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Abstract. The paper studies testing based on input/output transition systems, 
also known as input/output automata. It is assumed that a tester can never pre-
vent an implementation under test (IUT) from producing outputs, while the IUT 
does not block inputs from the tester, either. Thus, input from the tester and 
output from the IUT may occur simultaneously and should be queued in finite 
buffers between the tester and the IUT. A framework for so-called queued-
quiescence testing is developed, based on the idea that the tester should consist 
of two test processes, one applying inputs via a queue to an IUT and the other 
reading outputs from a queue until it detects no more outputs of the IUT, i.e., 
the tester detects quiescence of the IUT. The testing framework is then extended 
with so-called queued-suspension testing by considering a tester that has several 
pairs of input and output processes. Test derivation procedures are elaborated 
with a fault model in mind. 

Keywords: conformance testing, test generation, input/output transition system, 
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1 Introduction 

The problem of deriving tests from state-oriented models that distinguish between 
input and output actions is usually addressed with one of the two basic assumptions 
about the relationships between inputs and outputs. Assuming that a pair of input and 
output constitutes an atomic action of a system, in other words, that the system cannot 
accept the next input before producing output as a reaction to a previous input, one 
relies on the input/output Finite State Machine (FSM) model. There is a large body of 
work on test generation from FSM with various fault models and test architectures, 
for references see, e.g., [6] and [1]. A system, where the next input can arrive even 
before an output is produced in response to a previous input, is usually modeled by 
the input/output automaton model [5], also known as the input/output transition sys-
tem (IOTS) model (the difference between them is marginal, at least from the testing 
perspective). Compared to the FSM model, this model has received a far less attention 
in the testing community, see, e.g., [2], [9], [10]. In this paper, we consider the IOTS 
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model and take a close look on some basic assumptions underlying the existing IOTS 
testing frameworks. 

An important publication on test generation from labeled transition systems (LTS) 
with inputs and outputs is [12]. In this paper, it is assumed that a tester interacting 
with an implementation under test (IUT) is an LTS. The LTS composition operator 
used to formalize this interaction does not distinguish between inputs and outputs, and 
the tester is not input-enabled. Due to the synchronous nature of the LTS composition, 
the tester preempts output of the IUT any time it decides to send input to the IUT. 
Although this allows the tester to avoid choosing between inputs and outputs, the 
tester overrides the principle that “output actions can never be blocked by the envi-
ronment” [12, p.106]. An IOTS “generates output and internal actions autonomously” 
[5], so such an IUT can be synchronously composed only with a tester that is recep-
tive to the IUT’s output. 

Another assumption about the tester is taken by Tan and Petrenko [11]. In this 
work, it is recognized that the tester cannot block the IUT’s outputs. It is only as-
sumed that the tester can detect the situation when it offers input to the IUT, but the 
latter, instead of consuming it, issues an output (a so-called “exception”). An excep-
tion halts a current test run (as the tester has lost control over the test execution) and 
results in the verdict inconclusive. Notice that the tester of [12] has only two verdicts, 
pass and fail. 

Either approach relies on an assumption that is not always justified in a real testing 
environment. As an example, consider the situation when the tester cannot directly 
interact with an IUT because of a context, such as queues or interfaces, between them. 
As pointed out in [15], to apply the test derivation algorithm of [12], one has to take 
into account the presence of a queue context. It also states “the assumption that we 
can synthesize every stimulus and analyze every observation is strong”, so that some 
problems in observing quiescence occur.  

The case when IOTS is tested via infinite queues is investigated by Verhaard et al 
[14]. The proposed approach relies on a specification of a given IOTS explicitly com-
bined with a queue context, so it is not clear how this approach could be implemented 
in practice. This context is also considered in [4], where a stamping mechanism is 
proposed to order the outputs with respect to the inputs, while quiescence is ignored. 
A stamping process has to be synchronously composed with an IUT as the tester in 
[12]. 

We also notice that we are aware of the only work [11] that uses fault models in 
test derivation from IOTS. In [12] and [14], a test case is derived from a trace pro-
vided by the user. 

The above discussion indicates a need for another approach that does not rely on 
such strong assumptions about the testing environment and incorporates a fault model 
to derive tests that can be characterized in terms of fault detection. In this paper, we 
report on our findings in attempts to elaborate such an approach. In particular, we 
introduce a framework for testing IOTS, assuming that a tester can never prevent an 
IUT from producing outputs, while the IUT does not block inputs from the tester 
either, and thus, input and output actions may occur simultaneously and should be 
queued in finite buffers between the tester and the IUT.  

The paper is organized as follows. In Section 2, we introduce some basic defini-
tions and define a composition operator for IOTS based on a refined notion of com-
patibility of IOTS first defined in [5]. Section 3 presents our framework for so-called 



Testing Transition Systems with Input and Output Testers      131 

 

queued-quiescence testing, based on the idea that the tester should consist of two test 
processes: one process applies inputs to an IUT via a finite input queue and the other 
reads outputs that the IUT puts into a finite output queue until the second process 
detects no more outputs from the IUT, i.e., the tester detects quiescence of the IUT. 
We elaborate such a tester and formulate several implementation relations that can be 
tested with a queued-quiescence tester. In Section 4, we discuss how queued-
quiescence tests can be derived for a given specification and fault model that com-
prises a finite set of implementations. In Section 5, we extend our testing framework 
with so-called queued-suspension testing by allowing a tester to have several pairs of 
input and output processes and demonstrate that a queued-suspension tester can check 
finer implementation relations than a queued-quiescence tester. We conclude by com-
paring our contributions with the previous work and discussing further work. An 
earlier version of this paper is published in an INRIA preprint [7]. 

2 Preliminaries 

A labeled transition system (LTS) is a 4-tuple L = <S, Σ, λ, S0>, where S is a finite set 
of states with a non-empty set of initial states S0 ⊆ S; Σ is a finite set of actions; λ ⊆ S 
× (Σ ∪ {τ}) × S is a transition relation. The special symbol τ ∉ Σ represents the inter-
nal action. We call an LTS deterministic if it contains no internal action, has a single 
initial state, and for transitions (s, a, s′), (s, a, s′′) ∈ λ, s′ = s′′. (As opposed to the 
preprint [7], this paper considers LTS that might be non-deterministic.) After [12], we 
only consider strongly converging LTS, i.e., the LTS that contain no loop of internal 
actions. 

Let L1 = <S, Σ1, λ1, S0> and L2 = <T, Σ2, λ2, T0>, the parallel composition L1 || L2 is 
the LTS <R, Σ1 ∪ Σ2, λ, R0>, where R0 = S0 × T0 is the set of initial states; the set of 
states R ⊆ S × T and the transition relation λ are the smallest sets obtained by applica-
tion of the following inference rules: 

• if a ∈ Σ1 ∩ Σ2, (s, a, s′) ∈ λ1, and (t, a, t′) ∈ λ2 then (st, a, s′t′) ∈ λ; 
• if a ∈ {τ} ∪ Σ1\Σ2, (s, a, s′) ∈ λ1, then (st, a, s′t) ∈ λ; 
• if a ∈ {τ} ∪ Σ2\Σ1, (t, a, t′) ∈ λ2, then (st, a, st′) ∈ λ. 

We use the LTS model to define a transition system with inputs and outputs. The 
difference between these two types of actions is that no system can deny an input 
action from its environment, while it is completely up to the system when to produce 
an output, so that the environment cannot block the output. Formally, an input/output 
transition system (IOTS) L is an LTS in which the set of actions Σ is partitioned into 
two sets, the set of input actions I and the set of output actions O. We use <S, I, O, λ, 
S0> to represent an IOTS <S, I ∪ O, λ, S0> with I ∩ O = ∅. Further, we use IOTS(I, 
O) to denote the set of all possible IOTS over the input set I and output set O. 

Given state s of L, we further denote init(s) the set of actions defined at s, i.e., 
init(s) = {a ∈ (Σ ∪ {τ}) | ∃s′ ∈ S s.t. ((s, a, s′) ∈ λ)}. The IOTS is (strongly) input-
enabled if each input action is enabled at any state, i.e., I ⊆ init(s) for each s. In this 
paper, we consider only input-enabled IOTS specifications, while an implementation 
IOTS (that models an IUT) is always assumed to be input-enabled. We notice that 
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IOTS here corresponds to IOLTS in [4], and input-enabled IOTS to IOA in [5]. State 
s of the IOTS is called unstable if init(s) ∩ (O ∪ {τ}) ≠ ∅. Otherwise, the state is 
stable. A non-empty sequence α ∈ Σ* is called a trace of L in state s if there exist 
actions a1, …, ak in Σ ∪ {τ} and states s1, …, sk+1 such that (si, ai, si+1) ∈ λ for all i =1, 
…, k; s1 = s; and the projection of a1…ak onto the action set Σ is the sequence α. We 
use traces(s) to denote the set of traces of L in state s, and traces(P) to denote the 
union of traces of L in the states in P, where P is a set of states of Spec. Sometimes, 
we use L to refer to the set of initial states of the IOTS L, e.g., traces(L) denotes the 
union of traces of L in its initial states. We call an IOTS L oscillating if there exist a 
state s reachable from an initial state and a sequence o1o2…ok ∈ O* such that 
(o1o2…ok)* ⊆ traces(s). Following [13] and [12], we refer to a trace that takes the 
IOTS from a given state to a stable state as a quiescent trace. We use qtraces(P) to 
denote the set of quiescent traces of Spec in P. 

When we compose two IOTS using the parallel composition of LTS, an output ac-
tion enabled in one IOTS is blocked from happening by the other IOTS if the action is 
not enabled in the second IOTS. Such a situation, however, cannot be justified by our 
assumption about the IOTS model, i.e., outputs from an IOTS are under the control of 
the IOTS itself. On the other hand, the composition operator for IOA defined in [5], 
which does not have this problem, is only applicable to input-enabled IOTS. This 
discussion suggests that we need to define a composition operator for IOTS that are 
not necessarily input-enabled. To this end, we first state compatibility conditions that 
define when two IOTS can be composed by relaxing the original conditions of [5]. 
We use L1 || L2 for IOTS L1 and L2 to denote the parallel composition of the LTS L1 
and L2 when the difference between their inputs and outputs is neglected.  

Definition 1. Let two IOTS L1 = <S, I1, O1, λ1, S0> and L2 = <T, I2, O2, λ2, T0> be such 
that the set O1 ∩ O2 = ∅. Let st be a state of the composition L1 || L2. The IOTS L1 and 
L2 are compatible in state st if  

• a ∈ init(s) implies a ∈ init(t) for any a ∈ I2 ∩ O1 and  
• a ∈ init(t) implies a ∈ init(s) for any a ∈ I1 ∩ O2.  

L1 and L2 are said to be compatible if they are compatible in each initial state in S0 × 
T0. L1 and L2 are fully compatible if they are compatible in all the states of L1 || L2. 

Clearly, two input-enabled IOTS with I1 = O2 and I2 = O1 are fully compatible, but the 
converse is not true. Based on the notion of compatibility we define what we mean by 
a parallel composition of two IOTS. We notice that the parallel composition || of any 
two IOTS that are not fully compatible violates the assumption that outputs of an 
IOTS cannot be blocked. Therefore, we define a parallel composition of IOTS only 
for fully compatible ones.  

Definition 2. The parallel composition ][ of two fully compatible IOTS L1 ∈ IOTS(I1, 
O1), and L2 ∈ IOTS(I2, O2), where the sets I1 ∩ I2 and O1 ∩ O2 are empty, is an IOTS 
defined as L1 ][ L2 = L1 || L2, with inputs (I1 ∪ I2) \ (O1 ∪ O2) and outputs O1 ∪ O2. 

For fully compatible IOTS, the results of both operators, || and ][, coincide. For the 
IOTS that are not fully compatible, the composition ][ is not defined.  
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3 Framework for Queued-Quiescence Testing 

In defining a framework for testing systems modeled by IOTS, we first assume that 
testers are modeled by IOTS. We then require that any tester possess the following 
properties in addition to the usual soundness requirement. First, due to our assumption 
about the IOTS model, a tester should not preempt output of any IOTS. Second, a 
tester should always reach a verdict in finite steps, and once a verdict is reached, the 
tester should not change it later in the same test run. Third, a tester should be determi-
nistic, meaning that it should have no internal actions and at most a single output 
action is enabled in any state. Finally, a tester should not make choice between inputs 
and outputs.  

In a typical testing framework, it is usually assumed that a tester is a single process 
applying inputs to an IUT and observing outputs from the IUT. The two systems, the 
tester and the IUT, form a closed system. This means that if L1 is an IOTS modeling a 
tester, while L2 is an IOTS modeling the IUT, then I1 = O2, and I2 = O1. To be fully 
compatible with all the IOTS in IOTS(I2, O2) the tester should be input-enabled. How-
ever, input-enabledness of testers, while making them meet the first requirement, may 
cause violation of the remaining ones.  

An input-enabled tester may yield an infinite test run because the IOTS modeling 
the tester includes cycles. The test execution may never terminate when the tester 
interacts with an IUT with proper cycles. This, however, could simply be resolved by 
defining a tester whose only cycles are self-loops in the states labeled with verdicts. 
An IUT may continuously interact with such a tester, but the tester still reaches a 
verdict in a finite number of steps and remains in a state with the reached verdict. 
However, an arbitrary IUT may produce a wrong output after the tester has reached 
the verdict pass, which cannot be reversed because of the self-loops. To solve this 
problem, we require that states with the verdict pass only be reached when the quies-
cence of an IUT is detected. This feature of the tester immediately excludes oscillat-
ing specifications from further consideration, but still leaves us a wide class of speci-
fications. Thus, we will define testers with the above stated features. 

Another problem of input-enabled testers is that such a tester needs choosing be-
tween inputs and outputs. In fact, in any state where the tester has to produce an out-
put to an IUT, all the inputs are enabled as well. So the tester has to choose between 
doing input or output, violating the last requirement. 

It turns out that a tester processing inputs separately from outputs may resolve the 
problem. It is sufficient to decompose the tester into two processes, one for inputs and 
another for outputs. Intuitively, this could be done as follows. The input test process 
only sends to the IUT via input buffer a given (finite) number of consecutive test 
stimuli. In response to the submitted input sequence, the IUT produces outputs that 
are stored in another (output) buffer. The output test process, that is simply an ob-
server, only accepts outputs of the IUT by reading the output buffer. All the output 
sequences that the specification can produce in response to the submitted input se-
quence should take the output test process into a state labeled with the verdict pass, 
while any other output sequence produced by an IUT should take the output test proc-
ess to a state labeled with the verdict fail. Since the notion of a tester is based on the 
definition of a set of output sequences that the specification IOTS can produce in 
response to a submitted input sequence, we formalize both notions as follows. 
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Let pref(α) denote the set of all the prefixes of a sequence α ∈ Σ* over the set Σ. 
The set pref(α) has the empty sequence ε. Also given a set Γ ⊆ Σ*, let {β ∈ pref(γ) | 
γ  ∈ Γ} = pref(Γ). 

Definition 3. Given an input word α ∈ I*, the input test process with α for L ∈ 
IOTS(I, O) is an (deterministic) IOTS α = <pref(α), ∅, I, λα, {ε}>, where the state set 
is pref(α) with ε as the only initial state, the set of inputs is empty, the set of outputs 
is I, and the transition relation λα = {(β, a, βa) | βa ∈ pref(α)}.  

We slightly abuse α to denote both the input sequence and the input test process 
that executes this sequence. It is easy to see that each input test process is fully com-
patible with any IOTS in IOTS(I, O) that is input-enabled.  

To define an output test process that complements the input test process α, we have 
first to determine all the output sequences, valid and invalid, the output test process 
has to expect from the IUT. The number of valid output sequences is finite, as the 
specification does not oscillate by our assumption. Thus, in response to α, the IOTS 
Spec ∈ IOTS(I, O) can execute any trace that is a completed trace [3] of the IOTS α ][ 
Spec leading into a terminal state, i.e., into state g, where init(g) = ∅. Let ctraces(α ][ 
Spec) be the set of all such traces. It turns out that the set ctraces(α ][ Spec) is closely 
related to the set of quiescent traces of the specification qtraces(Spec), viz. it includes 
each quiescent trace β whose input projection, denoted β↓I, is the sequence α. 

Proposition 4. ctraces(α ][ Spec) = {β ∈ qtraces(Spec) | β↓I = α}. 

Thus, the set ctraces(α ][ Spec)↓O = {β↓O | β ∈ qtraces(Spec) & β↓I = α} contains 
all the output sequences that can be produced by Spec in response to the input se-
quence α.  

Given a quiescent trace β ∈ qtraces(P), where P is a set of states of Spec, the se-
quence β↓Iβ↓Oδ is said to be a queued-quiescent trace of Spec in P, where δ ∉ Σ is a 
designated symbol indicating that no more outputs follows, in other words, that Spec 
becomes quiescent as it has reached a stable state. We use Qqtraces(P) to denote the 
set of queued-quiescent traces of P {(β↓Iβ↓Oδ) | β ∈ qtraces(P)} and Qqtraceso(P, α) 
to denote the set {β↓Oδ | β ∈ qtraces(P) & β↓I = α}. Next, we define the output test 
process and the test case.  

Given the input test process α and the set Qqtraceso(Spec, α), we define a set of 
output sequences out(α) that the output test process can receive from an IUT. It is 
sufficient to consider all the shortest invalid output sequences along with all the valid 
ones. Any valid sequence should not be followed by any further output action, as the 
specification becomes quiescent, while any premature quiescence indicates that the 
observed sequence is not valid. The set out(α) is defined as follows. For each β ∈ 
pref(Qqtraceso(Spec, α)) the sequence β ∈ out(α) if β ∈ Qqtraceso(Spec, α), other-
wise βa ∈ out(α) for all a ∈ O ∪ {δ} such that βa ∉ pref(Qqtraceso(Spec, α)). 

Definition 5. The output test process for the IOTS Spec and the input test process α is 
an (deterministic) IOTS <pref(out(α)), O ∪ {δ}, ∅, λout(α), {ε}>, where certain states 
are labeled with verdicts pass or fail. and the state set is pref(out(α)) with ε as the 
only initial state, the input set is O ∪ {δ}, and the output set is empty. State β ∈ 



Testing Transition Systems with Input and Output Testers      135 

 

pref(out(α)) is labeled with the verdict pass if β ∈ Qqtraceso(Spec, α) or with the 
verdict fail if β ∈ out(α)\Qqtraceso(Spec, α). The transition relation λout(α) = {(β, a, 
βa) | βa ∈ pref(out(α))} ∪ {(β, δ, β) | β is labeled pass} ∪ {(β, a, β) | a ∈ O ∪ {δ} & 
β is labeled fail}. 

For a given input test process α, where α ∈ I*, we reuse out(α) to denote the out-
put test process that complements the input test process α. The pair (α, out(α)) is 
called a queued-quiescence tester or simply a test case for the IOTS Spec. 

The self-looping transitions at the states labeled pass and fail are added to make 
the output test process fully compatible with any IUT in the set IOTS(I, O). These 
self-loops are the only cycles of the output test process, so verdicts pass or fail can be 
reached in finite steps. Once verdicts are reached, they are not changed. Therefore, the 
states with verdicts indicate the end of the test execution. We assume that once the 
output test process detects the quiescence, the IUT cannot produce any visible output 
later, which justifies why the pass states have only a self-loop on quiescence.  

To describe the execution of a queued-quiescence test case, we define a new opera-
tor δ⇓O. For IOTS L, Lδ⇓O is an IOTS obtained by first augmenting all the stable 
states of L by self-looping transitions labeled with δ, then projecting the augmented 
automaton onto the alphabet O ∪ δ, and finally determinizing the obtained automaton. 
The execution of a queued-quiescence test case (α, out(α)) against an IOTS Imp ∈ 
IOTS(I, O) is described by the IOTS (α ][ Imp)δ⇓O ][ out(α). Each trace leading this 
IOTS into a state, where the output test process is in a state labeled with pass or fail, 
is a test run. Notice that we treat the symbol δ as an input of the output test process, 
assuming that the tester executing δ just detects the fact that its buffer has no more 
symbols to read. Since the outputs of an IUT are stored in a finite queue, any imple-
mentation that, in response to the input sequence α, can produce an output sequence 
longer than the queue length may overflow the queue. To solve this problem, we 
should determine a lower bound of the output queue length so that the buffer is not 
overflowing until the tester reaches a verdict. The bound depends on the input se-
quence α and Spec, and it is finite because Spec does not oscillate.  

The queued-quiescence tester (α, out(α)) meets all the requirements stated above. 
We use the term verdict state to refer to a state of the IOTS (α ][ Imp)δ⇓O ][ out(α) 
such that the IOTS out(α) is in a state with a verdict. 

Proposition 6. For a queued-quiescence test case (α, out(α)) of Spec and any IOTS 
Imp ∈ IOTS(I, O)  

• the IOTS (α ][ Imp)δ⇓O and out(α) are fully compatible; 
• at least one verdict state is reachable from every state in the IOTS (α ][ Imp)δ⇓O ][ 

out(α) and every cycle in the IOTS involves only verdict states, in other words, the 
tester always reaches a verdict in finite steps; 

• both α and out(α) are deterministic; 
• there is no state in α or out(α) where both inputs and outputs are enabled; 
• if a verdict state is reached in the IOTS (α ][ Spec)δ⇓O ][ out(α), the output tester 

out(α) is in a state with the verdict pass, i.e., the test case (α, out(α)) is sound. 
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The composition (α ][ Imp)δ⇓O ][ out(α) has one or several verdict states. In a par-
ticular test run, one of these states with the verdict pass or fail is reached. Considering 
the distribution of verdicts in the verdict states of the composition, three cases are 
possible: 

Case 1. All the states have fail. 
Case 2. States have pass as well as fail. 
Case 3. All the states have pass. 

These cases lead us to various relations between an implementation and the speci-
fication that can be established by the queued-quiescence testing. 

In the first case, the implementation is distinguished from the specification in a 
single test run.  

Definition 7. Given IOTS Spec and Imp, Imp is queued-quiescence separable from 
Spec, if there exists a test case (α, out(α)) for Spec such that all the verdict states of 
the IOTS (α ][ Imp)δ⇓O ][ out(α) are labeled with the verdict fail. 

In the second case, the implementation can also be distinguished from the specifi-
cation if a proper run is taken by the implementation during the test execution.  

Definition 8. Given IOTS Spec and Imp, Imp is queued-quiescence distinguishable 
from Spec, if there exists a test case (α, out(α)) for Spec such that at least one verdict 
state of (α ][ Imp)δ⇓O ][ out(α) is labeled with the verdict fail. 

Clearly, Imp queued-quiescence separable from Spec is also queued-quiescence 
distinguishable from it. Consider now case 3, when for a given test case (α, out(α)) all 
the states have pass. In this case, the implementation does nothing illegal when the 
test case is executed, as it produces only valid output sequences. Two situations can 
yet be distinguished here. Either there exists a pass state of the output test process that 
is not included in any verdict state of (α ][ Imp)δ⇓O ][ out(α) or there is no such a state. 
The difference is that with the given test case in the former situation, the implementa-
tion could still be distinguished from its specification, while in the latter, it could not. 
This motivates the following definition. 

Definition 9. Given IOTS Spec and Imp,  

• Imp is queued-quiescence weakly-distinguishable from Spec if there exists a test 
case (α, out(α)) for Spec such that the verdict states of (α ][ Imp)δ⇓O ][ out(α) does 
not include all the pass states of out(α).  

• Imp is queued-quiescent trace-included in Spec if for all α ∈ I* all the verdict state 
of the IOTS (α ][ Imp)δ⇓O ][ out(α) are labeled with the verdict pass.  

• Imp and Spec are queued-quiescent trace-equivalent if for all α ∈ I* all the verdict 
states of the IOTS (α ][ Imp)δ⇓O ][ out(α) are labeled with the verdict pass and in-
clude all the pass states of out(α). 

By definition, Imp is queued-quiescence weakly-distinguishable from Spec if Imp 
is queued-quiescence distinguishable from Spec, or if Imp is queued-quiescent trace-
included in but not queued-quiescent trace-equivalent to Spec. We characterize the 
above relations in terms of traces and queued-quiescent traces. 
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Proposition 10. Given IOTS Spec and Imp,  

1. Imp is queued-quiescence separable from Spec iff there exists an input sequence α 
such that Qqtraceso(Imp, α) ∩ Qqtraceso(Spec, α) = ∅.  

2. Imp is queued-quiescence distinguishable from it iff there exists an input sequence 
α such that traces(α ][ Imp)δ⇓O  traces(α ][ Spec)δ⇓O. 

3. Imp is queued-quiescence weakly-distinguishable from it iff there exists an input 
sequence α such that traces(α ][ Imp)δ⇓O ≠ traces(α ][ Spec)δ⇓O. 

4. Imp is queued-quiescent trace-included into Spec, iff Imp does not oscillate and 
Qqtraces(Imp) ⊆ Qqtraces(Spec). 

5. Imp and Spec are queued-quiescent trace-equivalent iff Imp does not oscillate and 
Qqtraces(Imp) = Qqtraces(Spec). 

traces(α ][ Imp)δ⇓O is the set of traces of (α ][ Imp)δ⇓O in the initial states of the 
IOTS. traces(α ][ Imp)δ⇓O = traces(α ][ Imp)↓O ∪ Qqtraceso(Imp, α)δ*. The relation 
between traces(α ][ Imp)↓O and traces(α ][ Spec)↓O is used to deal correctly with oscil-
lating implementations [10]. Fig. 1 provides an example of the systems that are not 
quiescent trace equivalent, but are queued-quiescent trace-equivalent. Indeed, the 
quiescent trace aa1δ of the IOTS L2 is not a trace of the IOTS L1. In both, the input 
sequence a yields the queued-quiescent trace a1δ, aa yields the queued-quiescent 
traces aa1δ and aa2δ, any longer input sequence results in the same output sequences 
as aa. 

?a

?a !2 ?a
!1 ?a

?a

?a ?a

!1 ?a

!1, !2
L1 L2

 

Fig. 1. Two IOTS that have different sets of quiescent traces, but are queued-quiescent trace-
equivalent. Inputs are decorated with “?”, outputs with “!”; and stable states are drawn in bold 

The IOTS L1 and L2 are considered indistinguishable in our framework, while ac-
cording to the ioco relation [12], they are distinguishable. The IOTS L2 has the quies-
cent trace aa1 that is not a trace of L1, therefore, to distinguish the two systems, the 
tester has to apply two consecutive inputs a. The output 1 appearing after the second 
input a indicates that the system being tested is, in fact, L2 and not L1. However, to 
reach such a conclusion, the tester should be able to prevent the appearance of the 
output 1 after the first input a. This is not possible under our assumption that the tester 
cannot block outputs of the IUT. The tester interacts with the IUT via queues and has 
no way of knowing in which state the output is actually produced. The presence of a 
testing context, which is a pair of finite queues in our case, makes implementation 
relations that could be tested via the context coarser, as is usually the case [8]. 
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4 Deriving Queued-Quiescence Test Cases  

Proposition 10 indicates the way test derivation could be performed for the IOTS Spec 
and an explicit fault model that includes a finite set of implementations. Namely, for 
each Imp in the fault model, we may first attempt to determine an input sequence α 
such that Qqtraceso(Imp, α) ∩ Qqtraceso(Spec, α) = ∅. If fail we could next try to 
find α such that traces(α ][ Imp)δ⇓O  traces(α ][ Spec)δ⇓O. If traces(α ][ Imp)δ⇓O ⊆ 
traces(α ][ Spec)δ⇓O for each α the question is about an input sequence α such that 
traces(α ][ Imp)δ⇓O ≠ traces(α ][ Spec)δ⇓O, thus traces(α ][ Imp)δ⇓O ⊂ traces(α ][ 
Spec)δ⇓O. Based on the found input sequence, a queued-quiescence test case for Imp at 
hand can be constructed, as explained in the previous section. If no input sequence 
with this property can be determined we conclude that the IOTS Spec and Imp are 
queued-quiescent trace-equivalent, they cannot be distinguished by the queued-
quiescence testing.  

Search for an appropriate distinguishing input sequence could be performed in a 
straightforward way by considering input sequences of increasing length. To do so, 
we just parameterize Definitions 7, 8 and 9 and accordingly Proposition 10 with the 
length of input sequences. Given a length of input sequences k, then, e.g., Imp and 
Spec are queued-quiescent k-trace-equivalent iff traces(α ][ Imp)δ⇓O = traces(α ][ 
Spec)δ⇓O for all α ∈ I≤k, where I≤k denotes the set of all input sequences of length equal 
or less than k. If the length of α such that traces(α ][ Imp)δ⇓O  traces(α ][ Spec)δ⇓O is 
k then Imp is said to be queued-quiescence k-distinguishable from Spec. With these 
parameterized definitions, we examine all the input sequences starting from an empty 
sequence. The procedure terminates when the two IOTS are distinguished or when the 
value of k reaches a predefined maximum defined by the input buffer of the IUT 
available for queued testing.  

Consider the example in Fig. 2. Imp is not queued-quiescence 1-distinguishable 
from Spec, for both produce the output 1 in response to the input a. However, Imp is 
queued-quiescence 2-distinguishable from Spec. Indeed, in response to the sequence 
aa the Spec can produce the output 1 or 12. While Imp - 2 or 12. 

?a ?a

?a
!1

!2

?a

?a

?a
!1

!2

?a
?aSpec Imp

 

Fig. 2. The IOTS that are queued-quiescence 2-distinguishable, but not queued-quiescence  
1-distinguishable 

The search for a distinguishing input sequence relies on a procedure that verifies 
whether a given input sequence α satisfies traces(α ][ Imp)δ⇓O ⊆ traces(α ][ Spec)δ⇓O . 
Instead of elaborating this procedure, we give a more general procedure that accepts a 
regular language defined over the input set. Let E denote such a language, E ⊆ I*, 
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following the definition of the input test process, we also use E to denote the (deter-
ministic) IOTS whose trace set is pref(E). Since E is regular, such an IOTS exists. In 
the following proposition, we generalize item 2 in Proposition 10 by considering the 
inclusion relation between traces(E ][ Imp)δ⇓O and traces(E ][ Spec)δ⇓O. 

Proposition 11. Given two IOTS Spec and Imp, Imp is queued-quiescence distin-
guishable from Spec iff there exists a regular language E ⊆ I* such that traces(E ][ 
Imp)δ⇓O  traces(E ][ Spec)δ⇓O. Moreover, any trace β ∈ traces(E ][ Imp) such that 
β↓Oδ* ∩ (traces(E ][ Imp)δ⇓O \ traces(E ][ Spec)δ⇓O) ≠ ∅ yields a queued-quiescence 
test case (β↓I, out(β↓I)) that, when executed against Imp, produces the verdict fail. 

Proof: (If) If there exists a regular language E ⊆ I* such that traces(E ][ Imp)δ⇓O  
traces(E ][ Spec)δ⇓O, the part after “moreover” in the proposition indicates how a cor-
responding test case can be derived.  

(Only if) If Imp is queued-quiescence distinguishable from Spec, according to the 
definition of the queued-quiescence distinguishability, there exists an input sequence 

α, which is a regular language with a single word, such that traces(α ][ Imp)δ⇓O  
traces(α ][ Spec)δ⇓O. QED. 

We call a language E satisfying the properties in Proposition 11 a distinguishing 
input set of Spec and Imp. The proposition suggests a test case derivation procedure. 

Procedure 12. For deriving a test case of Spec that Imp fails if a given language E is a 
distinguishing input set. 
Input: IOTS Spec and Imp, and a regular language E. 
Output: E is not a distinguishing input set or a test case (α, out(α)). 

Step 1. Construct the deterministic automata that accept traces(E ][ Imp)δ⇓O and 
traces(E ][ Spec)δ⇓O, respectively. 
Step 2. Using the direct products of the obtained automata, determine a sequence ρ 
∈ traces(E ][ Imp)δ⇓O \ traces(E ][ Spec)δ⇓O. If such a sequence exists, go to Step 3; 
otherwise, return the result that E is not a distinguishing input set. 
Step 3. Construct a deterministic automaton by composing Imp with the LTS 
<pref(ρ↓O), O, λρ, {ε}>, where λρ = {(β, a, βa) | βa ∈ pref(ρ↓Ο)}. Determine a trace 
γ of the obtained LTS with γ↓I ∈ E and γ↓O = ρ↓O and the queued-quiescence test 
case (γ↓I, out(γ↓I)).  

Proposition 13. Given two IOTS Spec and Imp, and a distinguishing input set E, let 
(α, out(α)) be the queued-quiescence test case derived by the above procedure. Then 
the queued-quiescence test case executed against Imp produces the verdict fail.  

If we consider every E ∈ {{α} | α ∈ I≤k}, the test cases that queued-quiescence k-
distinguish Imp from Spec are derived. We notice that if the set E is I*, Procedure 12 
reduces to the test case derivation procedure reported earlier [7]. 

It is interesting to know that the notion of k-distinguishability applied to the IOTS 
and FSM models exhibits different properties. In particular, two k-distinguishable 
FSM are also k+1-distinguishable. This does not always hold for IOTS. The system 
Imp in Fig. 3 is queued-quiescence 1-distinguished from Spec; however, it is not 
queued-quiescence k-distinguished from Spec for any k > 1. This indicates that a spe-
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cial care has to be taken when one attempts to adapt FSM-based methods to the 
queued testing of IOTS. 

5 Queued-Suspension Testing 

In the previous sections, we explored the possibilities for distinguishing IOTS based 
on their traces and queued-quiescent traces. The latter are pairs of input and output 
projections of quiescent traces. If two non-oscillating systems with different quiescent 
traces have the same sets of queued-quiescent traces, queued-quiescence testing may 
not differentiate them. However, sometimes such IOTS can still be distinguished by a 
queued testing, as we demonstrate below. 

Consider the example in Fig. 4. Here the two IOTS have different sets of quiescent 
traces, however, they have the same set of queued-quiescent traces {a1δ, aa1δ, 
aa12δ, aaa1δ, aaa12δ, … }. In the testing framework presented in Section 3, they are 
not distinguishable. Indeed, we cannot tell them apart when a single input is applied 
to their initial states. Moreover, in response to the input sequence aa and to any longer 
sequence, they produce the same output sequence 12. The difference is that IOTS 
Imp, while producing the output sequence 12, becomes quiescent just before the out-
put 2 and the IOTS Spec does not. The problem is that this quiescence is not visible 
through the output queue by the output test process that expects either 1 or 12 in re-
sponse to aa. The queued-quiescence tester can detect the quiescence after reading the 
output sequence 12 as an empty queue, but it cannot detect an “intermediate” quies-
cence of the system. It has no way of knowing whether the system becomes quiescent 
before a subsequent input is applied. Both inputs are in the input buffer and it is com-
pletely up to the system when to read the second input. 

Further decomposing the tester for Spec into two input and two output test proc-
esses could solve the problem. In this case, testing is performed as follows. The first 
input test process issues the input a. The first output test process expects the output 1 

?a
!2

?a

?a
!1?a

!1

?a
Spec

?a !2

?a?a
!1

?a
!1

?a

?a

!1

Imp

 

Fig. 3. The IOTS that are queued-quiescence 1-distinguishable, but not queued-quiescence 
k-distinguishable for k > 1 

?a

!2

?a

!1

?a

?a

Spec Imp
?a

!2

?a

!1
?a

!1

?a?a ?a
 

Fig. 4. Two queued-quiescent trace equivalent IOTS 
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followed by a quiescence δ, when the quiescence is detected, the control is transferred 
to the second input test process that does the final a. Then the second output test proc-
ess expects quiescence. If, instead, it detects the output 2 it produces the verdict fail 
which indicates that the IUT is Imp and not Spec. As opposed to a queued-quiescence 
tester, such a tester can detect intermediate quiescence of the IUT.  

The example motivates the definition of a new type of testers. Such a tester is de-
fined for a given sequence of input words α1…αp, in which αi ≠ ε for i = 2, …, p. The 
tester is a finite tree with queued-quiescence test cases as nodes connected by transfer 
of control. The root node (α1, out(α1)) is a queued-quiescence test case of Spec, and is 
executed first. If the IUT passes the queued-quiescence test case, one of the node’s 
children is selected based on the output of the IUT β1δ ∈ Qqtraceso(Spec, α1) and 
control is transferred to this node; otherwise, the IUT fails the tester and the test exe-
cution is terminated. We use Spec-after-(α, β) to denote the set of stable states that 
are reached by Spec when it executes all possible quiescent traces with the input pro-
jection α and output projection β. If we also use Spec-after-(α, β) to denote the IOTS 
obtained from Spec by initializing it in these states, the selected child node is a 
queued-quiescence test case of Spec-after-(α1, β1). The input test process of the child 
node executes α2. The process continues until the IUT fails or a verdict of a leaf node 
is reached.  

We define a sequence of output words β1…βi to be consistent with the correspond-
ing sequence of input words α1…αi if β1 ∈ Qqtraceso(Spec, α1) and βj ∈ 
Qqtraceso(Spec-after-(α1…αj-1, β1…βj-1), αj) for each j = 2, …, i. Every node in the 
tree is identified by a consistent output sequence that leads the tester to the node. 
Given αi, we use (αi, out(αi, β1…βi-1)) to denote the queued-quiescence test case of 
Spec-after-(α1…αi-1, β1…βi-1). We have the definition of the tester based on the dis-
cussions above. 

Definition 14. Given a finite sequence of input words α1…αp, a queued-suspension 
tester or a queued-suspension test case (α1…αp, Out(α1…αp)) is a tree (Ν, Ρ, (α1, 
out(α1))), in which  

• Ν is the set of nodes, Ν = {(α1, out(α1))} ∪ {(αi, out(αi, β1…βi-1)) | β1…βi-1 is an 
output sequence consistent with α1…αi-1, i = 2, …, p}; 

• Ρ is the transition relation, Ρ = {(α1, out(α1)) → (α2, out(α2, β1)) | β1 is an output 
sequence consistent with α1} ∪ {(αi, out(αi, β1…βi-1)) → (αi+1, out(αi+1, β1…βi)) | 
β1…βi is an output sequence consistent with α1…αi, i = 2, …, p-1}; 

• (α1, out(α1)) is the root node. 

It is clear that for a single input word, a queued-suspension tester reduces to a 
queued-quiescence tester. The queued-suspension testing is more discriminative than 
queued-quiescence testing, as Fig. 4 illustrates. In fact, consider a queued-quiescence 
tester derived from a single sequence α1…αp and a queued-suspension tester derived 
from the sequence of p words α1, …, αp, the former uses just the output projection of 
quiescent traces that have the input projection α1…αp while the latter additionally 
partitions the quiescent traces into p quiescent sub-traces. Then the two systems that 
cannot be distinguished by the queued-suspension testing have to produce the same 
output projection, moreover, the output projections have to coincide up to the parti-
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tion defined by the partition of the input sequence. This leads us to the notion of 
queued-suspension traces. 

Given a finite sequence of finite input words α1…αp, a sequence (α1β1δ)…(αpβpδ) 
is called a queued-suspension trace of Spec if β1…βp is an output sequence consistent 
with α1…αp. We use Qstraces(Spec) to denote the set of queued-suspension traces of 
Spec in the initial states.  

We define the relations that can be established by queued-suspension testing simi-
lar to Definitions 7, 8, and 9. 

Definition 15. Given IOTS Spec and Imp, 

• Imp is queued-suspension separable from Spec, if there exists a test case (α1…αp, 
Out(α1…αp)) for Spec such that for any consistent output sequence β1…βp−1 all the 
verdict states of the IOTS (αp ][ Imp-after-(α1…αp-1, β1…βp−1))δ⇓O ][ out(αp, 
β1…βp−1) are labeled with the verdict fail. 

• Imp is queued-suspension distinguishable from Spec, if there exist a test case 
(α1…αp, Out(α1…αp)) for Spec and a consistent output sequence β1…βp−1 such that 
at least one verdict state of the IOTS (αp ][ Imp-after-(α1…αp-1, β1…βp−1))δ⇓O ][ 
out(αp, β1…βp−1) is labeled with the verdict fail. 

• Imp is queued-suspension weakly-distinguishable from Spec if there exist a test 
case (α1…αp, Out(α1…αp)) for Spec and a consistent output sequence β1…βp−1 such 
that the verdict states of the IOTS (αp ][ Imp-after-(α1…αp-1, β1…βp−1))δ⇓O ][ out(αp, 
β1…βp−1) does not include all the pass states of out(αp, β1…βp−1). 

• Imp is said to be queued-suspension trace-included in Spec if for all α ∈ I* and all 
possible partitions of α into words α1, …, αp, all the verdict states of IOTS (αp ][ 
Imp-after-(α1…αp-1, β1…βp−1))δ⇓O ][ out(αp, β1…βp−1) are labeled with the verdict 
pass.  

• Imp and Spec are queued-suspension trace-equivalent if for all α ∈ I*, all possible 
partitions of α into words α1, …, αp, and all consistent output sequence β1…βp−1,  
all the verdict states of the IOTS (αp ][ Imp-after-(α1…αp-1, β1…βp−1))δ⇓O ] 
[ out(αp, β1…βp−1) are labeled with the verdict pass and include all the pass states 
of out(αp, β1…βp−1). 

Accordingly, the following is a generalization of Proposition 10. 

Proposition 16. Given IOTS Spec and Imp,  

• Imp is queued-suspension separable from Spec iff there exists a finite sequence of 
input words α1…αi such that Qqtraceso(Imp-after-(α1…αi-1, γ1…γi-1), αi) ∩ 
Qqtraceso(Spec-after-(α1…αi-1, γ1…γi-1), αi) = ∅ for any consistent γ1…γi-1. 

• Imp is queued-suspension distinguishable from it iff there exist a finite sequence of 
input words α1…αi and consistent γ1…γi-1 such that traces(αi ][ Imp-after-(α1…αi-1, 
γ1…γi-1))δ⇓O  traces(αi ][ Spec-after-(α1…αi-1, γ1…γi-1))δ⇓O. 

• Imp is queued-suspension weakly-distinguishable from it iff there exist a finite 
sequence of input words α1…αi and consistent γ1…γi-1 such that traces(αi ][ Imp-
after-(α1…αi-1, γ1…γi-1))δ⇓O ≠ traces(αi ][ Spec-after-(α1…αi-1, γ1…γi-1))δ⇓O. 
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• Imp is queued-suspension trace-included into Spec, iff Imp does not oscillate and 
Qstraces(Imp) ⊆ Qstraces(Spec). 

• Imp and Spec are queued-suspension trace-equivalent iff Imp does not oscillate and 
Qstraces(Imp) = Qstraces(Spec). 

The queued-suspension testing needs input and output buffers as the queued-
quiescence testing. The size of the input buffer is defined by the longest input word in 
a chosen test case (α1…αp, Out(α1…αp)), while that of the output buffer by the longest 
output sequence produced in response to any input word. We assume the size of the 
input buffer k is given and use it to define queued-suspension k-traces and accord-
ingly, to parameterize Definition 15 obtaining appropriate notions of k-
distinguishability. In particular, a queued-suspension trace of Spec α1β1δ…αpβpδ ∈ 
Qstraces(Spec) is called a queued-suspension k-trace of Spec if |αi| ≤ k for all i = 1, 
…, p. The set of all these traces Qstraces≤k(Spec) has a finite representation. 

Definition 17. Let Sstable be the set of all stable states of an IOTS Spec = <S, I, O, λ, 
S0>. A queued-suspension k-machine for Spec is a tuple <R, I≤kO*δ, λk

stable, r0>, de-
noted Speck

susp, where the starting state r0 = {S0} and the set of states R ⊆ P(Sstable) ∪ 
{S0} (P(Sstable) is a powerset of Sstable), and the transition relation λk

stable are the smallest 
sets obtained by application of the following rules: 
• (r, αβδ, r′) ∈ λk

stable if α ∈ I≤k, β ∈ O* and r′ is the set of states r-after-(α, β) in 
Spec.  

• In case that some initial state of Spec is unstable (r0, εβδ, r′) ∈ λk

stable if β ∈ O* and 
β ≠ ε, and r′ = S0-after-(ε, β). 

Notice that each system that does not oscillate has at least one stable state. 

Proposition 18. The set of traces of Speck

susp coincides with the set of queued-
suspension k-traces of Spec. 

Corollary 19. A non-oscillating IOTS Imp is queued-suspension k-distinguishable 
from Spec iff Impk

stable has a trace that is not a trace of Speck

susp.  

Fig. 1 depicts the IOTS that are queued-suspension trace equivalent, recall that 
they are also queued-quiescent trace-equivalent, but not quiescent trace equivalent. 

We notice that a queued-suspension k-machine can be viewed as an FSM with the 
input set I≤k and output set O≤m for an appropriate integer m, so that FSM-based meth-
ods could be adapted to derive queued-suspension test cases. 

6 Conclusion 

We addressed the problem of testing from transition systems with inputs and outputs 
and elaborated a testing framework based on the idea of decomposing a tester into 
input and output processes. Input test process applies inputs to an IUT via a finite 
input queue and output test process reads outputs that the IUT puts into a finite output 
queue until it detects no more outputs from the IUT, i.e., the tester detects quiescence 
of the IUT. In such a testing architecture, input from the tester and output from the 
IUT may occur simultaneously. We call such a testing scenario queued testing. We 
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elaborated two types of queued testers, the first consisting of single input and single 
output test processes, a so-called queued-quiescence tester, and the second consisting 
of several such pairs of processes, a so-called queued-suspension tester. We defined 
implementation relations that can be checked by the queued testing with both types of 
testers and proposed test derivation procedures. 

Our work differs from the previous work in several important aspects. First of all, 
we make a liberal assumption on the way the tester interacts with an IUT, namely that 
the IUT can issue output at any time and the tester cannot determine exactly the 
stimulus that causes the output. We believe that this assumption is less restrictive than 
any other assumption known in the testing literature [2], [6]. Testing with this as-
sumption requires buffers between the IUT and tester. To make our approach practi-
cal, these buffers are considered finite, opposed to the case of infinite queues consid-
ered earlier [14]. We demonstrated that the implementation relations that can be 
verified by the queued testing are coarser than those previously considered. The test 
derivation procedures were elaborated with a fault model in mind. The resulting test 
suite becomes finite and related to the assumptions about potential faults, as opposed 
to the approach of [12], where the number of test cases is, in fact, uncontrollable and 
not driven by any assumption about faults. The finiteness of test cases allows us, in 
addition, to check equivalence relations and not only preorder relations as in, e.g., 
[12]. 

Concerning future work, we believe that this paper may trigger research in various 
directions. It is interesting, for example, to see to which extent one could adapt FSM-
based test derivation methods driven by fault models, as is done in [11] with a more 
restrictive assumption about a tester in mind. 
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