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Abstract. In natural language tasks like text categorization, we usu-
ally have an enormous amount of unlabeled data in addition to a small
amount of labeled data. We present here a transductive boosting method
for text categorization in order to make use of the large amount of
unlabeled data efficiently. Our experiments show that the transductive
method outperforms conventional boosting techniques that employ only
labeled data.

1 Introduction

We can easily access vast quantities of online information with the rapid growth
of the Internet and the increase in computing power. However, the more informa-
tion we can access, the more difficult it becomes to get necessary and sufficient
information. Automatic text categorization has attracted a lot of attention among
researchers and companies as a measure to extract the necessary and sufficient
information efficiently.

The approach of machine learning has recently become popular for text cat-
egorization since it can create text classifiers with a high accuracy and without
difficulty even if the target text is large and updated frequently. In this ap-
proach, inductive methods have played a central role in discriminating unlabeled
test data with classifiers constructed from a priori labeled training data. For in-
stance, k-nearest-neighbor [17], Rocchio [12], decision trees [7], Naive-Bayes [7],
and SVM [BTIT5] have been applied to text categorization and have achieved
remarkable success.

However, the inductive approach can not guarantee a high enough accuracy
when there is a great difference between the training and test data distributions.
The problem becomes extremely serious if the amount of training data is small.
This is often the case under many practical conditions such as the classification
of online Internet texts. Therefore, it is reasonable to utilize the unlabeled test
data distribution for training as well as the distribution of a small number of
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labeled training data. Nigam et al. proposed an EM-based method with Naive-
Bayes to take account of the distribution of test data under the situation of
a small amount of training data [11]. Although the method shows substantial
improvements over the performance of the standard Naive Bayes classifier, one
of its limitations is the nature that it sometimes obtains a local optimum.

In contrast, Joachims adapted a transductive method to Support Vector Ma-
chines (SVM) [6] and obtained significant improvements in the classification
performance. Transduction is a general learning framework that minimizes clas-
sification errors only for the test data, while induction tries to minimize classifi-
cation errors for both the training and test data [16]. Transductive SVM (TSVM)
achieves a high performance by assuming that the portion of unlabeled examples
to be classified into the positive class is determined by the ratio of positive and
negative examples in the training data. Accordingly, the possibility of a perfor-
mance decrease remains under different but typical conditions when the ratio of
positive and negative examples in the training data is very different from that
in the test data, e.g., a classifier learned by articles in 1995, classifies articles
related to the Internet in 2000.

Like SVM, AdaBoost [32] is an alternative large margin classifier recently
noted for its high generalization ability in NLP applications [4/13]. It produces
highly accurate classification rules by combining a number of weak hypothe-
ses, each of which is only moderately accurate. The advantage of AdaBoost
over SVM is that we can choose any classifier suitable for our own classification
applications. Since the original AdaBoost is an inductive learning method, we
propose here a novel transductive boosting algorithm to cope with a small num-
ber of training data; in particular, the condition where the ratio of positive and
negative examples greatly differs between the training and test data. Our exper-
imental results demonstrate that the proposed algorithm not only outperforms
SVM and AdaBoost but is also comparative and sometimes superior to TSVM.
The advantage of the method is significant when the number of training data is
small and the ratio of positive examples to negative ones in the training data
is different from that in the test data. These results confirm that the usefulness
of the transductive approach is not limited to SVM but is also effective for a
variety of learning methods.

The remainder of the paper is organized as follows. The next section in-
troduces AdaBoost and its global error analysis. After briefly describing how
boosting can be regarded as a gradient descent method in a function space, we
show how a transductive method can be adapted to AdaBoost. We then report
our experimental results on a text categorization task using Japanese newspaper
articles and discuss these results. The last section concludes the paper.

2 Boosting

2.1 AdaBoost Algorithm

Boosting became popular for practical use after Freund and Schapire proposed
the AdaBoost algorithm [2]. We briefly introduce AdaBoost here.
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(step 1) Given m training samples (€1,91), ..., (Zm, Ym) with feature vectors
T1,..., T, and classification classes yi, ..., ym (+1 for positive, —1 for nega-
tive).

Initialize the weights for training data D (i) = %, where : =1,...,m

(step 2) For t =1,...,T, repeat (step 3)-(step 5).

(step 3) A weak learner learns the training data under weight D;, and we get
weak hypothesis h;(x), which outputs +1 for a positive evaluation for = x;;
—1 for a negative evaluation.

(step 4) Calculate parameter oy based on a; = %ln(lz—:‘) , where ¢; denotes
weighted error rates calculated based on er =3, ()2, Di()-

(step 5) Update every weight of the training data based on the following,

Dy (1) exp(—ouyihi ()
Zy

D1 (i) =

where Z;, the normalized factor for Y ;" | D;11, equals 1.
(step 6) Return the final hypothesis, merging weak hypotheses linearly as,

T
H(z) =Y ah(z)

AdaBoost produces a weak hypothesis for a round and updates weights for
the training data T times (¢ = 1,...,T ). As we can see based on (step 5), weight
D,(4) is multiplied by exp(—a;) when data i is classified correctly by the weak
hypothesis (that is, when hy(x;) = y;); it is multiplied by exp(«;) when data i
is classified incorrectly (that is, when he(x;) # y;). When error rates €; are less
than 50%, parameter «; takes a positive value based on (step 4). The weights of
the data learned incorrectly are multiplied by a number larger than one and the
learners learn weak hypotheses to focus on their data in the next round. Finally,
in (step 6), the learners combine all of the weak learners weighted by parameter
ay, and the final classifier H(x) is obtained.

Schapire et al. introduced the idea of “margin” and analyzed global errors of
AdaBoost (that is, classification errors for unlabeled test data) [14]. The margin
for training data in boosting is determined as y >, ashi(x)/ Y, . When ay
is normalized as ), oy = 1, the margin equals yH (x). If we can take larger
margins, the global errors become smaller [14].

3 Transductive Methods and Text Categorization

3.1 The Transductive Method Used in TSVM

We illustrate the transductive SVM (TSVM) and the novel transductive boost-
ing in Figure [l The circles, crosses, and triangles denote positive training data,
negative training data, and unlabeled test data, respectively. TSVM produces
separated hyperplanes by finding the positive examples closest to the negative
side and the negative examples closest to the positive side. The “margin” of
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Fig. 1. TSVM (a) and Transductive Boosting (b).

TSVM is defined as the distance between two separated hyperplanes. TSVM
chooses separated hyperplanes such that they maximize the margins while al-
lowing classification errors below some fixed rate.

TSVM first produces a classifier using only the training data by SVM. All of
the test data are given temporary classes by the classifier. The classifiers, after
that, are iteratively constructed by focusing only on the temporary labeled data.
As the figure shows, if they can find a pair of positive and negative examples
near the classification boundary such that an exchange of their temporary classes
decreases the classification errors, they exchange their classes and re-learn the
classifier by SVM. They repeat the exchange of classes and re-learning until there
is no pair of test data for which labels have to be exchanged, and they finally
obtain a hyperplane fitting the distribution of the test data.

On the other hand, the margin in boosting is the sum of the distances between
every training data and optimal classification bound, such as the right side of
Figure[ll Boosting tries to maximize the average of all margins. Our transductive
method labels the one most reliable example at every round as described in the
following sections.

3.2 Explanation of Boosting Using Gradient Descent Methods

Recently, it has become clear that boosting can be regarded as an algorithm
that chooses a weak hypothesis in the direction of the gradient descent of cost
functions in a function space [9].

Mason et al. stated that the AdaBoost algorithm corresponds to an algorithm
that minimizes a cost function of the exp(—M) type in MarginBoost, where M
is the margin. The cost function of the AdaBoost algorithm is

Cost(H(x)) = % Z exp(—y; H(x:)).

The cost is taken as an average of margins for a power function measure. As a
result, a larger cost is evaluated for classification errors for example. Minimizing
the value of this cost function corresponds to maximizing the margins and also
corresponds to minimizing the global errors as mentioned in the previous section.

Let us consider a class H of weak classifiers h : X — {41, -1} (where X is
the space of feature vectors). lin(?) is the set of all linear combinations of the
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functions in H. The inner product is defined by < F, G > Ly F(x)G ()

for all F, G € lin(H). We define the inner product space (X, <, >) using the inner
product, where X is a linear space of functions that contains lin(#), and <, >
stands for the inner product. Now suppose we have a function H € lin(H) and
we wish to find a new h € lin(H) to add to H so that Cost(H + eh) decreases
for some small value of e. We define the functional derivative of the cost function

of H as
def 0Cost(H + aly,)

Oa

where 1g is the indicator function of @. The cost function can be expanded to
the first order in e,

Cost(H + eh) = Cost(H) + e < VCost(H),h > .

VCost(H)(x)

a=0

Here, we can use the gradient descent method. That is, the greatest reduction
in cost will occur for the h maximizing — < VCost(H),h >. After all, we wish
to find htq1, ayq1 to minimize

> Cost(y Hy(x:) + yip1hes ()
=1

in the function space to get the weak hypothesis h;y; at round t.

3.3 The Transductive Boosting Method

Let us consider the minimization of the cost function mentioned in the former
section in the framework of transductive methods. The cost function, including
n test examples Ty, 41, ..., Tym4n, is described as

Cost(H(x)) = %M{Zexp(—yiH (x:))
=1

m-+n

+ Y exp(—y;H(z)))}

j=m-+1

where y7 is a temporary class label for «;. y; is unknown, and the initial value
of g7 is stored with 0. This algorithm aims to label +1(positive) or —1(negative)
correctly for y7. In the early rounds, the accuracy of the classifiers combining
linearly weak learners is low because the learning is not sufficient unlike in SVM.
If we label the classes for y7 based on these classifiers, incorrect labels are labeled
to the data at a high ratio. Then, if boosting is performed with this large amount
of wrongly labeled test data, an incorrect gradient descent is obtained, and
moreover, the accuracy of the final classifier is low. We should perform labeling
for the test data at a high accuracy.

Therefore, in every round, we label the class for only the most reliable test
data. We label this class supposing that the ratio of positive and negative ex-
amples is the same as the ratio of positive and negative examples in the training
data. For the test data, we add (step 2) and (step 7) to the AdaBoost algorithm
in section 2.1 as follows.
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(step 1) Given m training samples (€1,91), ..., (Zm, Ym) with feature vectors
1,..., Ty, and classification classes yi, ..., Ym (+1 for positive, —1 for nega-
tive).

Initialize the weights for training data D (i) = %, where 1 = 1,...,m.

(step 2) Given n test samples (Tm+1,Ypg1)s s (Tmtns Yptn) With feature vec-
tors Tp41, ..., Tmyn and classification classes ¥y, 1, ..., Yn,,, Whose initial
values are 0.

Initialize the weights for test data D1(j) =0 (j=m+1,....,m+n).

(step 3) For t =1,...,T, repeat (step 4)-(step 7)

(step 4) A weak learner learns labeled data (that is, y; # 0) under weight Dy,
and we get weak hypothesis h(x), which outputs +1 for a positive evaluation
for * = x;; —1 for a negative evaluation.

(step 5) Calculate parameter oy based on a; = %ln(l;€t
weighted error rates calculated based on ¢; = Ei:ht(wi)yﬁyi Dy ().

(step 6) Update every weight of the training data based on the following,

) , where ¢, denotes

_ Dy (i) exp(—auyihe ()
Zy

Diy1(7)

where Z;, the normalized factor for Z:’;l Dyyq, equals 1.

(step 7) Let m™ be the number of training data with a positive class, njapered
be the number of test data with an already labeled class, and nlflbele 4 be
the number of test data with an already labeled positive class.

(i) If nyapeted = 0 or m™/m > nf, ;o0 /Miabelea, then
we choose the test sample j that maximizes

H(mj) = > arhi(x;)
k=1

in the test data such that y; = 0, and give y; = +1 and D;y1(j) =€ (e is a
small value, for example, ¢ = 0.01). Then, we update the weight of the data
already labeled as follows,

Dy (i)

Zj
Here, Z] is the normalizing factor such that the sum of the data without j
equals 1 —e.
(ii) If mygpetea # 0 and m*/m < n;beled/”labeledv then we choose the test
sample j that minimizes

Dy (i) =

H(z;) = Z arhi(x;)
k=1

in the test data such that y; = 0, and give y; = —1 and D;41(j) = €. Then,
we update the weight of the data already labeled as follows,

Dt(i).

DtJrl(i) = 7!
t
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Here, Z] is the normalizing factor such that the sum of the data without j
equals 1 —e.
(step 8) Return the final hypothesis, merging weak hypotheses linearly as,

T
H(z) =Y athi()

(step 2) is for initializing the labels and weights of the test samples. (step
7) is for performing labeling such that the ratio of positive and negative test
samples always equals that of the training data. A small value is given for the
weight to test samples selected at this step, because the reliability of the labels
is lower than that of the training samples.

Taking these steps can produce classifiers minimizing the value of the cost
function because we can select data to lower the probability of labeling y;
wrongly and can choose data to maximize y? H (x;) at a round in the hill-climbing
way with the term of exp(—yjH(x;)) in the cost function (Figure [2)).

A\/margin
>N

o]
I X negative sample
classification A uniabeled sample
boundary

positive sample

Fig. 2. The effect of unlabeled samples.

As another option of our algorithm, we can use the algorithm after weak
learners are produced using only labeled data several times. We can also choose
to label several test examples per round by executing (step 7) several times per
round, although the algorithm would need more iterations than the number of
test examples.

4 Experimental Results

4.1 Experimental Settings

Our experiments were conducted using the RWCP corpus, which contains 30,207
newspaper articles taken from the Mainichi Shinbun Newspaper published in
1994 [8]. Each article was assigned multiple UDC (Universal Decimal Classi-
fication) codes, each of which represented a category of the articles. UDC is a
hierarchical classification system and has about 60,000 main categories. The text
collection has a total of 97,095 categories among which there are 14,407 different
categories, i.e., 3.2 categories per article.
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In the remainder of this paper, we focus on the ten categories that appeared
most often in the corpus: L sports, criminal law, government, education, traffic,
military affairs, international relations, communications, theater, and agricul-
ture. We made binary classifiers for each of the categories whether a sample
belonged to the category or not. The total number of articles used for both the
training and the test was 1,000. Table [[] summarizes the numbers of training
and test articles in each category. These articles were word-segmented and part

Table 1. RWCP corpus for training and test.

Category training articles|test articles
sports 161 147
criminal law 156 148
government 135 142
educational system 110 124
traffic 112 103
military affairs 110 118
international relations 96 97
communications 76 83
theater 86 95
agriculture 78 72

of speech tagged by the Japanese morphological analyzing system Chasen [I0].
This process generated 20,490 different words. Throughout our experiments,
1000 words with high mutual information were used as the input feature space
because they were keywords sufficient enough to characterize the classes.

The mutual infomation (MI) between a word ¢ and a category c is defined as
follows,
P(t,c)

MI(t,c) = Z ZP(t,c)logP(t)P(c).
te{0,1} ¢

MI becomes large when the occurrence of ¢ is biased to one side between category
¢ and other categories. Consequently, the words with high mutual information
in category c can be considered as keywords in the category.

The iteration T was 1000 in all of our experiments. The value of 0.01 was
used for € in transductive AdaBoost. The value for each feature was a binary
value, which indicated whether the word appeared in a document or not. This
binary value was employed to study the pure effects of each word.

4.2 The Evaluation Method

The F-measure was used for the evaluation measure. For every classification, we
can calculate

! The results for other categories were very similar to these 10 categories.
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a = (the number of data the classifier evaluates positive for positive data),
b = (the number of data the classifier evaluates positive for negative data),
¢ = (the number of data the classifier evaluates negative for positive data).
Then, we can calculate the precision (P) and recall (R) as

a a

Tatb Ca+ec’

By combining the precision and recall, the F-measure is defined as follows:

1+ 5
PHOR
The F-measure varies between 0 and 1. The larger the F-measure becomes, the
higher the classification accuracy gets. 0 is a weight parameter and we set 5 = 1.

4.3 Relation between the Number of Training Data and the
Accuracy

First, when the ratio of positive to negative examples in the training data was the
same as that in the test data, we carried out experiments on text classification
using the transductive AdaBoost algorithm with a one-depth decision tree as a
weak learner. For comparison, we also performed experiments using the standard
AdaBoost with a one-depth decision tree (BoosTexter) [I3], SVM, and TSVM.
We increased the number of training data from 75 to 1000, and we classified the
1000 test data. Figure Blshows the results (F-measure) of the average among
ten categories.

The accuracy increases significantly using the transductive method consider-
ing the distribution of 1000 test data. In particular, when there is a small number
of training data, the growth of the classification accuracy becomes dramatically
large. When the number of training data is 75, the F-measure for boosting is
0.438 and that for transductive boosting is 0.569; the difference is 0.131. The
accuracy of the classification using only 75 training data in the transductive
method almost equals the accuracy of that using 200 training data in the induc-
tive method. This indicates that the transductive method is useful for improving
the classification accuracy for a small number of training examples. Compared
with SVM and TSVM with a linear kernel function, the classification using trans-
ductive boosting is slightly weaker than TSVM but exceeds SVM. The increase
in the accuracy from the boosting to the transductive boosting decreases, while
the classification accuracy increases monotonically without 1000 training data in
the boosting. This might be because when the number of training data is 1000,
the distribution of the test data is similar to that of the training data.

We show the details of the results for every category in Table[2 and Table 3]
The bold face numbers denote the best accuracies for every category. The
categories with high classification accuracies sometimes show decreases using the
transductive method, e.g., 0.750 to 0.723 for criminal law using 1000 training
data. However, the categories of education system, military affairs, international
relations, and communications, which have low classification accuracies using the
inductive method, show dramatically increases using the transductive method.
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Table 2. F-measure for the number of training data (Transductive Boosting).

Category \ # of training data| 75 100 200 500 750 1000
sports 0.642 0.726 0.766 0.875 0.901 0.903
criminal law 0.600 0.571 0.663 0.656 0.743 0.750
government 0.723 0.560 0.622 0.689 0.727 0.722
educational system 0.459 0.624 0.661 0.675 0.762 0.778
traffic 0.495 0.493 0.500 0.638 0.680 0.698
military affairs 0.507 0.561 0.688 0.748 0.754 0.781
international relations 0.429 0.396 0.363 0.558 0.508 0.560
communications 0.493 0.523 0.641 0.612 0.703 0.692
theater 0.583 0.749 0.756 0.795 0.857 0.862
agriculture 0.750 0.817 0.831 0.805 0.761 0.853
avg. 0.569 0.602 0.649 0.705 0.740 0.760

Table 3. F-measure for the number of training data (Boosting).

Category \ # of training data| 75 100 200 500 750 1000
sports 0.675 0.681 0.826 0.867 0.891 0.912
criminal law 0.561 0.402 0.649 0.664 0.681 0.723
government 0.607 0.524 0.580 0.683 0.692 0.670
educational system 0.287 0.525 0.563 0.646 0.667 0.714
traffic 0.514 0.510 0.493 0.647 0.658 0.579
military affairs 0.216 0.321 0.550 0.728 0.686 0.628
international relations 0.324 0.317 0.233 0.428 0.490 0.329
communications 0.119 0.220 0.528 0.576 0.561 0.559
theater 0.385 0.645 0.767 0.693 0.800 0.813
agriculture 0.690 0.643 0.734 0.855 0.864 0.850
avg. 0.438 0.479 0.592 0.679 0.699 0.678

Let us move on to the second experimental condition. We changed the ratio
of positive to negative examples in the training data from 1:1 to 1:4 (the original
data distribution depicted in Figure [J is 1:9). The total number of training
examples was changed from 20 to 150. The results (the averages of ten categories)
are shown in Figure[d. The performance of the transductive boosting is almost
the same as that of TSVM and sometimes outperforms TSVM when the training
and test distributions are significantly distinct, for example, N, : N,, =1 :1 and
150 training samples. This indicates that the good performance of TSVM is
largely dependent on the ratio of positive and negative examples.

5 Conclusion

We have proposed a transductive boosting method for text classification prob-
lems. We carried out experiments in which we varied the number of training
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data, and compared the transductive method to the standard AdaBoost, SVM,
and TSVM. The results indicated that the transductive boosting method can
improve the performance of text categorization in situations where we have an
enormous number of unlabeled data in addition to a small number of labeled
training data. When the ratio of positive to negative examples in the train-
ing data differs from that in the test data, the advantage of our transductive
boosting method in terms of performance is significant. This suggests that our
transductive boosting method might be appropriate particularly when we do not
know the ratio of positive and negative examples in the test data. Overall, our
results show that the transductive approach is effective for a variety of learning
methods and potentially promising for other applications.
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