
D. Hogrefe and A. Wiles (Eds.): TestCom 2003, LNCS 2644, pp. 129–145, 2003.
© IFIP 2003

Testing Transition Systems
with Input and Output Testers

Alexandre Petrenko1, Nina Yevtushenko2, and Jia Le Huo3

1 CRIM, Centre de recherche informatique de Montréal
550 Sherbrooke West, Suite 100, Montreal, Quebec, H3A 1B9, Canada

Petrenko@crim.ca
2 Tomsk State University, 36 Lenin Street, Tomsk, 634050, Russia

Yevtushenko@elefot.tsu.ru
3 Department of Electrical and Computer Engineering, McGill University
3480 University Street, Room 633, Montreal, Quebec, H3A 2A7, Canada

Jiale@macs.ece.mcgill.ca

Abstract. The paper studies testing based on input/output transition systems,
also known as input/output automata. It is assumed that a tester can never pre-
vent an implementation under test (IUT) from producing outputs, while the IUT
does not block inputs from the tester, either. Thus, input from the tester and
output from the IUT may occur simultaneously and should be queued in finite
buffers between the tester and the IUT. A framework for so-called queued-
quiescence testing is developed, based on the idea that the tester should consist
of two test processes, one applying inputs via a queue to an IUT and the other
reading outputs from a queue until it detects no more outputs of the IUT, i.e.,
the tester detects quiescence of the IUT. The testing framework is then extended
with so-called queued-suspension testing by considering a tester that has several
pairs of input and output processes. Test derivation procedures are elaborated
with a fault model in mind.

Keywords: conformance testing, test generation, input/output transition system,
fault model

1 Introduction

The problem of deriving tests from state-oriented models that distinguish between
input and output actions is usually addressed with one of the two basic assumptions
about the relationships between inputs and outputs. Assuming that a pair of input and
output constitutes an atomic action of a system, in other words, that the system cannot
accept the next input before producing output as a reaction to a previous input, one
relies on the input/output Finite State Machine (FSM) model. There is a large body of
work on test generation from FSM with various fault models and test architectures,
for references see, e.g., [6] and [1]. A system, where the next input can arrive even
before an output is produced in response to a previous input, is usually modeled by
the input/output automaton model [5], also known as the input/output transition sys-
tem (IOTS) model (the difference between them is marginal, at least from the testing
perspective). Compared to the FSM model, this model has received a far less attention
in the testing community, see, e.g., [2], [9], [10]. In this paper, we consider the IOTS

130 Alexandre Petrenko, Nina Yevtushenko, and Jia Le Huo

model and take a close look on some basic assumptions underlying the existing IOTS
testing frameworks.

An important publication on test generation from labeled transition systems (LTS)
with inputs and outputs is [12]. In this paper, it is assumed that a tester interacting
with an implementation under test (IUT) is an LTS. The LTS composition operator
used to formalize this interaction does not distinguish between inputs and outputs, and
the tester is not input-enabled. Due to the synchronous nature of the LTS composition,
the tester preempts output of the IUT any time it decides to send input to the IUT.
Although this allows the tester to avoid choosing between inputs and outputs, the
tester overrides the principle that “output actions can never be blocked by the envi-
ronment” [12, p.106]. An IOTS “generates output and internal actions autonomously”
[5], so such an IUT can be synchronously composed only with a tester that is recep-
tive to the IUT’s output.

Another assumption about the tester is taken by Tan and Petrenko [11]. In this
work, it is recognized that the tester cannot block the IUT’s outputs. It is only as-
sumed that the tester can detect the situation when it offers input to the IUT, but the
latter, instead of consuming it, issues an output (a so-called “exception”). An excep-
tion halts a current test run (as the tester has lost control over the test execution) and
results in the verdict inconclusive. Notice that the tester of [12] has only two verdicts,
pass and fail.

Either approach relies on an assumption that is not always justified in a real testing
environment. As an example, consider the situation when the tester cannot directly
interact with an IUT because of a context, such as queues or interfaces, between them.
As pointed out in [15], to apply the test derivation algorithm of [12], one has to take
into account the presence of a queue context. It also states “the assumption that we
can synthesize every stimulus and analyze every observation is strong”, so that some
problems in observing quiescence occur.

The case when IOTS is tested via infinite queues is investigated by Verhaard et al
[14]. The proposed approach relies on a specification of a given IOTS explicitly com-
bined with a queue context, so it is not clear how this approach could be implemented
in practice. This context is also considered in [4], where a stamping mechanism is
proposed to order the outputs with respect to the inputs, while quiescence is ignored.
A stamping process has to be synchronously composed with an IUT as the tester in
[12].

We also notice that we are aware of the only work [11] that uses fault models in
test derivation from IOTS. In [12] and [14], a test case is derived from a trace pro-
vided by the user.

The above discussion indicates a need for another approach that does not rely on
such strong assumptions about the testing environment and incorporates a fault model
to derive tests that can be characterized in terms of fault detection. In this paper, we
report on our findings in attempts to elaborate such an approach. In particular, we
introduce a framework for testing IOTS, assuming that a tester can never prevent an
IUT from producing outputs, while the IUT does not block inputs from the tester
either, and thus, input and output actions may occur simultaneously and should be
queued in finite buffers between the tester and the IUT.

The paper is organized as follows. In Section 2, we introduce some basic defini-
tions and define a composition operator for IOTS based on a refined notion of com-
patibility of IOTS first defined in [5]. Section 3 presents our framework for so-called

Testing Transition Systems with Input and Output Testers 131

queued-quiescence testing, based on the idea that the tester should consist of two test
processes: one process applies inputs to an IUT via a finite input queue and the other
reads outputs that the IUT puts into a finite output queue until the second process
detects no more outputs from the IUT, i.e., the tester detects quiescence of the IUT.
We elaborate such a tester and formulate several implementation relations that can be
tested with a queued-quiescence tester. In Section 4, we discuss how queued-
quiescence tests can be derived for a given specification and fault model that com-
prises a finite set of implementations. In Section 5, we extend our testing framework
with so-called queued-suspension testing by allowing a tester to have several pairs of
input and output processes and demonstrate that a queued-suspension tester can check
finer implementation relations than a queued-quiescence tester. We conclude by com-
paring our contributions with the previous work and discussing further work. An
earlier version of this paper is published in an INRIA preprint [7].

2 Preliminaries

A labeled transition system (LTS) is a 4-tuple L = <S, Σ, λ, S0>, where S is a finite set
of states with a non-empty set of initial states S0 ⊆ S; Σ is a finite set of actions; λ ⊆ S
× (Σ ∪ {τ}) × S is a transition relation. The special symbol τ ∉ Σ represents the inter-
nal action. We call an LTS deterministic if it contains no internal action, has a single
initial state, and for transitions (s, a, s′), (s, a, s′′) ∈ λ, s′ = s′′. (As opposed to the
preprint [7], this paper considers LTS that might be non-deterministic.) After [12], we
only consider strongly converging LTS, i.e., the LTS that contain no loop of internal
actions.

Let L1 = <S, Σ1, λ1, S0> and L2 = <T, Σ2, λ2, T0>, the parallel composition L1 || L2 is
the LTS <R, Σ1 ∪ Σ2, λ, R0>, where R0 = S0 × T0 is the set of initial states; the set of
states R ⊆ S × T and the transition relation λ are the smallest sets obtained by applica-
tion of the following inference rules:

• if a ∈ Σ1 ∩ Σ2, (s, a, s′) ∈ λ1, and (t, a, t′) ∈ λ2 then (st, a, s′t′) ∈ λ;
• if a ∈ {τ} ∪ Σ1\Σ2, (s, a, s′) ∈ λ1, then (st, a, s′t) ∈ λ;
• if a ∈ {τ} ∪ Σ2\Σ1, (t, a, t′) ∈ λ2, then (st, a, st′) ∈ λ.

We use the LTS model to define a transition system with inputs and outputs. The
difference between these two types of actions is that no system can deny an input
action from its environment, while it is completely up to the system when to produce
an output, so that the environment cannot block the output. Formally, an input/output
transition system (IOTS) L is an LTS in which the set of actions Σ is partitioned into
two sets, the set of input actions I and the set of output actions O. We use <S, I, O, λ,
S0> to represent an IOTS <S, I ∪ O, λ, S0> with I ∩ O = ∅. Further, we use IOTS(I,
O) to denote the set of all possible IOTS over the input set I and output set O.

Given state s of L, we further denote init(s) the set of actions defined at s, i.e.,
init(s) = {a ∈ (Σ ∪ {τ}) | ∃s′ ∈ S s.t. ((s, a, s′) ∈ λ)}. The IOTS is (strongly) input-
enabled if each input action is enabled at any state, i.e., I ⊆ init(s) for each s. In this
paper, we consider only input-enabled IOTS specifications, while an implementation
IOTS (that models an IUT) is always assumed to be input-enabled. We notice that

132 Alexandre Petrenko, Nina Yevtushenko, and Jia Le Huo

IOTS here corresponds to IOLTS in [4], and input-enabled IOTS to IOA in [5]. State
s of the IOTS is called unstable if init(s) ∩ (O ∪ {τ}) ≠ ∅. Otherwise, the state is
stable. A non-empty sequence α ∈ Σ* is called a trace of L in state s if there exist
actions a1, …, ak in Σ ∪ {τ} and states s1, …, sk+1 such that (si, ai, si+1) ∈ λ for all i =1,
…, k; s1 = s; and the projection of a1…ak onto the action set Σ is the sequence α. We
use traces(s) to denote the set of traces of L in state s, and traces(P) to denote the
union of traces of L in the states in P, where P is a set of states of Spec. Sometimes,
we use L to refer to the set of initial states of the IOTS L, e.g., traces(L) denotes the
union of traces of L in its initial states. We call an IOTS L oscillating if there exist a
state s reachable from an initial state and a sequence o1o2…ok ∈ O* such that
(o1o2…ok)* ⊆ traces(s). Following [13] and [12], we refer to a trace that takes the
IOTS from a given state to a stable state as a quiescent trace. We use qtraces(P) to
denote the set of quiescent traces of Spec in P.

When we compose two IOTS using the parallel composition of LTS, an output ac-
tion enabled in one IOTS is blocked from happening by the other IOTS if the action is
not enabled in the second IOTS. Such a situation, however, cannot be justified by our
assumption about the IOTS model, i.e., outputs from an IOTS are under the control of
the IOTS itself. On the other hand, the composition operator for IOA defined in [5],
which does not have this problem, is only applicable to input-enabled IOTS. This
discussion suggests that we need to define a composition operator for IOTS that are
not necessarily input-enabled. To this end, we first state compatibility conditions that
define when two IOTS can be composed by relaxing the original conditions of [5].
We use L1 || L2 for IOTS L1 and L2 to denote the parallel composition of the LTS L1
and L2 when the difference between their inputs and outputs is neglected.

Definition 1. Let two IOTS L1 = <S, I1, O1, λ1, S0> and L2 = <T, I2, O2, λ2, T0> be such
that the set O1 ∩ O2 = ∅. Let st be a state of the composition L1 || L2. The IOTS L1 and
L2 are compatible in state st if

• a ∈ init(s) implies a ∈ init(t) for any a ∈ I2 ∩ O1 and
• a ∈ init(t) implies a ∈ init(s) for any a ∈ I1 ∩ O2.

L1 and L2 are said to be compatible if they are compatible in each initial state in S0 ×
T0. L1 and L2 are fully compatible if they are compatible in all the states of L1 || L2.

Clearly, two input-enabled IOTS with I1 = O2 and I2 = O1 are fully compatible, but the
converse is not true. Based on the notion of compatibility we define what we mean by
a parallel composition of two IOTS. We notice that the parallel composition || of any
two IOTS that are not fully compatible violates the assumption that outputs of an
IOTS cannot be blocked. Therefore, we define a parallel composition of IOTS only
for fully compatible ones.

Definition 2. The parallel composition][of two fully compatible IOTS L1 ∈ IOTS(I1,
O1), and L2 ∈ IOTS(I2, O2), where the sets I1 ∩ I2 and O1 ∩ O2 are empty, is an IOTS
defined as L1][L2 = L1 || L2, with inputs (I1 ∪ I2) \ (O1 ∪ O2) and outputs O1 ∪ O2.

For fully compatible IOTS, the results of both operators, || and][, coincide. For the
IOTS that are not fully compatible, the composition][is not defined.

Testing Transition Systems with Input and Output Testers 133

3 Framework for Queued-Quiescence Testing

In defining a framework for testing systems modeled by IOTS, we first assume that
testers are modeled by IOTS. We then require that any tester possess the following
properties in addition to the usual soundness requirement. First, due to our assumption
about the IOTS model, a tester should not preempt output of any IOTS. Second, a
tester should always reach a verdict in finite steps, and once a verdict is reached, the
tester should not change it later in the same test run. Third, a tester should be determi-
nistic, meaning that it should have no internal actions and at most a single output
action is enabled in any state. Finally, a tester should not make choice between inputs
and outputs.

In a typical testing framework, it is usually assumed that a tester is a single process
applying inputs to an IUT and observing outputs from the IUT. The two systems, the
tester and the IUT, form a closed system. This means that if L1 is an IOTS modeling a
tester, while L2 is an IOTS modeling the IUT, then I1 = O2, and I2 = O1. To be fully
compatible with all the IOTS in IOTS(I2, O2) the tester should be input-enabled. How-
ever, input-enabledness of testers, while making them meet the first requirement, may
cause violation of the remaining ones.

An input-enabled tester may yield an infinite test run because the IOTS modeling
the tester includes cycles. The test execution may never terminate when the tester
interacts with an IUT with proper cycles. This, however, could simply be resolved by
defining a tester whose only cycles are self-loops in the states labeled with verdicts.
An IUT may continuously interact with such a tester, but the tester still reaches a
verdict in a finite number of steps and remains in a state with the reached verdict.
However, an arbitrary IUT may produce a wrong output after the tester has reached
the verdict pass, which cannot be reversed because of the self-loops. To solve this
problem, we require that states with the verdict pass only be reached when the quies-
cence of an IUT is detected. This feature of the tester immediately excludes oscillat-
ing specifications from further consideration, but still leaves us a wide class of speci-
fications. Thus, we will define testers with the above stated features.

Another problem of input-enabled testers is that such a tester needs choosing be-
tween inputs and outputs. In fact, in any state where the tester has to produce an out-
put to an IUT, all the inputs are enabled as well. So the tester has to choose between
doing input or output, violating the last requirement.

It turns out that a tester processing inputs separately from outputs may resolve the
problem. It is sufficient to decompose the tester into two processes, one for inputs and
another for outputs. Intuitively, this could be done as follows. The input test process
only sends to the IUT via input buffer a given (finite) number of consecutive test
stimuli. In response to the submitted input sequence, the IUT produces outputs that
are stored in another (output) buffer. The output test process, that is simply an ob-
server, only accepts outputs of the IUT by reading the output buffer. All the output
sequences that the specification can produce in response to the submitted input se-
quence should take the output test process into a state labeled with the verdict pass,
while any other output sequence produced by an IUT should take the output test proc-
ess to a state labeled with the verdict fail. Since the notion of a tester is based on the
definition of a set of output sequences that the specification IOTS can produce in
response to a submitted input sequence, we formalize both notions as follows.

134 Alexandre Petrenko, Nina Yevtushenko, and Jia Le Huo

Let pref(α) denote the set of all the prefixes of a sequence α ∈ Σ* over the set Σ.
The set pref(α) has the empty sequence ε. Also given a set Γ ⊆ Σ*, let {β ∈ pref(γ) |
γ ∈ Γ} = pref(Γ).

Definition 3. Given an input word α ∈ I*, the input test process with α for L ∈
IOTS(I, O) is an (deterministic) IOTS α = <pref(α), ∅, I, λα, {ε}>, where the state set
is pref(α) with ε as the only initial state, the set of inputs is empty, the set of outputs
is I, and the transition relation λα = {(β, a, βa) | βa ∈ pref(α)}.

We slightly abuse α to denote both the input sequence and the input test process
that executes this sequence. It is easy to see that each input test process is fully com-
patible with any IOTS in IOTS(I, O) that is input-enabled.

To define an output test process that complements the input test process α, we have
first to determine all the output sequences, valid and invalid, the output test process
has to expect from the IUT. The number of valid output sequences is finite, as the
specification does not oscillate by our assumption. Thus, in response to α, the IOTS
Spec ∈ IOTS(I, O) can execute any trace that is a completed trace [3] of the IOTS α][
Spec leading into a terminal state, i.e., into state g, where init(g) = ∅. Let ctraces(α][
Spec) be the set of all such traces. It turns out that the set ctraces(α][Spec) is closely
related to the set of quiescent traces of the specification qtraces(Spec), viz. it includes
each quiescent trace β whose input projection, denoted β↓I, is the sequence α.

Proposition 4. ctraces(α][Spec) = {β ∈ qtraces(Spec) | β↓I = α}.

Thus, the set ctraces(α][Spec)↓O = {β↓O | β ∈ qtraces(Spec) & β↓I = α} contains
all the output sequences that can be produced by Spec in response to the input se-
quence α.

Given a quiescent trace β ∈ qtraces(P), where P is a set of states of Spec, the se-
quence β↓Iβ↓Oδ is said to be a queued-quiescent trace of Spec in P, where δ ∉ Σ is a
designated symbol indicating that no more outputs follows, in other words, that Spec
becomes quiescent as it has reached a stable state. We use Qqtraces(P) to denote the
set of queued-quiescent traces of P {(β↓Iβ↓Oδ) | β ∈ qtraces(P)} and Qqtraceso(P, α)
to denote the set {β↓Oδ | β ∈ qtraces(P) & β↓I = α}. Next, we define the output test
process and the test case.

Given the input test process α and the set Qqtraceso(Spec, α), we define a set of
output sequences out(α) that the output test process can receive from an IUT. It is
sufficient to consider all the shortest invalid output sequences along with all the valid
ones. Any valid sequence should not be followed by any further output action, as the
specification becomes quiescent, while any premature quiescence indicates that the
observed sequence is not valid. The set out(α) is defined as follows. For each β ∈
pref(Qqtraceso(Spec, α)) the sequence β ∈ out(α) if β ∈ Qqtraceso(Spec, α), other-
wise βa ∈ out(α) for all a ∈ O ∪ {δ} such that βa ∉ pref(Qqtraceso(Spec, α)).

Definition 5. The output test process for the IOTS Spec and the input test process α is
an (deterministic) IOTS <pref(out(α)), O ∪ {δ}, ∅, λout(α), {ε}>, where certain states
are labeled with verdicts pass or fail. and the state set is pref(out(α)) with ε as the
only initial state, the input set is O ∪ {δ}, and the output set is empty. State β ∈

Testing Transition Systems with Input and Output Testers 135

pref(out(α)) is labeled with the verdict pass if β ∈ Qqtraceso(Spec, α) or with the
verdict fail if β ∈ out(α)\Qqtraceso(Spec, α). The transition relation λout(α) = {(β, a,
βa) | βa ∈ pref(out(α))} ∪ {(β, δ, β) | β is labeled pass} ∪ {(β, a, β) | a ∈ O ∪ {δ} &
β is labeled fail}.

For a given input test process α, where α ∈ I*, we reuse out(α) to denote the out-
put test process that complements the input test process α. The pair (α, out(α)) is
called a queued-quiescence tester or simply a test case for the IOTS Spec.

The self-looping transitions at the states labeled pass and fail are added to make
the output test process fully compatible with any IUT in the set IOTS(I, O). These
self-loops are the only cycles of the output test process, so verdicts pass or fail can be
reached in finite steps. Once verdicts are reached, they are not changed. Therefore, the
states with verdicts indicate the end of the test execution. We assume that once the
output test process detects the quiescence, the IUT cannot produce any visible output
later, which justifies why the pass states have only a self-loop on quiescence.

To describe the execution of a queued-quiescence test case, we define a new opera-
tor δ⇓O. For IOTS L, Lδ⇓O is an IOTS obtained by first augmenting all the stable
states of L by self-looping transitions labeled with δ, then projecting the augmented
automaton onto the alphabet O ∪ δ, and finally determinizing the obtained automaton.
The execution of a queued-quiescence test case (α, out(α)) against an IOTS Imp ∈
IOTS(I, O) is described by the IOTS (α][Imp)δ⇓O][out(α). Each trace leading this
IOTS into a state, where the output test process is in a state labeled with pass or fail,
is a test run. Notice that we treat the symbol δ as an input of the output test process,
assuming that the tester executing δ just detects the fact that its buffer has no more
symbols to read. Since the outputs of an IUT are stored in a finite queue, any imple-
mentation that, in response to the input sequence α, can produce an output sequence
longer than the queue length may overflow the queue. To solve this problem, we
should determine a lower bound of the output queue length so that the buffer is not
overflowing until the tester reaches a verdict. The bound depends on the input se-
quence α and Spec, and it is finite because Spec does not oscillate.

The queued-quiescence tester (α, out(α)) meets all the requirements stated above.
We use the term verdict state to refer to a state of the IOTS (α][Imp)δ⇓O][out(α)
such that the IOTS out(α) is in a state with a verdict.

Proposition 6. For a queued-quiescence test case (α, out(α)) of Spec and any IOTS
Imp ∈ IOTS(I, O)

• the IOTS (α][Imp)δ⇓O and out(α) are fully compatible;
• at least one verdict state is reachable from every state in the IOTS (α][Imp)δ⇓O][

out(α) and every cycle in the IOTS involves only verdict states, in other words, the
tester always reaches a verdict in finite steps;

• both α and out(α) are deterministic;
• there is no state in α or out(α) where both inputs and outputs are enabled;
• if a verdict state is reached in the IOTS (α][Spec)δ⇓O][out(α), the output tester

out(α) is in a state with the verdict pass, i.e., the test case (α, out(α)) is sound.

136 Alexandre Petrenko, Nina Yevtushenko, and Jia Le Huo

The composition (α][Imp)δ⇓O][out(α) has one or several verdict states. In a par-
ticular test run, one of these states with the verdict pass or fail is reached. Considering
the distribution of verdicts in the verdict states of the composition, three cases are
possible:

Case 1. All the states have fail.
Case 2. States have pass as well as fail.
Case 3. All the states have pass.

These cases lead us to various relations between an implementation and the speci-
fication that can be established by the queued-quiescence testing.

In the first case, the implementation is distinguished from the specification in a
single test run.

Definition 7. Given IOTS Spec and Imp, Imp is queued-quiescence separable from
Spec, if there exists a test case (α, out(α)) for Spec such that all the verdict states of
the IOTS (α][Imp)δ⇓O][out(α) are labeled with the verdict fail.

In the second case, the implementation can also be distinguished from the specifi-
cation if a proper run is taken by the implementation during the test execution.

Definition 8. Given IOTS Spec and Imp, Imp is queued-quiescence distinguishable
from Spec, if there exists a test case (α, out(α)) for Spec such that at least one verdict
state of (α][Imp)δ⇓O][out(α) is labeled with the verdict fail.

Clearly, Imp queued-quiescence separable from Spec is also queued-quiescence
distinguishable from it. Consider now case 3, when for a given test case (α, out(α)) all
the states have pass. In this case, the implementation does nothing illegal when the
test case is executed, as it produces only valid output sequences. Two situations can
yet be distinguished here. Either there exists a pass state of the output test process that
is not included in any verdict state of (α][Imp)δ⇓O][out(α) or there is no such a state.
The difference is that with the given test case in the former situation, the implementa-
tion could still be distinguished from its specification, while in the latter, it could not.
This motivates the following definition.

Definition 9. Given IOTS Spec and Imp,

• Imp is queued-quiescence weakly-distinguishable from Spec if there exists a test
case (α, out(α)) for Spec such that the verdict states of (α][Imp)δ⇓O][out(α) does
not include all the pass states of out(α).

• Imp is queued-quiescent trace-included in Spec if for all α ∈ I* all the verdict state
of the IOTS (α][Imp)δ⇓O][out(α) are labeled with the verdict pass.

• Imp and Spec are queued-quiescent trace-equivalent if for all α ∈ I* all the verdict
states of the IOTS (α][Imp)δ⇓O][out(α) are labeled with the verdict pass and in-
clude all the pass states of out(α).

By definition, Imp is queued-quiescence weakly-distinguishable from Spec if Imp
is queued-quiescence distinguishable from Spec, or if Imp is queued-quiescent trace-
included in but not queued-quiescent trace-equivalent to Spec. We characterize the
above relations in terms of traces and queued-quiescent traces.

Testing Transition Systems with Input and Output Testers 137

Proposition 10. Given IOTS Spec and Imp,

1. Imp is queued-quiescence separable from Spec iff there exists an input sequence α
such that Qqtraceso(Imp, α) ∩ Qqtraceso(Spec, α) = ∅.

2. Imp is queued-quiescence distinguishable from it iff there exists an input sequence
α such that traces(α][Imp)δ⇓O traces(α][Spec)δ⇓O.

3. Imp is queued-quiescence weakly-distinguishable from it iff there exists an input
sequence α such that traces(α][Imp)δ⇓O ≠ traces(α][Spec)δ⇓O.

4. Imp is queued-quiescent trace-included into Spec, iff Imp does not oscillate and
Qqtraces(Imp) ⊆ Qqtraces(Spec).

5. Imp and Spec are queued-quiescent trace-equivalent iff Imp does not oscillate and
Qqtraces(Imp) = Qqtraces(Spec).

traces(α][Imp)δ⇓O is the set of traces of (α][Imp)δ⇓O in the initial states of the
IOTS. traces(α][Imp)δ⇓O = traces(α][Imp)↓O ∪ Qqtraceso(Imp, α)δ*. The relation
between traces(α][Imp)↓O and traces(α][Spec)↓O is used to deal correctly with oscil-
lating implementations [10]. Fig. 1 provides an example of the systems that are not
quiescent trace equivalent, but are queued-quiescent trace-equivalent. Indeed, the
quiescent trace aa1δ of the IOTS L2 is not a trace of the IOTS L1. In both, the input
sequence a yields the queued-quiescent trace a1δ, aa yields the queued-quiescent
traces aa1δ and aa2δ, any longer input sequence results in the same output sequences
as aa.

?a

?a !2 ?a
!1 ?a

?a

?a ?a

!1 ?a

!1, !2
L1 L2

Fig. 1. Two IOTS that have different sets of quiescent traces, but are queued-quiescent trace-
equivalent. Inputs are decorated with “?”, outputs with “!”; and stable states are drawn in bold

The IOTS L1 and L2 are considered indistinguishable in our framework, while ac-
cording to the ioco relation [12], they are distinguishable. The IOTS L2 has the quies-
cent trace aa1 that is not a trace of L1, therefore, to distinguish the two systems, the
tester has to apply two consecutive inputs a. The output 1 appearing after the second
input a indicates that the system being tested is, in fact, L2 and not L1. However, to
reach such a conclusion, the tester should be able to prevent the appearance of the
output 1 after the first input a. This is not possible under our assumption that the tester
cannot block outputs of the IUT. The tester interacts with the IUT via queues and has
no way of knowing in which state the output is actually produced. The presence of a
testing context, which is a pair of finite queues in our case, makes implementation
relations that could be tested via the context coarser, as is usually the case [8].

138 Alexandre Petrenko, Nina Yevtushenko, and Jia Le Huo

4 Deriving Queued-Quiescence Test Cases

Proposition 10 indicates the way test derivation could be performed for the IOTS Spec
and an explicit fault model that includes a finite set of implementations. Namely, for
each Imp in the fault model, we may first attempt to determine an input sequence α
such that Qqtraceso(Imp, α) ∩ Qqtraceso(Spec, α) = ∅. If fail we could next try to
find α such that traces(α][Imp)δ⇓O traces(α][Spec)δ⇓O. If traces(α][Imp)δ⇓O ⊆
traces(α][Spec)δ⇓O for each α the question is about an input sequence α such that
traces(α][Imp)δ⇓O ≠ traces(α][Spec)δ⇓O, thus traces(α][Imp)δ⇓O ⊂ traces(α][
Spec)δ⇓O. Based on the found input sequence, a queued-quiescence test case for Imp at
hand can be constructed, as explained in the previous section. If no input sequence
with this property can be determined we conclude that the IOTS Spec and Imp are
queued-quiescent trace-equivalent, they cannot be distinguished by the queued-
quiescence testing.

Search for an appropriate distinguishing input sequence could be performed in a
straightforward way by considering input sequences of increasing length. To do so,
we just parameterize Definitions 7, 8 and 9 and accordingly Proposition 10 with the
length of input sequences. Given a length of input sequences k, then, e.g., Imp and
Spec are queued-quiescent k-trace-equivalent iff traces(α][Imp)δ⇓O = traces(α][
Spec)δ⇓O for all α ∈ I≤k, where I≤k denotes the set of all input sequences of length equal
or less than k. If the length of α such that traces(α][Imp)δ⇓O traces(α][Spec)δ⇓O is
k then Imp is said to be queued-quiescence k-distinguishable from Spec. With these
parameterized definitions, we examine all the input sequences starting from an empty
sequence. The procedure terminates when the two IOTS are distinguished or when the
value of k reaches a predefined maximum defined by the input buffer of the IUT
available for queued testing.

Consider the example in Fig. 2. Imp is not queued-quiescence 1-distinguishable
from Spec, for both produce the output 1 in response to the input a. However, Imp is
queued-quiescence 2-distinguishable from Spec. Indeed, in response to the sequence
aa the Spec can produce the output 1 or 12. While Imp - 2 or 12.

?a ?a

?a
!1

!2

?a

?a

?a
!1

!2

?a
?aSpec Imp

Fig. 2. The IOTS that are queued-quiescence 2-distinguishable, but not queued-quiescence
1-distinguishable

The search for a distinguishing input sequence relies on a procedure that verifies
whether a given input sequence α satisfies traces(α][Imp)δ⇓O ⊆ traces(α][Spec)δ⇓O .
Instead of elaborating this procedure, we give a more general procedure that accepts a
regular language defined over the input set. Let E denote such a language, E ⊆ I*,

Testing Transition Systems with Input and Output Testers 139

following the definition of the input test process, we also use E to denote the (deter-
ministic) IOTS whose trace set is pref(E). Since E is regular, such an IOTS exists. In
the following proposition, we generalize item 2 in Proposition 10 by considering the
inclusion relation between traces(E][Imp)δ⇓O and traces(E][Spec)δ⇓O.

Proposition 11. Given two IOTS Spec and Imp, Imp is queued-quiescence distin-
guishable from Spec iff there exists a regular language E ⊆ I* such that traces(E][
Imp)δ⇓O traces(E][Spec)δ⇓O. Moreover, any trace β ∈ traces(E][Imp) such that
β↓Oδ* ∩ (traces(E][Imp)δ⇓O \ traces(E][Spec)δ⇓O) ≠ ∅ yields a queued-quiescence
test case (β↓I, out(β↓I)) that, when executed against Imp, produces the verdict fail.

Proof: (If) If there exists a regular language E ⊆ I* such that traces(E][Imp)δ⇓O
traces(E][Spec)δ⇓O, the part after “moreover” in the proposition indicates how a cor-
responding test case can be derived.

(Only if) If Imp is queued-quiescence distinguishable from Spec, according to the
definition of the queued-quiescence distinguishability, there exists an input sequence

α, which is a regular language with a single word, such that traces(α][Imp)δ⇓O
traces(α][Spec)δ⇓O. QED.

We call a language E satisfying the properties in Proposition 11 a distinguishing
input set of Spec and Imp. The proposition suggests a test case derivation procedure.

Procedure 12. For deriving a test case of Spec that Imp fails if a given language E is a
distinguishing input set.
Input: IOTS Spec and Imp, and a regular language E.
Output: E is not a distinguishing input set or a test case (α, out(α)).

Step 1. Construct the deterministic automata that accept traces(E][Imp)δ⇓O and
traces(E][Spec)δ⇓O, respectively.
Step 2. Using the direct products of the obtained automata, determine a sequence ρ
∈ traces(E][Imp)δ⇓O \ traces(E][Spec)δ⇓O. If such a sequence exists, go to Step 3;
otherwise, return the result that E is not a distinguishing input set.
Step 3. Construct a deterministic automaton by composing Imp with the LTS
<pref(ρ↓O), O, λρ, {ε}>, where λρ = {(β, a, βa) | βa ∈ pref(ρ↓Ο)}. Determine a trace
γ of the obtained LTS with γ↓I ∈ E and γ↓O = ρ↓O and the queued-quiescence test
case (γ↓I, out(γ↓I)).

Proposition 13. Given two IOTS Spec and Imp, and a distinguishing input set E, let
(α, out(α)) be the queued-quiescence test case derived by the above procedure. Then
the queued-quiescence test case executed against Imp produces the verdict fail.

If we consider every E ∈ {{α} | α ∈ I≤k}, the test cases that queued-quiescence k-
distinguish Imp from Spec are derived. We notice that if the set E is I*, Procedure 12
reduces to the test case derivation procedure reported earlier [7].

It is interesting to know that the notion of k-distinguishability applied to the IOTS
and FSM models exhibits different properties. In particular, two k-distinguishable
FSM are also k+1-distinguishable. This does not always hold for IOTS. The system
Imp in Fig. 3 is queued-quiescence 1-distinguished from Spec; however, it is not
queued-quiescence k-distinguished from Spec for any k > 1. This indicates that a spe-

140 Alexandre Petrenko, Nina Yevtushenko, and Jia Le Huo

cial care has to be taken when one attempts to adapt FSM-based methods to the
queued testing of IOTS.

5 Queued-Suspension Testing

In the previous sections, we explored the possibilities for distinguishing IOTS based
on their traces and queued-quiescent traces. The latter are pairs of input and output
projections of quiescent traces. If two non-oscillating systems with different quiescent
traces have the same sets of queued-quiescent traces, queued-quiescence testing may
not differentiate them. However, sometimes such IOTS can still be distinguished by a
queued testing, as we demonstrate below.

Consider the example in Fig. 4. Here the two IOTS have different sets of quiescent
traces, however, they have the same set of queued-quiescent traces {a1δ, aa1δ,
aa12δ, aaa1δ, aaa12δ, … }. In the testing framework presented in Section 3, they are
not distinguishable. Indeed, we cannot tell them apart when a single input is applied
to their initial states. Moreover, in response to the input sequence aa and to any longer
sequence, they produce the same output sequence 12. The difference is that IOTS
Imp, while producing the output sequence 12, becomes quiescent just before the out-
put 2 and the IOTS Spec does not. The problem is that this quiescence is not visible
through the output queue by the output test process that expects either 1 or 12 in re-
sponse to aa. The queued-quiescence tester can detect the quiescence after reading the
output sequence 12 as an empty queue, but it cannot detect an “intermediate” quies-
cence of the system. It has no way of knowing whether the system becomes quiescent
before a subsequent input is applied. Both inputs are in the input buffer and it is com-
pletely up to the system when to read the second input.

Further decomposing the tester for Spec into two input and two output test proc-
esses could solve the problem. In this case, testing is performed as follows. The first
input test process issues the input a. The first output test process expects the output 1

?a
!2

?a

?a
!1?a

!1

?a
Spec

?a !2

?a?a
!1

?a
!1

?a

?a

!1

Imp

Fig. 3. The IOTS that are queued-quiescence 1-distinguishable, but not queued-quiescence
k-distinguishable for k > 1

?a

!2

?a

!1

?a

?a

Spec Imp
?a

!2

?a

!1
?a

!1

?a?a ?a

Fig. 4. Two queued-quiescent trace equivalent IOTS

Testing Transition Systems with Input and Output Testers 141

followed by a quiescence δ, when the quiescence is detected, the control is transferred
to the second input test process that does the final a. Then the second output test proc-
ess expects quiescence. If, instead, it detects the output 2 it produces the verdict fail
which indicates that the IUT is Imp and not Spec. As opposed to a queued-quiescence
tester, such a tester can detect intermediate quiescence of the IUT.

The example motivates the definition of a new type of testers. Such a tester is de-
fined for a given sequence of input words α1…αp, in which αi ≠ ε for i = 2, …, p. The
tester is a finite tree with queued-quiescence test cases as nodes connected by transfer
of control. The root node (α1, out(α1)) is a queued-quiescence test case of Spec, and is
executed first. If the IUT passes the queued-quiescence test case, one of the node’s
children is selected based on the output of the IUT β1δ ∈ Qqtraceso(Spec, α1) and
control is transferred to this node; otherwise, the IUT fails the tester and the test exe-
cution is terminated. We use Spec-after-(α, β) to denote the set of stable states that
are reached by Spec when it executes all possible quiescent traces with the input pro-
jection α and output projection β. If we also use Spec-after-(α, β) to denote the IOTS
obtained from Spec by initializing it in these states, the selected child node is a
queued-quiescence test case of Spec-after-(α1, β1). The input test process of the child
node executes α2. The process continues until the IUT fails or a verdict of a leaf node
is reached.

We define a sequence of output words β1…βi to be consistent with the correspond-
ing sequence of input words α1…αi if β1 ∈ Qqtraceso(Spec, α1) and βj ∈
Qqtraceso(Spec-after-(α1…αj-1, β1…βj-1), αj) for each j = 2, …, i. Every node in the
tree is identified by a consistent output sequence that leads the tester to the node.
Given αi, we use (αi, out(αi, β1…βi-1)) to denote the queued-quiescence test case of
Spec-after-(α1…αi-1, β1…βi-1). We have the definition of the tester based on the dis-
cussions above.

Definition 14. Given a finite sequence of input words α1…αp, a queued-suspension
tester or a queued-suspension test case (α1…αp, Out(α1…αp)) is a tree (Ν, Ρ, (α1,
out(α1))), in which

• Ν is the set of nodes, Ν = {(α1, out(α1))} ∪ {(αi, out(αi, β1…βi-1)) | β1…βi-1 is an
output sequence consistent with α1…αi-1, i = 2, …, p};

• Ρ is the transition relation, Ρ = {(α1, out(α1)) → (α2, out(α2, β1)) | β1 is an output
sequence consistent with α1} ∪ {(αi, out(αi, β1…βi-1)) → (αi+1, out(αi+1, β1…βi)) |
β1…βi is an output sequence consistent with α1…αi, i = 2, …, p-1};

• (α1, out(α1)) is the root node.

It is clear that for a single input word, a queued-suspension tester reduces to a
queued-quiescence tester. The queued-suspension testing is more discriminative than
queued-quiescence testing, as Fig. 4 illustrates. In fact, consider a queued-quiescence
tester derived from a single sequence α1…αp and a queued-suspension tester derived
from the sequence of p words α1, …, αp, the former uses just the output projection of
quiescent traces that have the input projection α1…αp while the latter additionally
partitions the quiescent traces into p quiescent sub-traces. Then the two systems that
cannot be distinguished by the queued-suspension testing have to produce the same
output projection, moreover, the output projections have to coincide up to the parti-

142 Alexandre Petrenko, Nina Yevtushenko, and Jia Le Huo

tion defined by the partition of the input sequence. This leads us to the notion of
queued-suspension traces.

Given a finite sequence of finite input words α1…αp, a sequence (α1β1δ)…(αpβpδ)
is called a queued-suspension trace of Spec if β1…βp is an output sequence consistent
with α1…αp. We use Qstraces(Spec) to denote the set of queued-suspension traces of
Spec in the initial states.

We define the relations that can be established by queued-suspension testing simi-
lar to Definitions 7, 8, and 9.

Definition 15. Given IOTS Spec and Imp,

• Imp is queued-suspension separable from Spec, if there exists a test case (α1…αp,
Out(α1…αp)) for Spec such that for any consistent output sequence β1…βp−1 all the
verdict states of the IOTS (αp][Imp-after-(α1…αp-1, β1…βp−1))δ⇓O][out(αp,
β1…βp−1) are labeled with the verdict fail.

• Imp is queued-suspension distinguishable from Spec, if there exist a test case
(α1…αp, Out(α1…αp)) for Spec and a consistent output sequence β1…βp−1 such that
at least one verdict state of the IOTS (αp][Imp-after-(α1…αp-1, β1…βp−1))δ⇓O][
out(αp, β1…βp−1) is labeled with the verdict fail.

• Imp is queued-suspension weakly-distinguishable from Spec if there exist a test
case (α1…αp, Out(α1…αp)) for Spec and a consistent output sequence β1…βp−1 such
that the verdict states of the IOTS (αp][Imp-after-(α1…αp-1, β1…βp−1))δ⇓O][out(αp,
β1…βp−1) does not include all the pass states of out(αp, β1…βp−1).

• Imp is said to be queued-suspension trace-included in Spec if for all α ∈ I* and all
possible partitions of α into words α1, …, αp, all the verdict states of IOTS (αp][
Imp-after-(α1…αp-1, β1…βp−1))δ⇓O][out(αp, β1…βp−1) are labeled with the verdict
pass.

• Imp and Spec are queued-suspension trace-equivalent if for all α ∈ I*, all possible
partitions of α into words α1, …, αp, and all consistent output sequence β1…βp−1,
all the verdict states of the IOTS (αp][Imp-after-(α1…αp-1, β1…βp−1))δ⇓O]
[out(αp, β1…βp−1) are labeled with the verdict pass and include all the pass states
of out(αp, β1…βp−1).

Accordingly, the following is a generalization of Proposition 10.

Proposition 16. Given IOTS Spec and Imp,

• Imp is queued-suspension separable from Spec iff there exists a finite sequence of
input words α1…αi such that Qqtraceso(Imp-after-(α1…αi-1, γ1…γi-1), αi) ∩
Qqtraceso(Spec-after-(α1…αi-1, γ1…γi-1), αi) = ∅ for any consistent γ1…γi-1.

• Imp is queued-suspension distinguishable from it iff there exist a finite sequence of
input words α1…αi and consistent γ1…γi-1 such that traces(αi][Imp-after-(α1…αi-1,
γ1…γi-1))δ⇓O traces(αi][Spec-after-(α1…αi-1, γ1…γi-1))δ⇓O.

• Imp is queued-suspension weakly-distinguishable from it iff there exist a finite
sequence of input words α1…αi and consistent γ1…γi-1 such that traces(αi][Imp-
after-(α1…αi-1, γ1…γi-1))δ⇓O ≠ traces(αi][Spec-after-(α1…αi-1, γ1…γi-1))δ⇓O.

Testing Transition Systems with Input and Output Testers 143

• Imp is queued-suspension trace-included into Spec, iff Imp does not oscillate and
Qstraces(Imp) ⊆ Qstraces(Spec).

• Imp and Spec are queued-suspension trace-equivalent iff Imp does not oscillate and
Qstraces(Imp) = Qstraces(Spec).

The queued-suspension testing needs input and output buffers as the queued-
quiescence testing. The size of the input buffer is defined by the longest input word in
a chosen test case (α1…αp, Out(α1…αp)), while that of the output buffer by the longest
output sequence produced in response to any input word. We assume the size of the
input buffer k is given and use it to define queued-suspension k-traces and accord-
ingly, to parameterize Definition 15 obtaining appropriate notions of k-
distinguishability. In particular, a queued-suspension trace of Spec α1β1δ…αpβpδ ∈
Qstraces(Spec) is called a queued-suspension k-trace of Spec if |αi| ≤ k for all i = 1,
…, p. The set of all these traces Qstraces≤k(Spec) has a finite representation.

Definition 17. Let Sstable be the set of all stable states of an IOTS Spec = <S, I, O, λ,
S0>. A queued-suspension k-machine for Spec is a tuple <R, I≤kO*δ, λk

stable, r0>, de-
noted Speck

susp, where the starting state r0 = {S0} and the set of states R ⊆ P(Sstable) ∪
{S0} (P(Sstable) is a powerset of Sstable), and the transition relation λk

stable are the smallest
sets obtained by application of the following rules:
• (r, αβδ, r′) ∈ λk

stable if α ∈ I≤k, β ∈ O* and r′ is the set of states r-after-(α, β) in
Spec.

• In case that some initial state of Spec is unstable (r0, εβδ, r′) ∈ λk

stable if β ∈ O* and
β ≠ ε, and r′ = S0-after-(ε, β).

Notice that each system that does not oscillate has at least one stable state.

Proposition 18. The set of traces of Speck

susp coincides with the set of queued-
suspension k-traces of Spec.

Corollary 19. A non-oscillating IOTS Imp is queued-suspension k-distinguishable
from Spec iff Impk

stable has a trace that is not a trace of Speck

susp.

Fig. 1 depicts the IOTS that are queued-suspension trace equivalent, recall that
they are also queued-quiescent trace-equivalent, but not quiescent trace equivalent.

We notice that a queued-suspension k-machine can be viewed as an FSM with the
input set I≤k and output set O≤m for an appropriate integer m, so that FSM-based meth-
ods could be adapted to derive queued-suspension test cases.

6 Conclusion

We addressed the problem of testing from transition systems with inputs and outputs
and elaborated a testing framework based on the idea of decomposing a tester into
input and output processes. Input test process applies inputs to an IUT via a finite
input queue and output test process reads outputs that the IUT puts into a finite output
queue until it detects no more outputs from the IUT, i.e., the tester detects quiescence
of the IUT. In such a testing architecture, input from the tester and output from the
IUT may occur simultaneously. We call such a testing scenario queued testing. We

144 Alexandre Petrenko, Nina Yevtushenko, and Jia Le Huo

elaborated two types of queued testers, the first consisting of single input and single
output test processes, a so-called queued-quiescence tester, and the second consisting
of several such pairs of processes, a so-called queued-suspension tester. We defined
implementation relations that can be checked by the queued testing with both types of
testers and proposed test derivation procedures.

Our work differs from the previous work in several important aspects. First of all,
we make a liberal assumption on the way the tester interacts with an IUT, namely that
the IUT can issue output at any time and the tester cannot determine exactly the
stimulus that causes the output. We believe that this assumption is less restrictive than
any other assumption known in the testing literature [2], [6]. Testing with this as-
sumption requires buffers between the IUT and tester. To make our approach practi-
cal, these buffers are considered finite, opposed to the case of infinite queues consid-
ered earlier [14]. We demonstrated that the implementation relations that can be
verified by the queued testing are coarser than those previously considered. The test
derivation procedures were elaborated with a fault model in mind. The resulting test
suite becomes finite and related to the assumptions about potential faults, as opposed
to the approach of [12], where the number of test cases is, in fact, uncontrollable and
not driven by any assumption about faults. The finiteness of test cases allows us, in
addition, to check equivalence relations and not only preorder relations as in, e.g.,
[12].

Concerning future work, we believe that this paper may trigger research in various
directions. It is interesting, for example, to see to which extent one could adapt FSM-
based test derivation methods driven by fault models, as is done in [11] with a more
restrictive assumption about a tester in mind.

Acknowledgment

The first author acknowledges fruitful discussions with Andreas Ulrich about testing
IOTS. This work was in part supported by the NSERC grant OGP0194381. The sec-
ond author acknowledges a partial support of the program “Russian Universities”.
The third author acknowledges a partial support of ReSMiQ.

References

1. Bochmann, G. v., Petrenko, A.: Protocol Testing: Review of Methods and Relevance for
Software Testing. In: The Proceedings of the ACM International Symposium on Software
Testing and Analysis, ISSTA’94. USA (1994)

2. Brinksma, E., Tretmans, J.: Testing Transition Systems: An Annotated Bibliography. In:
Cassez, F., Jard, C., Rozoy, B., Ryan, M. (eds.): Modeling and Verification of Parallel
Processes. Lecture Notes in Computer Science, Vol. 2067. Springer-Verlag, Berlin Heidel-
berg New York (2001)

3. van Glabbeek, R. J.: The Linear Time-Branching Time Spectrum. In: The Proceedings of
CONCUR’90. Lecture Notes In Computer Science, Vol. 458. Springer-Verlag, Berlin Hei-
delberg New York (1990)

4. Jard, C., Jéron, T., Tanguy, L., Viho, C.: Remote Testing Can Be as Powerful as Local
Testing. In: The Proceedings of the IFIP Joint International Conference, Methods for Pro-
tocol Engineering and Distributed Systems, FORTE XII/PSTV XIX. China (1999)

Testing Transition Systems with Input and Output Testers 145

5. Lynch, N., Tuttle, M. R.: An Introduction to Input/Output Automata. In: CWI Quarterly,
Vol. 2, Issue 3 (1989)

6. Petrenko, A.: Fault Model-Driven Test Derivation from Finite State Models: Annotated
Bibliography. In: Cassez, F., Jard, C., Rozoy, B., Ryan, M. (eds.): Modeling and Verifica-
tion of Parallel Processes. Lecture Notes in Computer Science, Vol. 2067. Springer-Verlag,
Berlin Heidelberg New York (2001)

7. Petrenko, A., Yevtushenko, N.: Queued Testing of Transition Systems with Inputs and
Outputs. In: Hierons, R., Jeron, T. (eds.): INRIA preprint, the Proceedings of the Workshop
on Formal Approaches to Testing of Software, FATES’02, A Satellite Workshop of
CONCUR’02. Czech Republic (2002)

8. Petrenko, A., Yevtushenko, N., Bochmann, G. v., Dssouli, R.: Testing in Context: Frame-
work and Test Derivation. In: Computer Communications, Vol. 19 (1996)

9. Phalippou, M.: Executable Testers. In: The Proceedings of the IFIP Sixth International
Workshop on Protocol Test Systems, IWPTS’93. France (1993)

10. Segala, R.: Quiescence, Fairness, Testing and the Notion of Implementation. In: The Pro-
ceedings of CONCUR’93. Lecture Notes in Computer Science, Vol. 715. Springer-Verlag,
Berlin Heidelberg New York (1993)

11. Tan, Q. M., Petrenko, A.: Test Generation for Specifications Modeled by Input/Output
Automata. In: The Proceedings of the IFIP 11th International Workshop on Testing of
Communicating Systems, IWTCS'98. Russia (1998)

12. Tretmans, J.: Test Generation with Inputs, Outputs and Repetitive Quiescence. In: Soft-
ware-Concepts and Tools, Vol. 17, Issue 3 (1996)

13. Vaandrager, F.: On the Relationship between Process Algebra and Input/Output Automata.
In: The Proceedings of Sixth Annual IEEE Symposium on Logic in Computer Science
(1991)

14. Verhaard, L., Tretmans, J., Kim, P., Brinksma, E.: On Asynchronous Testing. In: The Pro-
ceedings of the IFIP 5th International Workshop on Protocol Test Systems, IWPTS’92.
Canada (1992)

15. de Vries, R. G., Belinfante, A., Feenstra, J.: Automated Testing in Practice: The Highway
Tolling System. In: The Proceedings of the IFIP 14th International Conference on Testing
of Communicating Systems, TestCom'2002. Berlin, Germany (2002)

	1 Introduction
	2 Preliminaries
	3 Framework for Queued-Quiescence Testing
	4 Deriving Queued-Quiescence Test Cases
	5 Queued-Suspension Testing
	6 Conclusion
	References

