
Specifying Hardware Timing with ET-LOTOS

Ji He and Kenneth J. Turner

Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA, Scotland
h.ji@reading.ac.uk, kjt@cs.stir.ac.uk

Abstract. It is explained how Dill (Digital Logic in Lotos) can specify and anal-
yse hardware timing characteristics using ET-Lotos (Enhanced Timed Lotos –
the ISO Language Of Temporal Ordering Specification). Hardware functionality
and timing characteristics are rigorously specified and then validated.

1 Introduction

Dill (Digital Logic in Lotos [2]) is an approach for specifying digital circuits using
Lotos (Language Of Temporal Ordering Specification [1]). Dill allows formal speci-
fication of hardware designs, represented using Lotos at various levels of abstraction.
Dill deals with functional and timing aspects, synchronous and asynchronous design.
There is support from a library of common components and circuit designs. Analysis
uses standard Lotos tools.

Lotos is a formal language standardised for use with communications systems. Dill,
which is realised through translation to Lotos, is a substantially different application
area for this language. Lotos is neutral with respect to whether a specification is to
be realised in hardware or software, allowing hardware-software co-design. Lotos has
well-developed theories for verification and test generation. The paper uses ET-Lotos
(Enhanced Timed Lotos [3]). Because ET-Lotos tools are currently under develop-
ment, the authors have also used TE-Lotos (Time Extended Lotos [5]). Although these
Lotos variants adopt different semantic models, the equivalence between them has been
established [4].

ET-Lotos is a timed Lotos that allows the modelling of time-sensitive behaviour.
The delay operator delta (time) means that the subsequent behaviour will be delayed
by time. A time value is relative to the instant when the previous action occurs. The
time measurement operator @t is used to measure the time elapsed between the instant
when an event is offered and the instant when it occurs. The time value is stored in t.
The life reducer operator has different semantics when applied to internal events (i) and
observable events (e). i {d} means that i must occur non-deterministically within the
next d time units. In the case of observable behaviour e {d}; B, the event may happen
within d time units. If so the behaviour evolves to B, otherwise the process deadlocks.
The default life reducer for internal events is 0, while for observable events it is the
maximal value of the time domain. ET-Lotos adopts maximal progress, i.e. if a hidden
action can occur it must happen at once (unless an alternative action occurs).

The input-output timing relationship is normally called delay. A timing relationship
among inputs is called a timing constraint, meaning that the digital circuit can work
correctly only if the constraints are met. In an integrated method for describing delay,

T. Margaria and T. Melham (Eds.): CHARME 2001, LNCS 2144, pp. 161–166, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

162 J. He and K.J. Turner

a digital component is specified in one process that deals with both functionality and
timing. Although the integrated method may result in compact specifications, it is not a
‘structural’method and is hard to apply. Untimed behaviour should also be a special case
of timed behaviour. Combined methods for specifying delay are thus preferred. These
separate the functionality and the timing characteristics into different processes.

The approach selected for Timed Dill is called the parallel-serial model. Function-
ality is assumed to be specified with zero delay. Timing constraints are placed in parallel
with the inputs of the functional specification to check if input requirements are met.
Delays are placed in series with outputs of the functional specification to describe overall
delay. Error events are introduced to discover violation of timing constraints; they have
no counterpart in a real physical component.

If the timing constraints are void and the delays are between zero and arbitrarily
large, the timed model is equivalent to the untimed model. An untimed specification is
thus just a special case. Component functionality is supposed to have zero delay. This can
be easily obtained from the untimed functionality. To change an untimed specification
to one with zero delay, a life reducer {0} is appended to each output event offer.

2 Delays and Timing Constraints

Suppose the delay of a digital component is D. If a component has pure delay, all input
changes will have an effect on output. If a component has inertial delay, output will
respond only to input changes that have persisted for time D. Sometimes, the delay of a
component has a more general form. There may exist a threshold T < D such that the
component absorbs input pulses whose width is less than T. However output follows
input if the pulse width is more than T. In Dill this is termed general delay. In fact, it
can be considered as inertial delay T cascaded with a pure delay D − T.

The Dill library supports non-deterministic delays ranging from MinDel (minimum)
to MaxDel (maximum). For general delay, MinWidth corresponds to the threshold T.
Timed Dill also handles high-to-low, low-to-high and pin-to-pin delays.

A naive attempt at specifying inertial delay would use the ET-Lotos generalised life
reducer. If the delay is connected to other components in a larger design, an output port
might well be hidden. This would mean that the delay time is exactly MinDel instead
of being a non-deterministic value since ET-Lotos adopts maximal progress for hidden
events. A better specification of inertial delay is given by:

process DelayInertial [Ip, Op] (MinDel, MaxDel: Time) : noexit :
DelayInertialAux [Ip, Op] (MinDel, MaxDel, 0 of Bit, 0 of Bit)

where
process DelayInertialAux [Ip, Op] (* auxiliary definition *)
(MinDel, MaxDel : Time, DataIp, DataOp : Bit) : noexit :
Ip ? NewDataIp : Bit; (* input change *)
DelayInertialAux [Ip, Op] (MinDel, MaxDel, NewDataIp, DataOp)

(* or ... *)
[DataIp ne DataOp] > (* output must change? *)

i {MinDel, MaxDel}; (* allow delay to pass *)
Op ! DataIp {0}; (* output changes at once *)

Specifying Hardware Timing with ET-Lotos 163

DelayInertialAux [Ip, Op] (MinDel, MaxDel, DataIp, DataIp)
endproc (* DelayInertialAux *)

endproc (* DelayInertial *)
The internal event i introduces non-deterministic delay, i.e. output can change at any time
between MinDel and MaxDel. The exact delay is determined by the component itself
and not by the environment. Moreover, even if the component is connected to other
components, the delay is still non-deterministic since only hidden events are urgent.

Because delay is assumed non-deterministic rather than fixed, the pure delay spec-
ified below exhibits sequences like Op ! 0; Op ! 0; Op ! 1 where the second Op ! 0
overtakes Op ! 1 and results in two consecutive Op ! 0 events. The phenomenon of
catch-up arises if a later input change takes less time to reach the output than an ear-
lier input change. Catch-up may exhibit various forms in real hardware if delays vary
significantly. However, digital components generally operate in a stable environment so
the variation in delays is in a narrow range. Thus the catch-up condition is rarely met in
practice. The phenomenon exists in any delay model that is based on pure delay.

process DelayPure[Ip, Op] (MinDel, MaxDel : Time) : noexit :
DelayPureAux [Ip, Op] (MinDel, MaxDel, 0 of Bit, 0 of Bit)

where
process DelayPureAux [Ip, Op] (* auxiliary definition *)
(MinDel, MaxDel : Time, DataIp, DataOp : Bit) : noexit :
Ip ? NewDataIp : Bit; (* input change *)
(

[NewDataIp eq DataOp] > (* no output change? *)
DelayPureAux [Ip, Op] (MinDel, MaxDel, NewDataIp, DataOp)

(* or ... *)
[NewDataIp ne DataOp] > (* output must change? *)

(
i {MinDel, MaxDel}; (* allow delay to pass *)
Op ! NewDataIp {0}; (* output changes at once *)
stop (* delay behaviour now done *)

||| (* interleaved with ... *)
DelayPureAux [Ip, Op] (MinDel, MaxDel, NewDataIp, NewDataIp)

)
)

endproc (* DelayPureAux *)
endproc (* DelayPure *)

The general delay element in Dill is specified such that it can model not only a
general delay but also inertial or pure delay by choosing appropriate timing parameters.
The specification of general delay is not given here as it is just the combination of inertial
and pure delay. The following gives the rules of using the timing parameters. Inf is the
maximal value of the time domain (taken as arbitrarily large):

0 < MinWidth < MinDel ≤ MaxDel < Inf This describes general delay. It is meaning-
ful only when MinWidth is a positive number less than MinDel.

MinWidth = 0, MinDel ≤ MaxDel < Inf This is pure delay. The difference from general
delay is that MinWidth is 0 so the component does not absorb a narrow pulse.

164 J. He and K.J. Turner

0 ≤ MinDel ≤ MaxDel < Inf, MinWidth > MinDel This is inertial delay. It applies if
MinDel is less than threshold MinWidth, often set to Inf for inertial delay.

MinDel = 0, MaxDel = Inf, MinWidth > 0 This is equivalent to an untimed delay com-
ponent. Usually MinWidth is set to the value Inf.
Timing constraints in Dill are used to check if the inputs of a component satisfy

some conditions. Common timing constraint elements have been added to the Dill
library, including those for setup, hold, pulse width and period.

Setup and hold times are always associated with flip-flops. Setup time is the time
interval between a change in data input and the trigger that stores this data. The hold
time is the interval in which input data must remain unchanged after triggering by the
clock. The setup time constraint is specified as follows for a D flip-flop where the active
clock transition is positive-going. A similar approach specifies a hold time constraint,
checks the minimum input pulse width, or checks the period of clock signals.

process SetupDel [D, Ck, Err] (SetupTime : Time) : noexit :
D ? NewDataIp: Bit; (* new data input *)
AfterD [D, Ck, Err] (SetupTime, SetupTime) (* check setup time *)

(* or ... *)
Ck ? NewClock : Bit; (* new clock input *)
SetupDel [D, Ck, Err] (SetupTime) (* no setup time to check *)

endproc (* SetupDel *)

process AfterD [D, Ck, Err] (SetupTime, SetupRem : Time) : noexit :
delta (SetupRem) i; (* enforce min. setup time *)
SetupDel [D, Ck, Err] (SetupTime) (* restart setup check *)

(* or ... *)
Ck ? NewClock : Bit @ t; (* new clock input *)
(

[NewClock eq 0] > (* negative-going clock? *)
AfterD [D, Ck] (SetupTime, SetupTime - t) (* check setup time left *)

(* or ... *)
[NewClock eq 1] > (* positive-going clock *)

Err ! SetupError; (* min. setup time violated *)
SetupDel [D, Ck, Err] (SetupTime) (* restart setup check *)

)
(* or ... *)

D ? NewDataIp: Bit; (* new data input *)
AfterD [D, Ck, Err] (SetupTime, SetupTime) (* restart setup check *)

endproc (* AfterD *)

3 Timed DILL Example: 2-to-1 Multiplexer

As an example, a 2-to-1 multiplexer will be specified and analysed.A selection input S of 0
or 1 chooses input A or B, which appears at C after some delay.A higher level specification
defines the required behaviour and timing performance. A lower level specification gives
a component design that implements the higher level. The behavioural specification of
the 2-to-1 multiplexer in Dill is as follows:

Specifying Hardware Timing with ET-Lotos 165

define(MinDel, 10) # min. delay value
define(MaxDel, 15) # max. delay value
include(dill.m4) # include DILL library
circuit(# circuit description

Multiplexer2to1 BB [A, B, S, C], # circuit name and ports
hide InC in # internal gate to delay

Multiplexer2to1 BB 0 [A, B, S, InC] # multiplexer instance
|[InC]| # sync with delay

Delay [InC, C] (Inf, MinDel, MaxDel) # delay instance
where

Multiplexer2to1 BB 0 Decl # multiplexer from library
)

Dill provides a veneer on top of Lotos – mainly a library of components that
can be combined using Lotos operators. The circuit declaration names the overall
specification and its parameters. It then gives a Lotos behaviour expression for the whole
circuit. Library components are declared and automatically included by giving their
names (Component Decl). In the above, Multiplexer2to1 BB 0 is a 2-to-1 multiplexer
in behavioural style (BB = black box) that exhibits zero delay (0).

The behavioural specification was validated using the TE-Lola simulator. Basically,
the behaviour of the multiplexer is simulated for each input combination to see if it is as
expected. The results of simulation are regarded as the criteria against which simulation
of the lower-level specification should be judged. The design of the 2-to-1 multiplexer
uses the selection signal to gate one or other input. Although this design might be found
in a standard textbook, it was found that it contains hazards. The corresponding Dill
specification is:

define(DelayData, Inf, 5, 5) # MinWidth, MinDel, MaxDel
include(dill.m4) # include DILL library
circuit(# circuit description

timed, # declare timed design
Multiplexer2to1 [A, B, S, C], # circuit name and ports
hide AIn, BIn, SIn in # internal gates

Inverter [S, SIn] # inverter instance
|[S, SIn]| # sync with selection signals

(
And2 [SIn, A, AIn] # two-input and instance

|||
And2 [S, B, BIn] # two-input and instance

)
|[AIn, BIn]| # sync with inputs

Or2 [AIn, BIn, C] # two-input or instance
where

Inverter Decl # inverter from library
And2 Decl # two-input and from library
Or2 Decl # two-input or from library

166 J. He and K.J. Turner

The delay is fixed at 5 and is inertial because MinWidth is Inf. The first parameter
of the circuit declaration is optional. In this example it is timed; the default value is
untimed, which appends Inf, 0, Inf to every instantiation of a basic logic gate.

Timed behaviour was investigated using the TestExpand function of TE-Lola that
automatically explores a test in parallel with a specification. If the test process can be
followed for all executions of the composed specification, the result of testing is must
pass. If the test process can be followed only for some executions, the result is may pass.
Otherwise the test is considered to be rejected.

Firstly, the functionality of the multiplexer was tested. Secondly, there were tests to
see if the design had a timing hazard (static or dynamic). Input transitions were checked
with tests that deliberately risked hazards. Unfortunately 6 of the 56 transitions pass
the tests, i.e. they exhibit hazards when the delays of each gates are fixed (transitions
000→101, 010→101, 011→100, 011→110, 111→100, 111→110). By simulating a
passed test sequence, it becomes obvious that hazards are due to inputs following dif-
ferent lengths of path to reach the output. One solution is to introduce delay elements to
equalise input-output path lengths.

4 Conclusion

Dill allows formal specification and analysis of digital hardware. It has extended the
experience with Lotos in the communications field. Timed Dill offers a number of
important benefits. It can check whether timing requirements are respected by a design,
making use of timing constraint components. Potential timing errors like hazards can
be discovered, as in the multiplexer example. Timed Dill can also be used to analyse
performance such as minimum/maximum delays and timing on critical paths. Although
the paper has deliberately been illustrated with only a small example, the approach
is applicable to much larger problems. A future goal is support of Timed Dill with
verification based on Kronos, Hytech or timed automata.

References

1. ISO/IEC. Information Processing Systems – Open Systems Interconnection – LOTOS – A Formal
Description Technique based on the Temporal Ordering of Observational Behaviour. ISO/IEC
8807. International Organization for Standardization, Geneva, Switzerland, 1989.

2. Ji He and Kenneth J. Turner. Dill (Digital Logic in Lotos) project web page. http://
www.cs.stir.ac.uk/∼kjt/research/dill.html, November 2000.

3. Luc Léonard and Guy Leduc. An enhanced version of timed Lotos and its application to a
case study. In Richard L. Tenney, Paul D. Amer, and M. Ümit Uyar, editors, Proc. Formal
Description Techniques VI, pages 483–500. North-Holland, Amsterdam, Netherlands, 1994.

4. Luis Llana and Gualberto Rabay Filho. Defining equivalences between time/action graphs
and timed action graphs. Technical report, Department of Telematic Systems Engineering,
Polytechnic University of Madrid, Spain, December 1995.

5. Gualberto Rabay Filho and Juan Quemada. TE-Lola: A timed Lola prototype. In Zmago
Brezocnik and Tatjana Kapus, editors, Proc. COST 247 International Workshop on Applied
Formal Methods, pages 85–95, Slovenia, June 1996. University of Maribor.

	1 Introduction
	2 Delays and Timing Constraints
	3 Timed DILL Example: 2-to-1 Multiplexer
	4 Conclusion

