
D. Hogrefe and A. Wiles (Eds.): TestCom 2003, LNCS 2644, pp. 95–109, 2003.
© IFIP 2003

Realizing Distributed TTCN-3 Test Systems with TCI

Ina Schieferdecker1 and Theofanis Vassiliou-Gioles2

1 Fraunhofer FOKUS, Competence Center for Testing, Interoperability and Performance
Kaiserin-Augusta-Allee 31, D-10589 Berlin, Germany

schieferdecker@fokus.fhg.de
2 Testing Technologies IST GmbH, Oranienburger Str. 65, D-10117 Berlin, Germany

vassiliou@testingtech.de

Abstract. Distributed test setups for efficient load, performance, scalability, in-
terworking, and end-to-end tests are gaining importance for the assessment of
distributed communicating systems. The Testing and Test Control Notation
TTCN-3 provides concepts for component-based distributed test systems in dy-
namic test configurations, where test components may reside on various net-
work nodes to be near the interfaces of the tested system. The realization of ex-
ecutable TTCN-3 tests on concrete test platforms involves TTCN-3
compilation/interpretation and adaptations to the test platform. The TTCN-3
Control Interfaces TCI define entities, interfaces, types and operations needed
to flexibly manage and distribute TTCN-3 based test systems. It complements
and completes the TTCN-3 Runtime Interface TRI. This paper discusses the
underlying concepts of TCI and demonstrates its use for the realization of a dis-
tributed test for the Session Initiation Protocol SIP.

1 Introduction

The Testing and Test Control Notation TTCN-3 is a test specification and implemen-
tation language to define test procedures for black-box testing of distributed systems.
TTCN-3 allows an easy and efficient description of complex distributed test behavior
in terms of sequences, alternatives, loops and parallel stimuli and responses. Stimuli
and responses are exchanged at the interfaces of the system under test, which are
defined as a collection of ports being either message-based for asynchronous commu-
nication or signature-based for synchronous communication. The test system can use
any number of test components to perform test procedures in parallel. Likewise to the
interfaces of the system under test, the interfaces of the test components are described
as ports.

The development of TTCN-3 was forced by key players of the telecommunication
industries and science to get a single test notation for nearly all black-box testing
needs. Especially the newly introduced support of dynamic distributed test setups, i.e.
dynamic creation and termination of test components including dynamic connections
between test components and to the system under test (the SUT), enables new
applications of TTCN while keeping the mature and stable test concepts. TTCN-3 test
specifications are not only a basis for functional and conformance testing, but also for
performance, load and scalability tests. Such tests require varying load conditions for
the SUT, which can be realized by an ensemble of parallel test components. Since the

96 Ina Schieferdecker and Theofanis Vassiliou-Gioles

test system has to be as performant as the system under test, any realistic load for the
SUT can be realized in a distributed environment only: the parallel test component
have to be distributed and located on remote nodes in a network constituting a distrib-
uted test system.

One essential benefit of TTCN-3 is that it enables the specification of tests in a
platform independent manner. Hence, TTCN-3 provides the concepts of test compo-
nents, their creation, their communication links to each other and to the SUT, their
execution and termination as such on abstract level only. Means to control the distrib-
uted execution of test components and coordination between them are outside
TTCN-3.

However, the application of executable tests to a SUT within test campaigns re-
quires the realization and implementation of such distributed test systems in a net-
work of test nodes – at best in a well-defined manner to enable a standardized adapta-
tion for the management, component handling, communication and logging between
distributed test nodes. Another aspect of this adaptation is the ability to reuse external
encoders/decoders, which are also outside TTCN-3 and just referenced within a test
specification.

Well-defined interfaces as a set of operations independent of the target, i.e. inde-
pendent of the SUT, processing platform, implementation language, etc will enable
that code from any TTCN-3 compiler or interpreter supporting and using these inter-
faces can be executed on any test platform/test device, which supports and uses these
interfaces. A first step towards this code independence was done with the TTCN-3
Runtime Interface TRI 24: TRI provides an interface to adapt a TTCN-3 test system
to the SUT by providing means to adapt the communication with the SUT as well as
to adapt the timer handling. As such, TRI defines a local adaptation to the SUT only.
The aspects of test management, component handling (both on local and remote
nodes) as well as the type and value handling have not been considered by TRI. These
aspects can be summarized as being the adaptation to the test system being either a
single test device or a test platform consisting of several test nodes1. TRI has to be
supplemented by interfaces to enable a well-defined adaptation to the test platform.
These interfaces are called the TTCN-3 Control Interfaces TCI.

TCI together with TRI provide a complete solution for a well-defined adaptation to
the test system and to the SUT providing maximal flexibility in realizing TTCN-3 test
systems. Only recently – at the ETSI MTS meeting, October 2002 – the importance of
TRI and TCI for TTCN-3 has been reflected: TRI 4 and TCI 5 were made integral
parts of the multi-part standard for TTCN-3.

TCI is currently developed at ETSI and is expected to become together with TRI
the future standard interface set for all TTCN-3 test system implementations. It con-
siders previous work in GCI 8 on type and value interfaces and in TSP1+ 7 and its
implementation 6 on distributed test systems. However, the approach of TCI on ge-
neric distributed test setups is new in several respects:

- it enables the implementation of the new TTCN-3 concepts for dynamic test con-
figurations – different network and platform technologies can be used to realize
distribution and communication within the test platform,

1 In the following we will use the term test platform to refer both to a single node as well as a

multi node test system.

Realizing Distributed TTCN-3 Test Systems with TCI 97

- it enables the flexible reuse of coders/decoders without predefining any internal
type and value representation for the test system implementation and

- it enables the integration of TTCN-3 test systems into existing test management
environments and applications by concentrating on TTCN-3 related test manage-
ment aspects only: this enables more flexibility for test management specific appli-
cation domain and goes beyond TSP1+ 7

We provide first insights into how various kinds of test systems can be build based
on the concepts of TCI: in Section 2, the general entities, interfaces and types of TCI
together with a selected uses case on a more complex test components handling are
presented and discussed. Afterwards in Section 3, the approach is illustrated with an
application example for testing the Session Initiation Protocol SIP 1. Section 4 con-
cludes the paper with a summary and an outlook on the future work on TCI.

2 Overview of the TTCN-3 Control Interfaces

A TTCN-3 test system can be conceptually thought of as a set of interacting entities
where each entity corresponds to a particular aspect of functionality in a test system
implementation. These entities manage test execution, interpret or execute compiled
TTCN-3 code, realize proper communication with the SUT, handle types, values and
test components, implement external functions, and handle timer operations.

The part of the test system that deals with interpretation and execution of TTCN-3
modules, i.e., the Executable Test Suite (ETS), is shown as the TTCN-3 Executable
(TE). Within the TE individual structural elements can be identified, like Control,
Behaviour, Components, Types and Values and Queues. The structural elements
within the TE represent functionality that is defined within a TTCN-3 module or by a
TTCN-3 specification itself. For example, the structural element “Control” represents
the control part within a TTCN-3 module, while the structural element “Queues”
represent the requirement on a TTCN-3 Executable that each port of a test component
maintains its own port queue. While the first is specified within a TTCN-3 module the
later is defined by the TTCN-3 specification. The TE corresponds typically to the
executable code produced by a TTCN-3 compiler or a TTCN-3 interpreter. Prior to a
test system implementation, the Abstract Test Suite (ATS), i.e., the TTCN-3 modules
being the test specification, has been compiled into an executable format - the Execu-
table Test Suite (ETS). The TE can be executed centralized, i.e. on a single test device
or distributed, i.e. on different physical test devices. Although the structural entities of
the TE implement a complete TTCN-3 module, single structural entities might be
distributed over several test devices.

The TE implements a TTCN-3 module on an abstract level. The other entities of a
TTCN-3 test make these abstract concepts concrete. For example the abstract concept
of sending an event or receiving a timeout cannot be implemented within the TE. The
platform adaptors of the test system realize e.g. the encoding of the message and it’s
sending over concrete physical means or measuring the time and determine when a
timer has expired, respectively. The System Adaptor (SA) for the communication with
the SUT and the Platform Adaptor (PA) for the realization of timers and their interac-
tion with the TE are defined in [TRI].

98 Ina Schieferdecker and Theofanis Vassiliou-Gioles

The TCI specification defines the interaction between the TE and the Test Man-
agement and Control (TMC) entities. In TMC, we can distinguish between functional-
ity related to test execution management (TM), component handling (CH), and coding
and decoding handling (CD).

The test management (TM) entity is responsible for the overall management of a
test system. After the test system has been initialised, test execution starts within the
TM entity. The entity is responsible for the proper invocation of TTCN-3 modules,
i.e., propagating module parameters and/or IXIT information, i.e. implementation
extra information for testing, to the TE if necessary. Typically, this entity would also
implement a test system user interface. In addition, the TM entity performs test event
logging and presentation to the test system user.

As the TE can be distributed among several test devices the component handling
(CH) is responsible to implement the distribution and communication between the
distributed entities. The CH provides the means to synchronize the different entities of
the test system being potentially located on several nodes. The general structure of a
test system distributed via several nodes is depicted in Figure 2.

On each node, a test execution TE together with system adaptor SA, platform
adaptor PA and coder/decoder CD is performed. The entities CH and TM mediate the
test management and test component handling between the TEs on each node. There
is a special TE that is identified to be the TE that started a test case2 and that is re-
sponsible for calculating the final verdict of that test case. Besides this, all TEs are
handled the same.

Communication is in one respect the message or procedure based communication
between TTCN-3 components. Therefore, the CH adapts message and procedure
based communication of TTCN-3 components to the particular execution platform of
the test system. It is aware of connections between TTCN-3 test component commu-
nication ports. It is responsible to propagate send request operations from a single

2 Please note that in course of executing a TTCN-3 module there can be at most one test case

being executed.

Test System User

TE

TM: Management

System Under Test (SUT)

CD:
CoDec

CH:
Comp
onent
Handl.

 SA (System Adaptor) PA (Platform Adaptor)
TR
I

TC
I

Fig. 1. General Structure of a TTCN-3 Test System. A TTCN-3 test system implementation
consists of a part that deals with the interpretation and execution of TTCN-3 module (TE) and
parts that either adapt the test system to the System Under Test (SA and PA) or to the test
system platform (TM, CD and CH).

Realizing Distributed TTCN-3 Test Systems with TCI 99

TTCN-3 component that resides within a certain TE to the targeted component resid-
ing potentially in a different instance of the same TE on a different test device. It then
notifies the TE about received test events by enqueueing them in the port queues of
the TE.

Procedure based communication operations between TTCN-3 components are also
visible at the CH. The CH is responsible to distinguish between the different mes-
sages within procedure-based communication (i.e., call, reply, and exception) and to
propagate them in the appropriate manner to the targeted component TE. TTCN-3
procedure based communication semantics, i.e., the effect of such operation on
TTCN-3 test component execution, are to be handled in the TE.

Furthermore, there is additional test component management communication nec-
essary in order to implement the distribution of test components between several test
devices. Component management communication includes the indication of the crea-
tion of test components, the starting of execution of a test component, verdict distribu-
tion as well as component termination indication. For this the CH does not implement
the behaviour of TTCN-3 component but the communication between several compo-
nents that are implemented within the TE.

The coding/decoding (CD) entity is responsible for the encoding and decoding of
TTCN-3 values into bitstrings suitable to be sent to the SUT. The TE determines
which codecs shall be used and passes the TTCN-3 data to the appropriate codec in
order to obtain the encoded data. Received data is decoded in the CD entity by using
the appropriate decoder, which translates the received data into TTCN-3 values.

The TCI operations of TM, CH and CD are atomic operations in the calling entity.
The called entity, which implements a TCI operation, returns control to the calling
entity as soon as its intended effect has been accomplished or if the operation cannot
be completed successfully. The called entity is not blocked, so that performant test
implementations are enabled.

TCI is defined by a set of abstract types to realize the TTCN-3 type and value sys-
tem, a set of operations at required and provided subinterfaces of TM, CH and CD,
and a set of scenarios to show the use of abstract types and operations. The types and

CD

PA SA

TE
TE CH

TM

TE
TE

...

SA PA

Special TE:
Initiating StartTestCase &
Calculating Final Verdict

SA PA

CD

CD

Fig. 2. General Structure of a distributed TTCN-3 Test System. A distributed TTCN-3 test
system consists of one CH and TM entity. Each TE is located on a separate node, together with
its own SA, PA and CD entities.

100 Ina Schieferdecker and Theofanis Vassiliou-Gioles

operations are provided in the OMG IDL 9. Language mappings to Java and C will
show the realization of TCI on specific test platforms.

2.1 The Abstract Data Type Model

Abstract data types are use to describe on a high-level which kind of data shall be
passed from a calling to a called entity. In addition, the abstract data types are used to
define how TTCN-3 data is passed from the TE to a coder that encode a TTCN-3
value representation to a bitstring and from a decoder to the TE to decode a bitstring
into a TTCN-3 value representation. For these abstract data type a set of operations
are defined in order to process the data by the coder/decoder.´ The concrete represen-
tation of these abstract data types as well as the definition of basic data types like
String, boolean are defined in a respective language mappings.

A set of abstract data types builds up the TTCN-3 type and value representation.
For every abstract data type a set of operations has been defined in order to define the
functionality of the abstract data type. Operations on or with this abstract data type
return either a value of this abstract type or a basic type like boolean. The abstract
TTCN-3 type and value representation consists of two parts:

- An abstract data type Type that represents all TTCN-3 types in a TTCN-3 module
- Different abstract data types that represent TTCN-3 values, i.e. TTCN-3 values of

a given TTCN-3 type. This can be either values of TTCN-3 predefined types or of
TTCN-3 user-defined types.

For the abstract data type Type operations to reference predefined and user-
defined TTCN-3 data types, and to create and maintain TTCN-3 values are defined.
The following figure presents the hierarchy between the abstract data types for
TTCN-3 values (short: abstract values):

All TTCN-3 abstract values share a common base abstract data type, the abstract
data type Value. For the abstract values that share the common base abstract data

Type

TciModuleIdType getDefiningModule...
String getName()
TciTypeClassType getTypeClass()
Value newInstance()
String getTypeEncoding()

(from Logical View)

Value

String getValueEncoding()
Type getType()
boolean notPresent()

(from Logical View)

IntegerValue
(from Logical Vi.. .

FloatValue
(from Logical Vi.. .

BitstringValue
(from Logical View)

HexstringValue
(from Logical View)

OctetstringValue
(from Logical View)

CharValue
(from Logical Vi.. .

UniversalCharValue
(from Logical View)

UniversalCharstringValue
(from Logical View)

CharstringValue
(from Logical View)

VerdictValue
(from Logical Vi.. .

RecordValue
(from Logical Vi...

RecordOfValue
(from Logical View)

UnionValue
(from Logical Vi.. .

EnumeratedValue
(from Logical View)

ObjidValue
(from Logical Vi...

BooleanValue
(from Logical View)

Fig. 3. Hierarchy of abstract values. Each abstract value provides at least the operations of
the abstract data type Value and form a hierarchy of abstract values. Operations on abstract
values are not shown in this figure.

Realizing Distributed TTCN-3 Test Systems with TCI 101

type, all operations that are defined on the base data type are implicitly defined for the
abstract values, too.

2.2 The Test Management Interface

The TCI Test Management Interface (TM) describes the operations a TE is required
to implement and the operations a test management implementation shall provide to
the TE. A test management implementation provides overall test management to the
test system user. It requires from the TE the presence of operations to start and stop
test execution of a TTCN-3 module or of certain test cases in a TTCN-3 module. In
turn it provides operations to the TE for resolving module parameter at runtime, log-
ging and the indication of execution termination.

2.3 The Component Handling Interface

A component handling implementation distributes TTCN-3 configuration operations
like create, connect and start and inter-component communication like send on a con-
nected port among one or more TTCN-3 Executables participating in a test session.

The basic principle is that CD is not implementing any kind TTCN-3 functionality.
Instead it will be informed by the TE that for example a test component shall be cre-
ated. Based on component handling (CH) internal knowledge the request for creation
of a test component will be transmitted to another (remote) participating TE. This
second (remote) participating TE will create the TTCN-3 component and will provide
a handle back to the requesting (local) TE. The requesting (local) TE can now operate
on the created test component via this component handle.

Within the operation definitions, the terms local TE and remote TE is used to high-
light the fact that a test system implementation might be distributed over several test
devices, each of them hosting a complete TE. The terms “local” and “remote” always
refer to the interface currently described. For convenience reasons, the term “local”
refers always to the TE being either the callee of an operation (for required opera-
tions) or the caller of an operation (for provided operations). While the TE is concep-
tually considered as being distributed the CH is considered to be non-distributed. This
can either be achieved using a centralized architecture or by using a middleware-
platform that abstracts from distribution aspects. Although the TE might be distrib-
uted over different physical device, there might be configurations where only one,
non-distributed TE will participate in a test session. In this case the term “local” and
“remote” refer to the same TE instance.

Although all TTCN-3 Executable participating in a test session are equal there is a
distinct TE*. This TE* is the TE where a test case has been started explicitly, i.e. the
explicit tciStartTestCase() has been processed, or the test control by means of
tciStartControl(). The reason for this distinction is, that this TE* is responsible
for global verdict calculation and is therefore informed about any test component
termination yielding the final local verdict of the terminated test component. Finally,
the TE* will notify the test management upon termination of a test case execution
with the overall final test case verdict.

102 Ina Schieferdecker and Theofanis Vassiliou-Gioles

2.4 The Codec Interface

A codec implementation encodes TTCN-3 values according to the encoding attribute
into a bitstring and decodes a bitstring according to decoding hypothesis. To be able
to decode a bitstring into a TTCN-3 value, the CD requires certain functionality from
the TE. The basic operation required by CD implementation from the TE is the provi-
sioning of value instances, either for basic or structured types. Together with the pos-

 :
TCI-TM-Provided

 :
TCI-TM-Required

 :
TCI-CH-Required

 :
TCI-CH-Required

 :
TCI-CH-Provided

 :
TCI-CH-Required

One Node with the User: having the start
test case and therefore being the special
TE calculating the final verdict

Another Node
with the MTC

Sti l l Another
Node with a PTC

componentId

componentId

componentId

componentId

Termination of MTC
impl ies termination
of test case

tciStartTestCase (testCaseId, parameterList)

tciTestCaseStarted(testCaseId)

tciTestCaseTerminated(verdictValue, parameterList)

tciCreateTestComponentReq (MTC,mtcType)

tciCreateTestComponent (MTC,mtcType)

tciStartTestComponentReq(MTC,behavior,parameters)

tciStartTestComponent(MTC,behavior,parameters)

tciCreateTestComponentReq(PTC,ptcType)

tciCreateTestComponent(PTC,ptcType)

tciTestComponentTerminatedReq(PTC,localPTCVerdict)

tciStartTestComponentReq(PTC,behavior,parameters)

tciStartTestComponent(PTC,behavior,parameters)

tciTestComponentTerminatedReq(MTC,localMTCVerdict)

tciTestComponentTerminated(PTC,localPTCVerdict)

tciTestComponentTerminated(MTC,localMTCVerdict)

Component Handl ing for
Direct Test Case Execution

Fig. 4. Test case execution and termination. Test execution will be started at the TCI-TM
interface. TM will be informed after termination of test execution together with the final and
the actual parameter list.

Realizing Distributed TTCN-3 Test Systems with TCI 103

sibility to query values on their type information the CD provides encoding and de-
coding functionality to the TE. An example of how this can be achieved will be pre-
sented later.

2.5 A Selected Use Case

This section shows a use case on starting a test case directly from the test manage-
ment user interface. The module containing the test case is selected first. When the
test case is started, the main test component is created. Then, the test case behaviour
is started on this main test component. Whenever a parallel test component is used
within a test case, it is handled the same: the parallel test component is created first:
giving a test component create request to the TCI-CH entity, which propagates the
test component create to the TE in which the parallel test component shall be created.

The identifier for the created parallel test component is returned. The identifier is
then used to start the PTC behaviour of the start operation. When the PTC terminates
its execution, a test component terminate request together with the local test verdict is
issued in order to inform CH about this termination. The same is done when the main
test component terminates. In addition, the termination of the main test component
leads to the overall termination of the test case. The test management interface re-
ceives in that case the final verdict.

3 A Distributed TTCN-3 Test System Example

To illustrate the construction of a distributed test system, a real-world IP application
scenario is presented. The scenario demonstrates the transition from a pure functional
test to a scalability test for the Session Initiation Protocol (SIP) [1]. In the given ex-
ample, the ability of a proxy server to handle simultaneous initiation of several mul-
timedia sessions is analyzed. SIP is an IETF signaling protocol for the establishment,
maintenance and tear down of multimedia connections in the Internet using UDP or
TCP as underlying transport mechanism.

Figure 5. illustrates a general test configuration for testing a SIP UA Server. Figure
5.a displays a test configuration where a single Parallel Test Component, executing a
functional test behavior, interacts with the System Under Test, while Figure 5.b shows
the simultaneous execution of the same functional behavior on multiple parallel test
components. In both cases, the Master Test Component coordinates the test execution.

3.1 A TTCN-3 ATS Example

A TTCN-3 abstract test suite (ATS) specifying a simple functional test case using the
single PTC configuration can be specified as follows:

module sipTest {
 testcase functionalTest()
 runs on MyMtcType system MyTSI
 {
 var MyPtcType sipUAc = MyPtcType.create;
 map(sipUAc:S, system:R);
 connect(mtc:C, sipUAc:C);
 sipUAc.start(uaCBehavior(USER));
 C.send(startPrimitive);
 all component.done;
}

104 Ina Schieferdecker and Theofanis Vassiliou-Gioles

(a) (b)

Fig. 5. A general SIP User Agent (UA) Server testing configuration. Parallel test compo-
nents (PTC) interact with the System Under Test (SUT) at the real the real system port3. The
parallel test components communicate with the Master Test Component (MTC) using the con-
nected ports. The Master and the Parallel Test Components are executed within the TTCN-3
Executable (TE) while the Test System User manages test execution.

First, the Master Test Component of type MyMtcType creates a Parallel Test
Component of type MyPtcType. After mapping the PTC port S to a Test System
Interface port R (as defined in MyTSI)and connecting the port C of the MTC and
the PTC the behavior uaCBehavior() will be executed. The MTC instructs the
PTC to proceed with test case execution by sending the startPrimitive template.
The test case will terminate after the PTC has terminated test behavior execution. This
example assumes that uaCBehavior() specifies all the necessary behavior in order
to asses the SUT.

One aim in a multiple test components scenario is to reuse definitions of a func-
tional test scenario for the definition of e.g. a scalability test. The PTC will execute
the same test behavior while the MTC is responsible to set up the test configuration.

In our particular example, MAXNUMBER PTCs shall execute their behavior simulta-
neously. For this the MTC instructs the PTCs to start the test via the startPrimi-
tive after all participating test components have been created and the functional test
behavior uaCBehavior()has been started4. MAXNUMBER has been defined as an
integer module parameter. The value of MAXNUMBER will be resolved at runtime.

The following TTCN-3 fragment illustrates this scalability test scenario:

modulepar { integer MAXNUMBER := 10 ; // 10 is default }

testcase scalabilityTest()
 runs on MyMtcType system MyTSI

3 The figures display only the mapped component ports at the PTC for the communication

with the SUT. The necessary test system interface port has been omitted for the sake of read-
ability.

4 We distinguish between the starting of test component, which is achieved using the start
operation on a component and the execution of a the test, i.e. performing communication
with the SUT to asses its validity. From a TTCN-3 point of view the test behavior start after
the call of the start operation. From the test logic point of view we assume that the test will
start after the reception of the startPrimitive.

Realizing Distributed TTCN-3 Test Systems with TCI 105

{
 var integer i;

 for(i:=0; i < MAXNUMBER; i := i + 1) {
 sipUAc[i] = MyPtcType.create;
 map(sipUAc[i]:S, system:R);
 connect(mtc:C, sipUAc[i]:C);
 sipUAc.start(uaCBehavior(USER[i]));
 }

 for(i:=0; i < MAXNUMBER; i := i + 1) {
 C.send(startPrimitive) to sipUAc[i] ;
 }

 all component.done ;
}

Typically, a TTCN-3 ATS contains not only the type, data and behavior definitions
but also a control part, that relates the execution of test cases. This example assumes
that the scalabilityTest() will be executed only if the functionalTest() was
successful, i.e. terminated with the verdict PASS.

3.2 Application of the TCI Operations

Although the definition of language mapping for TCI is still in progress, a Java lan-
guage mapping, derived from the IDL definitions in TCI is presented here to illustrate
the application of the TCI operations. Although the used operations and signature are
by no means complete they present a good selection for an insight into possible im-
plementation of TCI operations.

In order to start test execution, the test system user has to instruct the TTCN-3 Ex-
ecutable (TE) to start either the control part of the module or a particular test case.
TCI defines for this two different operations, the tciStartTestCase() and the
tciStartControl() operation. Prior to test execution the module has to be se-
lected.

public class MyManagement() implements TciTMProvided {
 static TciTMRequired TE = getTE();

 public void main(String[] args) {
 TE.tciSetModule(“sipTest”);
 if(startTestCase) {
 TE.tciStartTestCase(“functionalTest”, null);
 waitForTestCaseTermination() ;
 TE.tciStartTestCase(“scalabilityTest”, null);
 waitForTestCaseTermination() ;
 } else {
 TE.tciStartControl();
 waitForTestControlTermination(); }
 }
 // -- TCI-TM Provided Implementations --
 ...
 public Value tciGetModulePar(String param) {
 if(param.equals(“MAXNUMBER”)) return determineMAXNUMBER();
 return null; }

 public void tciTestCaseTerminated(VerdictValue
 verdict, TciParameterList list) { ... }

 public void tciTestControlTerminated() { ... }
}

106 Ina Schieferdecker and Theofanis Vassiliou-Gioles

Like all following code fragments, this fragment is not complete and shall give
only an impression on how the operations exposed by the TE in the TM Required
interface might be used, and how the TM and the other components provide the func-
tionality needed for correct execution of the TTCN-3 within the TE.

The main method first determines whether the test cases should be executed from
within the control part (startTestCase == false) or the test cases shall be started
directly. After test execution has been initiated within the TE, the TM (an instance of
class MyManagement) has to wait until the TE indicates termination of test execution
using the methods provided by the TM.

The TE can be accessed by the TM using a global variable TE, which implements
the interface TciTMRequired. The handling of this global knowledge is out of scope
of TCI and will not be further discussed.

After test execution has started, the TE will execute the test behavior as defined in
the TTCN-3 specification. The TCI Component Handling Interface addresses all is-
sues related to component management and inter-component communication. A pos-
sible message exchange for a test component creation is shown in Figure 5.

The following Java fragment shows a possible implementation of the CH:

public class MyCH() implements TciCHProvided {

 static TciCHRequired ONE_NODE = getONE_NODE();
 static TciCHRequired ANOTHER_NODE = getANOTHER_NODE();
 static int noOfComponentsCreated = 0 ;

 public TriComponentId tciCreateTestComponentReq (
 TciTestComponentKind kind, Type componentType) {
 if(distributed && ((noOfComponentsCreated % 2) == 0) {
 TriComponentId tc =
 ANOTHER_NODE.tciCreateTestComponent(kind,
 componentType); register(kind, tc, ANOTHER_NODE);
 noOfComponentsCreated++;
 return tc ; }
 else {
 TriComponentId tc =
 ONE_NODE.tciCreateTestComponent(kind,
 componentType); register(kind, tc, ONE_NODE);
 noOfComponentsCreated++;
 return tc ; }

 }
}

This implementation assumes that there will be only one instance of MyCH (the
CH) and that this instance is known to the TE. However, the fragment shows also that
CH can have access to multiple instances of TE. The location of this, possible differ-
ent, instances is not restricted to the same test device. It is an implementation decision
on how to retrieve references to the distributed objects.

Based on the variable distributed, every second component will be created on
a remote (ANOTHER_NODE) TE implementation. If distributed is false every com-
ponent will be created on the local TE implementation (ONE_NODE)5. As tciCompo-
nentCreationReq will be called also when a test component creates another test
component (e.g. the MTC a PTC, or a PTC another PTC), this implementation would
distribute test components equally on both participating nodes, ONE_NODE and
ANOTHER_NODE. CH performs book-keeping by registering the kind, the id and the
place a component resides for later usage.

5 It is assumed that the tciCreateComponentReq was called by ONE_NODE.

Realizing Distributed TTCN-3 Test Systems with TCI 107

Starting of test behavior as well as setting up connections between components and
performing communication is performed in a comparable way. The following Java
fragment can give an impression on how the CH could be extended to provide this
functionality.

 public void tciConnectReq (
 TriPortId fromPort, TriPortId toPort) {
 TriComponentId fromC=fromPort.getComponentId() ;
 TriComponentId toC=toPort.getComponentId() ;

 // resolve() returns the TciCHRequired instance the
 // remote component resides on
 resolve(fromC).tciConnected(fromPort, toPort) ;
 resolve(toC).tciConnected(toPort, fromPort) ;
 registerConnection(fromPort, toPort) ;
 }

 public void tciSendConnected (TriPortId sender,
 TriComponentId receiver, Value sendMessage) {

 // retrieveConnection returns the TciCHRequired
 //instance the receiver resides on
 retrieveConnection(sender, receiver).
 tciEnqueueMsgConnected(sender,
 receiver, sendMessage) ;
 }

As can be seen, the main task of the CH is to route the requested operations to the
destination and monitor the setup and tear down of connections. By exposing this
TCI-CH interface to the user, the user can implement distribution strategies as re-
quired. Whenever data has to be passed from the TE to the remaining test system, i.e.
TM, CH or SA and PA (as defined in [4]), data that has been defined abstract within
TTCN-3 has to be translated into a concrete representation. In case of communication
with the SUT the abstract data has to be encoded according to the encoding rules.
Besides the abstract TTCN-3 data types and values as described in previous sections,
TCI defines the Codec Interface (TCI-CD) to enable the TE to pass the abstract
TTCN-3 data to the appropriate codecs prior to sending data or performing matching
operations on received data. For each encoding rule CD provides two operations to
the TE, encode() and decode(). An implementation in Java might look as fol-
lows:

public class MyEncodingRule() implements TciCDProvided {
 public TriMessage encode(Value value) {

 // TRI
 TriMessage encodedMsg = new TriMessageImpl();
 return encodedMsg.setEncodedMessage(furtherEncode(value));
 }

 public Value decode(TriMessage message,
 Type decodingHypothesis) {
 byte[] encodedMsg = message.getEncodedMessage() ; //TRI
 return furtherDecode(encodedMsg, decodingHypothesis) ;
 }
}

For each encoding rule this functionality has to be provided. In order to be able to
encode the TTCN-3 data from a from a Value into an encoded message, the TE
offers additional functionality to the TM, CH and the CD for the handling of types
and values.

The abstract data type Type offers some functionality to obtain instances of any
TTCN-3 type as defined in a TTCN-3 module. This applies both for predefined and

108 Ina Schieferdecker and Theofanis Vassiliou-Gioles

user-defined types. Differentiation between basic types and structured types can be
achieved using a type class concept, i.e. different types classes exists for each prede-
fined or subtype TTCN-3 type, (e.g. the type class is BITSTRING if the type repre-
sent a TTCN-3 bitstring type) and for structured types (e.g. the class is RECORD
if the type represents a TTCN-3 record type). Additionally the encoding of a type,
according to the TTCN-3 specification can be retrieved. Instantiations of a given type,
the Values, can be created by using the newInstance() operation that is defined
for the abstract data type Type.

Values can be read and manipulated depending on their type. For example for a
TTCN-3 integer the abstract data type IntegerValue has been defined, with opera-
tion like

- integer getInt()
- void setInt(in integer integerValue)

TTCN-3 record values have operations like

- Value getField(in String fieldName)
- void setField(in String fieldName, Value fieldValue)
- String[] getFieldNames()

Using this operation as offered by the TE, CD is able to encode and decode values

according to the encoding, CH is able to send messages without the need of encoding
them, and the TM to provide value for module parameters.

4 Conclusions

This paper discusses the realization of distributed test systems being defined in
TTCN-3. Although TTCN-3 does not define distribution schemes or distribution
patterns for test components, i.e. distribution is not in the scope of TTCN-3, the pure
fact that component-based test systems with dynamic test configurations can be used
to define e.g. load and scalability tests on an abstract level requires the ability for
distribution: only if a test system is performant enough it can make valid assessments
about a test systems. The possibility to distribute test components and to handle their
setup, coordination and communication is key here.

The TTCN-3 Control Interfaces TCI are an approach to close this gap and provide
together with TRI a complete set of interfaces, entities, types and operations for the
adaptation of TTCN-3 tests to the test platform and the tested system. TCI provides
means for test management, test component handling and coding/decoding. This pa-
per presents the basic concepts of TCI and discussed its implementation concepts. The
potential of TCI are illustrated for a load test of a SIP application.

Future work beyond TCI will consider automated means for test deployment onto
test platforms: while TCI provides means for automated test execution, the prepara-
tion of the test platform with e.g. all the code needed to perform the tests or the con-
figuration of the SUT and the test devices, is not yet considered. First approaches
exist for the deployment of distributed systems in general. These concepts need to be
investigated for application in a test context in general and specifically for TTCN-3.
An automated and flexible mixture of SUT and test components to check certain test
purposes will be in particular interesting for software testing.

Realizing Distributed TTCN-3 Test Systems with TCI 109

References

1. J. Rosenberg, H. Schulzrinne, et al: “SIP: Session Initiation Protocol”, Draft IETF SIP RFC
3621, June 2002.

2. S. Schulz, T. Vassiliou-Gioles: “Implementation of TTCN-3 Test Systems using the TRI”,
IFIP 14th Intern. Conf. on Testing Communicating Systems -TestCom 2002-, Berlin, Ger-
many, March 2002.

3. ETSI ES 201 873 – 1, v2.2.1: "The Testing and Test Control Notation TTCN-3: Core Lan-
guage ", Oct. 2002.

4. ETSI ES 201 873 – 5, v1.0: "The TTCN-3 Runtime Interface (TRI); Concepts and Defini-
tion of the TRI", Oct. 2002, Draft.

5. ETSI DES 201 873 – 6, v1.0: "The TTCN-3 Control Interfaces (TCI); Concepts and Defini-
tion of the TCI", Oct. 2002, Draft.

6. T. Vassiliou-Gioles, M. Li, I. Schieferdecker, M. Born, M. Winkler: Configuration and
Execution Support for Distributed Tests. - IFIP 12th International Workshop on Testing of
Communicating Systems (IWTCS'99), Budapest (Hungary), Sept. 1999.

7. ETSI ES 201 770 V4.2.4: "The Test Synchronization Protocol TSP1+", Sept. 2000.
8. F. Brady and R.M. Baker, "INTOOL/GCI; Generic Compiler/Interpreter interface; GCI In-

terface Specification", INTOOL CGI/NPL038 (V2.2), Infrastructural Tools for Information
Technology and Telecommunications Conformance Testing, Dec. 1996.

9. OMG CORBA v2.2: “The Common Object Request Broker: Architecture and Specifica-
tion”, Section 3, Feb. 1998.

	1 Introduction
	2 Overview of the TTCN-3 Control Interfaces
	2.1 The Abstract Data Type Model
	2.2 The Test Management Interface
	2.3 The Component Handling Interface
	2.4 The Codec Interface
	2.5 A Selected Use Case

	3 A Distributed TTCN-3 Test System Example
	3.1 A TTCN-3 ATS Example
	3.2 Application of the TCI Operations

	4 Conclusions
	References

