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Abstract. An argument is made that predictive metrics provide a very
powerful means for organizations to assess characteristics of their soft-
ware systems and allow them to make critical decisions based on the
value computed. Five different predictors are discussed aimed at differ-
ent stages of the software lifecycle ranging from a metric that is based
on an architecture review which is done at the earliest stages of develop-
ment, before even low-level design has begun, to one designed to predict
the risk of releasing a system in its current form. Other predictors dis-
cussed include the identification of characteristics of files that are likely
to be particularly fault-prone, a metric to help a tester charged with
regression testing to determine whether or not a particular selective re-
gression testing algorithm is likely to be cost effective to run on a given
software system and test suite, and a metric to help determine whether
a system is likely to be able to handle a significantly increased workload
while maintaining acceptable performance levels.
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1 Introduction

If we had a crystal ball and knew somehow that certain files in a large software
system were going to be particularly problematic in some way, think about what
that would allow us to do. If the nature of the problems were incorrect behavior,
we could focus our functional testing resources there, increasing the chances
of identifying and removing the problems, thereby having a more dependable
system than we would otherwise have. It would also probably mean that we
could do the testing more economically because we could target our testing
efforts to just those problematic files.

Similarly, if the nature of the problems were related to system performance,
we could focus our performance testing efforts to identify potential bottlenecks so
that workloads could be balanced or distributed more appropriately. In this way,
users would never have to wait in long queues or experience unacceptable delays.
Undoubtedly you would have happier customers, and likely more customers.

What other sorts of things would we like to be able to predict? What if you
were releasing a new product? Initially it would likely have a small user base.
Typically when you do performance testing, you test a system’s behavior for
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the initial expected workload, and also a slightly enhanced one. But what if the
product were to take off and you now had one or more orders of magnitude more
customers? Could you predict how the system would behave under those circum-
stances and determine when and how many additional servers would be needed?
Could you predict whether there was a point at which adding more servers would
actually lead to decreased rather than increased throughput, and therefore the
system might have to be re-architected? If we could plan for the increased work-
load by predicting when these significantly increased workloads were likely to
occur, we could order new hardware before performance became unacceptable
or begin re-architecture so that the customers never saw any negative impact of
the increased workload.

When creating a new product, there is often a tradeoff between being first
or early to market and improving the dependability of the system. Is it better
to get there early and get a large share of the market, or offer the product later
with a higher level of reliability than would be possible were you to release the
software now? What are the risks associated with each of these scenarios? If we
could predict the risk, or expected loss, associated with the release of a software
system, we could make informed decisions about whether or not it is wise to
release the product in its current state, understanding fully the consequences of
whichever decision is made.

Being able to predict these and other related system characteristics can an
have enormous impact on the observed dependability of a software system, the
cost to deliver the system, and even whether or not the system can be viably
produced. In this paper we will examine what sorts of characteristics can be
reasonably predicted and how these predictions might be made. We also provide
pointers to the literature describing empirical studies used to determine the
predictors of interest, as well as studies that show applicability of these predictors
for large, industrial software systems as well as the usefulness of these predictors
in practice.

In Section 2, we look at predicting the likely quality of the ultimate software
system produced by considering the results of architecture reviews that are done
well before any implementation has begun. Section 3 examines ways of deter-
mining which files in a software system are likely to be particularly fault-prone,
and therefore good candidates for concentrating testing resources. In Section 4,
we discuss a way of predicting whether or not it is likely to be cost-effective
to use a selective regression testing algorithm to try to minimize the regression
test suite. If the cost of running the algorithm is high, or the reduction in test
suite size is low, it may be more cost-effective to simply rerun as much of the
regression test suite as possible rather than using some of those scarce resources
of fine-grained analysis with little payoff. Section 5 describes ways of predicting
when a system’s workload is likely to increase significantly so that steps can
be taken to prepare for this situation, thereby assuring that customers always
experience acceptable performance, while in Section 6, we discuss how risk can
be predicted so that projects can make informed decisions about whether or not
it is safe to release a software system in its current state.
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2 Architecture Reviews

Architecture is defined as “the blueprint of a software/hardware system. The
architecture describes the components that make up the system, the mechanisms
for communication between the processes, the information content or messages
to be transmitted between processes, the input into the system, the output from
the system, and the hardware that the system will run on.” [12]

Architecture reviews are performed very early in a software system’s lifecy-
cle. [12,1,7] It is a standard part of the quality assessment process at AT&T
and many other organizations that produce software systems that need to be
highly dependable and always available. As soon as the system’s requirements
and high-level design have been completed, a review is done to assure that the
architecture is complete, and that low-level design can begin. It is part of the
standard wisdom of the software engineering community that the earlier in the
lifecycle problems are identified, the easier and cheaper they are to rectify, and
these reviews strive to help identify problems at a very early stage so that they
do not negatively impact the system.

The goal of an architecture review, then, is to assess the quality and com-
pleteness of the proposed architecture. An obvious extension, therefore, is to use
this assessment as a way of predicting the likely quality of the ultimately im-
plemented system, and determining its likelihood of failure. Of course, assuring
that the architecture is complete and sound does not guarantee that problems
will not enter the system during the low-level design, coding, or even testing of
the system, but it does assure that the foundation on which these later stages
depend is itself appropriate.

For these reasons, Avritzer and Weyuker proposed a way of predicting likely
project success based on the results of an architecture review. They developed a
questionnaire-based metric that computed a score and provided five ranges indi-
cating whether a project was at low, moderate-low, moderate, moderate-high, or
high risk of failure. They used the results of 50 industrial architecture audits per-
formed over a period of two years to create the questionnaire, and then selected
seven projects for which they computed the metric. They compared the metric’s
assessment with the assessment done by several senior personnel familiar with
the systems, which at that point had all been in production. They found that the
informal and formal assessments matched for six of the seven systems. [3,4] The
seventh project was assessed by the metric as being at moderate risk of failure,
while knowledgeable personnel rated it as an excellent system, with very few
defects identified in the field. It turned out that the review done for this project
was not a true architecture review, but a review done at an even earlier stage,
known as a discovery review. Although this sort of review is similar to an archi-
tecture review, it is done before the architecture is complete. Its goal is to help
a project make decisions and weigh benefits and risks of potential architectural
decisions. Therefore, it was appropriate at this stage that certain portions of
the architecture were incomplete, and did not indicate potential problems. The
results of this case study indicated that it was worthwhile applying this metric
for all projects once they had completed an architecture review.
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For this reason, Weyuker extended this work and did a larger empirical study
limiting consideration to projects during architecture reviews (rather than in-
cluding the results from projects’ discovery reviews.) [19] One of the limitations
of the Avritzer-Weyuker metric, however, was that it was difficult and time-
consuming to compute because it involved a careful assessment of whether or
not the project suffered from any of fifty-four of the most severe problems iden-
tified most frequently in the original set of 50 systems studied. For each of the
problems, a score had to be assigned indicating the severity of the problem in this
instance. Therefore, Weyuker proposed a highly simplified metric that did not
require that a questionnaire be completed, and performed a new case study us-
ing thirty-six systems for which the results of architecture reviews were present.
Of the 36 projects assessed, only one seemed to be at greater risk of failure
than the simple metric indicated. It was therefore recommended that projects
use this metric to predict their likelihood of success based on the results of their
architecture review. In this way, if there is a prediction of a moderate to high
risk of failure, there should be sufficient time to modify the architecture to cor-
rect problems or complete missing portions so that the project does not move
forward with low-level design until a re-review and re-application of the metric
indicates that the project has a low risk of failure.

3 Fault-Proneness

Testing software systems for correctness and functionality is an essential and ex-
pensive process. It is often estimated that testing and related activities consume
as much or more resources as the implementation of the system. Even if that is
an exaggeration, there is no doubt that testing a large industrial software sys-
tem takes a substantial amount of time and money, and that the consequences
of doing a poor or inadequate job of testing can be catastrophic. But it is also
difficult to do a comprehensive job of testing. For many systems, the input do-
main is enormous and it is impossible to execute even a very small percentage
of the possible inputs during testing. Therefore it is essential that there be a
systematic approach to testing and that there be some way of prioritizing po-
tential test cases. Similarly, a large software system may be comprised of many
thousands of files, and a decision has to be made which of these files should be
most thoroughly exercised, and which can be only lightly tested.

For this reason, if we could identify which files were likely to be most fault-
prone, we could give testers a way to allocate testing resources and to prioritize
their testing activities. With this goal in mind, a number of research teams have
performed empirical studies in recent years to try to identify properties of files
that make them particularly fault-prone. [2,6,8,9,10,13,14,15] Adams [2], Fenton
and Ohlsson [8], Munson and Khoshgoftaar [14], and Ostrand and Weyuker [15]
have all observed seeing a very uneven distribution of faults among files within
a system. Generally, a very small number of files accounted for the vast ma-
jority of the faults. If those files could be identified, then testing effort could
be concentrated there, leading to highly dependable systems, with less testing
expense.
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Given that there tends to be a very uneven distribution of faults among files,
a variety of file characteristics have been examined in these empirical studies
as possible identifying factors. Some of these characteristics include file size,
whether a file is new or appeared in an earlier release, the age of the file, whether
earlier versions of the file contained a large number of faults, whether a large
number of faults were identified during earlier stages of development, and the
number of changes made to a file. Some initial indicators have been identified,
but significantly more carefully-done case studies must be prepared.

In a recent empirical study using 13 releases of an industrial inventory track-
ing system, Ostrand and Weyuker [15] found that among the predictors they
considered, the best predictors of fault-proneness involved considering whether
the file had been newly-written, and whether it had had a particularly large num-
ber of faults in the previous release. Both were shown be promising predictors
of high fault densities in the current release.

In a more recent study, they found that if they refined the earlier question
about whether the file was new or old, and distinguished between old files that
had been changed and those that had not been changed, they found that new
files did not always have a higher average fault density than files that appeared in
earlier releases. They found, instead, that in more than half of the releases, files
that had been changed since the prior release had higher average fault densities
than new files, although, for every release, old files that remained unchanged
from the prior release always had lower average fault densities than either newly-
written files or old, changed files.

Their new research also found that the age of a file was not a particularly
good predictor of fault-proneness. For every release studied, they found some
cases for which newer files had lower average fault densities than older ones.
They therefore concluded that age does not seem to be a good predictor of
fault-proneness.

Finally, they examined the question of whether as a system matured, the aver-
age fault density of later releases was lower than earlier releases. They did observe
a general downward trend, although this value did not decrease monotonically.
Hopefully, many other research groups will continue to explore characteristics
of files that are particularly fault-prone. If we can learn to make predictions of
this nature with any degree of accuracy, there should be an enormous payoff
for any organization concerned about producing dependable software systems at
reasonable costs.

4 Regression Testing

Whenever a software system has been changed, whether the purpose of the
change is to fix defects, enhance the functionality, change the functionality, or
any other purpose, there is always the possibility that the fixes or changes have
introduced new defects into the product. For this reason, whenever a change is
made to the software, the system must be retested. This is known as regres-
sion testing and consists of rerunning previously-run test cases to make sure
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that those test cases that performed correctly before the changes, still perform
correctly. Since test suites for industrial software systems are often very large,
and therefore it is impractical to rerun the entire test suite, selective regression
testing algorithms have been proposed in order to have an efficient way to select
a relatively small subset of the entire test suite. The goal is to select just those
test cases to rerun that are relevant to the changes that have been made. By
doing this, it is hoped that a significantly smaller subset of test cases can be
identified, leading to substantial savings of both time and cost.

Examination of the regression testing literature indicated that several of the
proposed algorithms are likely to be computationally very expensive to run, and
yield test suites that were almost as large as the full test suite. In the worst
case, a great deal of the limited regression testing resources would have been
spent selecting the subset, only to learn that the algorithm requires the entire
test suite, or nearly the entire test suite, to be rerun. In that case, the test
organization is in worse shape than they were initially, since they did not have
enough resources to rerun the entire test suite, spent a large portion of their
budget learning that they really should rerun the entire test suite, and therefore
are now able to rerun an even smaller fraction than they would have been able
to run in the first place.

This observation led Rosenblum and Weyuker to develop predictors that
are computationally very efficient, and indicate to the user whether or not a
given selective regression testing strategy is likely to be cost-efficient to use for
a given software system and test suite. [16,17] Additional studies of the use of
this predictor appear in [11].

Thus, by using a predictor, a regression testing organization can decide
whether or not it is likely to be beneficial to spend part of its limited resources
to select an efficient subset of a large test suite, rather than assuming that this
is a wise use of resources.

5 Scalability

When we build a new software system, we often have to make a prediction of
what the customer base is likely to be. Once the system is complete, we then
do performance testing and assess how the system behaves under workloads ex-
pected in both the near term and once the product has become more established.
But what if the product becomes wildly successful and suddenly has to be able
to handle a workload that is several times larger or even orders or magnitude
larger than the current workload? Of course, this is every businesses’ dream,
but if the system cannot handle this increased workload while providing accept-
able levels of performance to its customers, it can easily become a nightmare.
In addition, many projects use costly custom-designed hardware that must be
budgeted for and ordered well in advance of when it will be deployed. On the
one hand, a project does not want to order expense equipment on the off-chance
that things will go well and it will be needed, but they also do not want to be
caught without sufficient capacity if it is needed.
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For this reason, Weyuker and Avritzer considered the question of how a
project could predict whether or not its software would scale under significantly
increased workloads. [18] They defined a new metric, the Performance Non-
Scalability Likelihood (PNL), which was designed to be used in conjunction
with a workload-based performance testing technique [5].

This metric makes an assessment of the expected loss in performance under
varying workloads by distinguishing between system states that provide accept-
able performance behavior, and those that don’t. The metric incorporates two
factors:

– The probability that the system is in a given state (which is determined by
the workload characterization used for performance testing).

– The degree to which the system fails to meet acceptable performance while
in that state.

A case study was presented that demonstrated how to apply the PNL metric
to a large, complex, industrial software system, including the steps needed to
model the system, the type of data collected, and the actual computation of the
metric. A description of the implications of the computation and experiences of
the project of using the information derived from the application of the metric
to plan for additional capacity was also presented. This prediction allowed the
project to seamlessly rebalance their workloads, identify a potential bottleneck,
and deploy additional capacity so that users never encountered unacceptable
performance, even though the workload increased substantially over the period
of study.

6 Risk

Software risk can be defined to be the expected loss due to failures caused by
faults remaining in the software. This is a very important characteristic of soft-
ware systems because, if we could predict the risk associated with releasing a
system in its current form, we could determine whether or not it is safe to do so.
In Reference [20], Weyuker discussed the limitations of using some definitions
of risk that were proposed in earlier research. The problems centered around
either a requirement for information that could not generally be determined, or
a requirement that more data be collected than is practically feasible for a large
industrial system with a large, complex input domain. Another class of limita-
tion is the fact that many of the risk definitions do not use relevant information
that is available. For this reason, Weyuker introduced a predictive metric that
could be used to determine the likely risk associated with a software system
in an industrial environment, thereby helping the development team determine
whether or not it is safe to release their software.

The metric incorporated information about the degree to which the software
had been tested, as well as the how the software behaved (i.e. whether or not it
fails). This metric assures that testers are not rewarded for doing a poor job of
testing, by treating unexecuted test cases as if they had been run and failed. For
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this reason, as the amount of testing increases, the assessed risk typically goes
down, because in a typical system, one expects to see a very small percentage of
test cases fail. Similarly, if a fault is encountered and a failure occurs, the assessed
risk will also decrease once the fault has been corrected. Another feature of this
predictive metric is that it includes a mechanism to incorporate the severity of
a failure. If the failure is a minor or cosmetic one, it will clearly impact the
perceived reliability of the system.

7 Conclusions

We have discussed the importance and value of being able to predict characteris-
tics of software systems. In this way, development and maintenance organizations
can determine cost-effective ways of allocating scarce resources such as testing
personnel and equipment or laboratory space, and determining whether it is
safe to proceed with a proposed architecture or release a system. Each of these
predictors have been assessed or developed with case studies performed on large
industrial software systems which show both the usefulness of these predictors
as well as the feasibility of using these predictors for large systems. Pointers
to the literature describing these case studies are provided. Our conclusion is
that being able to predict these and related characteristics of software system
represent a very powerful mechanism for creating highly dependable systems.
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