komprimierung verwenden: Ja
 Optimierungen deaktivieren: Nein
 Bildspeicher: 524288 Byte
 Farbbilder glätten: Nein
 Graustufenbilder glätten: Nein
 Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja
 sRGB ICC-Profil: sRGB IEC61966-2.1

ENDE DES REPORTS --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments true
 /DoThumbnails false
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize false
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile (Ø©M)
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue true
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /None
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.3
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends true
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo true
 /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /LeaveColorUnchanged
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 300
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 2400
 /AutoFilterGrayImages true
 /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol]
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 300
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [595.276 841.890]
 /HWResolution [2400 2400]
>> setpagedevice

Monitoring and Performance Analysis of Grid Applications 215

three sources of data: performance measurement data related to the running
application, measured performance data on the execution environment, and re-
sults of micro-benchmarks, providing reference values for the performance of the
execution environment. The OCM-G is meant to enable investigation and ma-
nipulation of parallel distributed applications running on the Grid and to provide
a basis for building tools supporting development of parallel applications for the
Grid (see Fig. 1).

PMC

HLAC UIVC

AM

AP

AM

AP

SM

LM

workstation

grid environment
site

node

application

OCM−G

G−PM

Fig. 1. G-PM and OCM-G architecture in monitoring infractructure.

2 Background and State of the Art

Our experience in application monitoring and tools goes back to 1995, when the
first version of the OMIS specification [7] was released. Two years later the first
implementation of the OMIS-compliant monitoring system – the OCM – was
finished, and OMIS-based tools PATOP (performance analyzer) and DETOP
(debugger) were also developed. Originally, the environment was designed only
for PVM applications on clusters, however, the core concepts of application mon-
itoring and tool support for applications were developed at that time when no
similar approaches existed. The environment has been continuously developed [4]
and in 2001 the first proposal for OMIS-based Grid monitoring was presented [3].
The current effort is a logical continuation of the previous work. Most of the
OCM code was reused in the OCM-G (about 115000 lines of code). The G-PM
was rewritten in an object-oriented style but the idea of measurements and user
interface was based on PATOP.

216 B. Balís et al.

There exist a number of performance tools, which are already adapted to the
Grid [1]. They are based on an off-line analysis of event traces so they are not
helpful for interactive applications, since they cannot present the performance
data concurrently with the end-user’s interactions with the application. On-line
tools for the Grid are available mainly for infrastructure monitoring, used for
resource management. An example is the Network Weather Service [12]. Autopi-
lot [11], a distributed performance measurement and resource control system,
exploits a concept called sensors corresponding to our probes. User-defined in-
strumentation is used in the TAU performance analysis environment [8]. The
SCALEA tool [10] supports application specific instrumentation via directives
inserted into the source code. The APART Working Group1 has developed a
specification language ASL [6] which allows to specify performance properties at
a high level of abstraction. Paradyn [9] is one of the few performance tools that
strictly follow the on-line approach, where even the instrumentation is inserted
and/or activated during run-time. Another such tool is PATOP [4], which is the
predecessor of G-PM.

One of the current projects which focuses on application monitoring in the
Grid is the GRM/PROVE environment [2] which is part of the DataGrid project.
We do not find it suitable for our goals for several reasons. First, the GRM only
supports event traces and simple counters, while for efficient on-line analysis
we need a more flexible monitoring system that allows a distributed on-line
evaluation and aggregation of data. Second, the OCM-G uses direct TCP/IP for
communication, while the GRM uses a complex communication infrastructure
(R-GMA which uses Java servlets), which may introduce an amount of overhead
not acceptable in on-line performance analysis, especially if data is accessed
frequently. Third, PROVE is mainly based on traces, which implies a relatively
low update rate or otherwise the overhead may be too high and for on-line
visualisation it may be not sufficient.

3 Basic Features of the Performance Analysis Tool

The tool should provide performance data meaningful in the application’s con-
text, including application-specific data (“amount of disk I/O for a specific user’s
interaction”, “detailed breakdown of an interaction’s response time”, or “conver-
gence rate of the numerical solver”. The performance analysis of an interactive
application should be carried out in on-line mode. This allows to correlate the
performance data with the end-user’s interaction patterns. Besides the appli-
cation’s performance data, the tool should display data on the performance of
the computing environment. This data will be used for steering an application
and for analysis of an application’s performance. Finally, the tool must be well
integrated with the Grid infrastructure, especially the job submission services.
Submitting a job with the performance analysis tool attached to it should be
as simple as a normal job submission. According to these requirements, the tool
consists of three main components (see Fig. 1):
1 see http://www.fz-juelich.de/apart/

Monitoring and Performance Analysis of Grid Applications 217

1. a performance measurement component (PMC),
2. a component for high level analysis (HLAC),
3. a user interface and visualization component (UIVC).

The PMC provides the functionality for standard performance measurements
of both Grid applications and the Grid environment. The results of these mea-
surements can be directly visualized by the UIVC component and they can serve
as an input to the HLAC component. The HLAC provides application developers
with more meaningful, application-specific performance data. This is achieved
by providing a metrics specification language. Finally, the UIVC allows the user
to specify performance measurements and visualizes the performance data pro-
duced by PMC and/or HLAC.

There are two major interfaces:

– Measurement Interface: This interface allows to define performance measure-
ments and to read their results. Both the HLAC and PMC provide the same
interface.

– OCM-G Interface: The interface to the monitoring system is based on OMIS.

As the PCM and HLAC implement the same interface, the UIVC (and in turn
also the user) can handle measurements based on user-defined metrics in the very
same way as those based on standard metrics. The interface is implemented in
C++.

4 Monitoring on the Grid

Monitoring services are essential in Grid environments for several purposes. At
least two of them can be distinguished — infrastructure and application moni-
toring.

Monitoring of the Grid infrastructure is aimed to provide information
about Grid components, such as computing elements or network connections.
Measured parameters are for example current CPU load and network connec-
tion load. The information is useful for resource brokers, scheduling agents, etc.,
and is needed for such tasks as resource allocation or load balancing. Moreover,
not only the current status but also statistic information can be of use, such as
average network load, etc. Statistic data can be useful, e.g., for prediction pur-
poses. For this reason, monitoring of infrastructure usually involves databases
in which the information should be stored for statistical analysis.

Monitoring of applications, in the sense as we speak of it, is quite differ-
ent. The information of interest is what is happening inside applications, e.g.,
what subroutines are being called, what are the delays due to synchronization
or communication between processes, how much data is sent between processes,
etc. The purpose of this type of monitoring is mainly for tools such as perfor-
mance analyzers or visualizers, i.e., for bottleneck detection, observation of the
current status of processes, etc. This type of monitoring may also be required
to provide manipulation services, such as to stop processes, read/write process’

218 B. Balís et al.

memory, etc. Manipulation services are essential for debuggers. On the contrary
to the infrastructure monitoring, the application monitoring information is only
relevant in the context of a particular monitoring session.

Our approach is focused on application monitoring. The G-PM tool is sup-
posed to properly visualize interactive applications which means that the re-
sponse time from the monitoring system must be relatively low. This is because
the influence of the user’s interaction must be immediately visible on the tool’s
charts so that he can correlate them to his actions. Therefore the monitoring
system must be efficient and must introduce minimal overhead. As we shown in
Section 2 none of existing tools meets these requirements.

5 OMIS as a Monitoring Protocol

Two notions are important in our approach to monitoring: services and objects.
Monitoring functionality of the OCM-G is exposed as a set of services which can
be divided into three classes: 1. for collecting information, 2. for doing manip-
ulations, and for 3. detecting events, i.e. information, manipulation and event
services, respectively. Objects represent the entities in the target system, either
real ones such as sites, nodes, and processes, or more abstract ones, such as coun-
ters. The specific monitoring requests always consist of one or more monitoring
services, and, for each service, a list of objects to which the service should be
applied, and perhaps additional arguments.

The protocol of communication with the OCM-G, in which the monitoring
requests are expressed is OMIS (On-line Monitoring Interface Specification) [7].
The objects in OMIS are identified by tokens, e.g., “p 1” (process), “n 1” (node),
“app 1” (application), etc. Below a handful of examples of OMIS services and
requests is given.

– proc get info – information service for getting information about processes;
the service expects a list of processes, and a specification of what kind of
information should be returned for these processes.

– :proc get info([p 1,p 2], 0x1) – a concrete request which returns infor-
mation about processes p 1 and p 2; the type of information is specified by
the flag ‘0x1’; this is an example of a unconditional request, i.e., a list of
actions which are to be executed immediately; thus, the effect of a uncondi-
tional request is a single piece of information.

– :thread stop – manipulation service for stopping threads or processes pro-
vided as the parameter of the service.

– thread executes probe – an event service which reprents the event of an
execution of a probe; the service expects list of processes in which the event
should be detected, and a name of the probe.

– thread executes probe([p 1], ’’probe1’’):
pa counter increment([c 1]) – a request whose semantics is as fol-

lows: each time, the probe named “probe1” is executed in process p 1, in-
crement the counter c 1; this is an example of a conditional request, i.e.,

Monitoring and Performance Analysis of Grid Applications 219

a specification of an event, and a list of actions which are to be executed
each time the event occurs; thus, the effect of a conditional request is a stream
of information; note the colon sign which separates the event from the action
list; in case of unconditional requests the event part is empty.

6 Design of the Monitoring System

The OCM-G was designed to be a permanent Grid service and at the same time
to satisfy the high requirements for scalability, efficiency, and security, and to
enable monitoring of applications distributed across multiple sites. The OMIS
specification, originally designed for monitoring applications in cluster environ-
ments, was extended with new objects and services, suitable for the Grid. The
following sections describe these issues.

6.1 Structure of the OCM-G

The OCM-G is a composition of two types of modules: Local Monitors (LMs)
and Service Managers (SMs). A LM resides on each host in the Grid on which
there are application processes to be monitored. It accepts and executes OMIS
requests only regarding local objects. A SM exposes the monitoring functionality
to end users (tools); one SM runs on each site of the Grid. A tool, in order to
begin a monitoring session, must connect to its SM (i.e., the SM on the same
site). The task of the SM is to accept OMIS requests from the tool, split them
into subrequests which will be forwarded to appropriate LMs within the same
site and, possibly, to other SMs, if the request concerns objects on remote sites.
Local Monitors are only created when needed, i.e., when new processes to be
monitored are created on a host; LMs can be terminated when the processes are
gone. Service Managers are permanent; they are supposed to be started as part
of the Grid middleware.

With the request distribution pattern described above, communication be-
tween two sites is only possible via the appropriate SMs. This in fact enables
monitoring of applications distributed across multiple sites. As SMs are perma-
nent, they can be assigned a well-known port numer making the communication
behind firewalls possible provided that the port is open.

The described structure is shown in fig. 1. The additional component shown
in the figure is the monitoring part linked to the application (“AM”). This
part provides the code to initialize the communication with the OCM-G, the
infrastructure to handle execution of actions in the context of an application
process, etc.

6.2 Grid Services

The adaptation of OMIS to the Grid required several extensions to the specifi-
cation. First of all, the object hierarchy was extended by new types of objects
— sites — which are in the top of the hierarchy. We feel that it better reflects

220 B. Balís et al.

the structure of the Grid which can be viewed as a collection of sites which are
composed of individual nodes hosting processes. OMIS must also be extended
with new services. This includes:

– services related to the new site objects (e.g., to get information about a site);
– services for infrastructure-related metrics which were not necessary in cluster

environments (e.g., return information about a network connection);
– services for handling multiple applications (return list of applications, return

list of processes of an application, etc.);
– other services, not indispensable in a Grid environment but adding new

functionality, such as services for handling probes — objects inserted by
a user into the source code to define arbitrary events and user-defined metrics
for performance analysis.

6.3 Security

Security problems occur on two levels. First, each LM is allowed to perform
manipulations to the target system, e.g., it can read and write processes’ memory.
A user authorized to send a request to a LM could then acquire access to other
user’s processes. Furthermore, the LM is supposed to handle all processes for
all users; thus, it would need priviledged user’s rights which can be dangerous
for the system. For these reasons, one LM is created on a host for each user
who owns some processes to be monitored. In other words, LMs run with user
priviledges. It means that there may be more than one LMs on one host, but
the security is ensured.

The second problem occurs at the SM level which handles requests from
multiple users. This opens a possibility, that a user authorized to send any
monitoring request, will try to gain access to other user’s application. To prevent
this, Grid authentication mechanisms should be incorporated: each request will
be properly signed and a check will be perofrmed whether the user who sent
a request is authorized to operate on objects the request is related to.

7 Example of a Monitoring Scenario

In this section, we present a scenario of an example monitoring session. Let’s
assume, that we have an application in which the algorithm is realized in two
nested “for” loops, and the user wants to know the global volume of data sent
in each step of the algorithm, where the step is meant as an interation of the
outermost loop. For simplicity, let’s also assume that only MPI Send is used to
send messages.

The user wants to see the result of monitoring in a form of a chart, e.g., in
a bargraph chart in which one bar represents the amount of data sent in one step
of the algorithm. First, the application must be prepared to enable monitoring.
An instrumented MPI library and a monitor library should be linked to the
executeble. Additionally, in this case the user should manually insert a probe

Monitoring and Performance Analysis of Grid Applications 221

G−PM

SM2

P4

register CSRregister CSRregister CSR

P2

node2

LM2

P3

SM1

site1

site3
SM3

node1

site2

node4

LM4LM3

node3

components inside Virtual Monitoring System components outside Virtual Monitoring System

gpm_lib...([p4], ...): ...gpm_lib...([p2,p3], ...)gpm_lib...([p1], ...): ...

gpm_lib...([p4], ...): ...

gpm_lib...([a_1], ...): ...

LM1

P1

register CSR

register CSR register CSRregister CSR register CSR

P5

Fig. 2. Distribution of a conditional OMIS request.

into the source code which will represent the event of and end of one algorithm
step. The probe is inserted as a function call, e.g., probe end iteration(). The
name of the function is arbitrarily chosen by the user. The whole scheme of the
application is shown below.

for (...) {
for (...) {
// computations and communication
...

}
probe_end_iteration();

}

Then, the application may be submitted in a usual way (globus run, portal,
etc.). The only additional requirement is that special command line parameters
are needed, which specify, among others, the name of the application.

In this case, four application processes are started (P1-P4), located on three
different nodes, and spread across two sites (fig. 2). At the very beginning, each
process calls a function to register in the OCM-G by sending a registration
message to the LM. In the case the LM does not exist on the node, it is first
created by forking it off from the application process. If this is is the case, the
newly created LM should register in its SM and from then it becomes a part of
the OCM-G. The grayed components in Fig. 2 indicate those parts of the OCM-G
which are involved in the application. We call it the Virtual Monitoring System

222 B. Balís et al.

for this application (VMS). To ensure that information is properly updated and
distributed in the VMS, one SM of the VMS should be designated as the MainSM
for the VMS. The MainSM should know about all other SMs in the VMS and
should also be well-known in the entire VMS. Each important event (e.g., a new
process creation) is first reported to the MainSM which in turn forwards it to
all appropriate components, if necessary. Thus, the information about a new
process is first delivered to the LM, which in turn passes it to its SM. The SM
should then forward this information to the MainSM, so that the MainSM has
an up-to-date knowledge about the application.

Once the application and the monitoring system is started up, the user can
run the G-PM tool. G-PM connects to one of the SMs (not necessarily to the
MainSM, usually to the “nearest” SM, i.e., of the same site where the G-PM
runs), and next it receives information about all running applications which can
be monitored by the user who controls the tool. The next step is to select one of
the running applications and attach to it, i.e., join the Virtual Monitoring System
for this application. As of this moment the tool can perform measurements on
the attached application. The user, by means of the graphical interface, defines
the measurement and the visualization chart, and enables the monitoring. The
defined measurement is transformed into a sequence of OMIS requests. In our
case, the requests are essentially as follows:

1) gpm_lib_call_started([a_1], "MPI_Send"):
pa_counter_increment([c_1], $len)

2) thread_executes_probe([p_1], "nextstep"):
pa_counter_read([c_1])

3) :csr_enable([csr_1,csr_2])

The distribution of the first request across the components of the VMS is
shown in fig. 2. The token a 1 represents the whole application and is expanded
to lists of processes in the subrequests. This is feasible, since all the SMs of
the VMS possess the knowledge about the whole application. Note that this
mechanism could also work in such cases as process migration or a new process
creation, since all the information data structures would be immediately updated
and further events would include the changes due to migration/creation.

The semantics of the request is as follows. The first request tells the OCM-
G that each time the MPI Send function is called by whichever process of the
application a 1, the counter c 1 should be incremented by the length of the
message sent (“$len” parameter). The second request triggers the event related
to the inserted probe. Its meaning is that when the probe is hit, the counter
c 1 will be read, its value will be returned and reset to zero. The final request
is used only to enable the two previous ones. The passed arguments csr 1 and
csr 2 are tokens identyfing the requests, and are returned on their definition.
Note that the final request, unlike the previous two, is an unconditional one.

Once the CSRs are enabled, the monitoring begins. The two events defined in
the measurement by requests 1. and 2. are captured by means of instrumentation
(the first one due to the instrumentation of the MPI library, the second one due to

Monitoring and Performance Analysis of Grid Applications 223

the inserted probe). Monitoring is active until the user disables the measurement
or the application has finished.

8 Summary

The main contribution of G-PM is its unique combination of Grid awareness, on-
line measurement, and automatic instrumentation for standard metrics on the
one hand with a support for manual instrumentation and user-definable metrics
on the other. The OCM-G is designed as a Grid Service – it is permanent, being
accessible via a well-defined interface, OMIS. The architecture of the monitoring
system ensures a high scalability and efficiency of application monitoring.

The software design phase for the G-PM tool was recently finished. The first
prototype of G-PM is available since the beginning of 2003 as part of the Cross-
Grid project first prototype release [5]. This prototype includes some standard
performance measurements, and some examples of higher-level metrics, but will
not yet include fully user-definable metrics. The final version of G-PM will be
ready by the end of 2004. At present the first prototype of the OCM-G is about
to enter the test phase. The first prototype will support all services defined by
the OMIS 2.0 specification and some new Grid extensions needed for the first
prototype. This version will run only on one site and support one application
and one tool. A fully functional version of the OCM-G will be available at the
end of the CrossGrid project.

Acknowledgements. We would like to thank Mr. Tomasz Arodź, Marcin Kur-
dziel and Marcin Radecki from AGH as well as Mr. Hamza Mehammed from
TUM for their contribution.

References

1. Z. Balaton, P. Kacsuk, N. Podhorszki, and F. Vajda. Comparison of Represen-
tative Grid Monitoring Tools. Laboratory of Parallel and Distributed Systems
(SZTAKI), LPDS-2/2000, 2000
ftp://ftp.lpds.sztaki.hu/pub/lpds/publications/reports/lpds-2-2000.pdf

2. Z. Balaton, P. Kacsuk, N. Podhorszki,and F. Vajda. From Cluster Monitoring to
Grid Monitoring Based on GRM. In: R. Sakellariou, J. Keane, J. Gurd, and L. Free-
man (eds.), Euro-Par 2001 Parallel Processing, 7th International Euro-Par Confer-
ence, August 2001, Manchester, UK, pp. 874–881, vol. 2150, Lecture Notes in Com-
puter Science,Springer-Verlag, 2001. http://link.springer.de/link/service/
series/0558/papers/2150/21500874. pdf

3. M. Bubak, W. Funika, B. Balís, and R. Wismüller. A Concept For Grid Application
Monitoring. In Proceedings of the PPAM 2001 Conference, LNCS vol. 2328, pp.
307–314, September 2001, Naleczow, Poland. Springer 2002.

4. M. Bubak, W. Funika, B. Balís, and R. Wismüller. On-Line OCM-Based Tool
Support for Parallel Applications. In: Yuen Chung Kwong (ed.), Annual Review of
Scalable Computing, vol. 3, ch. 2, pp. 32–62, World Scientific Publishing Co. and
Singapore University Press, 2001
http://www.wspc.com.sg/books/compsci/4663.html

224 B. Balís et al.

5. CrossGrid Project: http://www.eu-crossgrid.org
6. T. Fahringer, M. Gerndt, G. Riley, and J. L. Träff. Knowledge Specification for

Automatic Performance Analysis. APART Technical Report, ESPRIT IV Working
Group on Autommatic Performance Analysis, November 1999.
http://www.fz-juelich.de/apart-1/reports/wp2-asl.ps.gz

7. T. Ludwig, R. Wismüller, V. Sunderam, and A. Bode. OMIS — On-line Monitoring
Interface Specification (Version 2.0). Shaker-Verlag, 1997, Aachen, Germany, vol.
9, ISBN 3-8265-3035-7
http://wwwbode.in.tum.de/˜omis/OMIS/Version-2.0/version-2.0.ps.gz

8. A. Malony and S. Shende. Performance Technology for Complex Parallel and
Distributed Systems. In: G. Kotsis and P. Kacsuk (eds.), Proc. Third Austrian-
Hungarian Workshop on Distributed and Parallel Systems, DAPSYS 2000, 37–46,
Kluwer, 2000
http://www.cs.uoregon.edu/research/paracomp/papers/dapsys2k.ps.gz

9. B. P. Miller et al. The Paradyn Parallel Performance Measurement Tools. In: IEEE
Computer, vol. 28(11): 37–46, Nov. 1995
http://www.cs.wisc.edu/paradyn/papers/overview.ps.gz

10. H.-L. Truong and T. Fahringer. SCALEA: A Performance Analysis Tool for Dis-
tributed and Parallel Programs. In: B. Monien and R. Feldman (eds.) Euro-
Par 2002 Parallel Processing, 8th International Euro-Par Conference, August
2002, Paderborn, Germany, vol. 2400, pp. 75-85, Lecture Notes in Computer Sci-
ence, Springer-Verlag, http://link.springer.de/link/service/series/0558/
papers/2400/24000075.pdf

11. J.S. Vetter and D.A. Reed. Real-time Monitoring, Adaptive Control and Inter-
active Steering of Computational Grids. In: The International Journal of High
Performance Computing Applications, vol. 14, pp. 357–366, 2000

12. R. Wolski, N. Spring, and J. Hayes. The Network Weather Service: A Distributed
Resource Performance Forecasting Service for Metacomputing. In: Future Gener-
ation Computer Systems, vol. 15, pp. 757–768, 1999

	Introduction
	Background and State of the Art
	Basic Features of the Performance Analysis Tool
	Monitoring on the Grid
	OMIS as a Monitoring Protocol
	Design of the Monitoring System
	Structure of the OCM-G
	Grid Services
	Security

	Example of a Monitoring Scenario
	Summary

