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Abstract. This paper studies the Iterative Double Clustering (IDC)
meta-clustering algorithm, a new extension of the recent Double Clus-
tering (DC) method of Slonim and Tishby that exhibited impressive
performance on text categorization tasks [1]. Using synthetically gener-
ated data we empirically demonstrate that whenever the DC procedure is
successful in recovering some of the structure hidden in the data, the ex-
tended IDC procedure can incrementally compute a dramatically better
classification, with minor additional computational resources. We demon-
strate that the IDC algorithm is especially advantageous when the data
exhibits high attribute noise. Our simulation results also show the effec-
tiveness of IDC in text categorization problems. Surprisingly, this unsu-
pervised procedure can be competitive with a (supervised) SVM trained
with a small training set. Finally, we propose a natural extension of IDC
for (semi-supervised) transductive learning where we are given both la-
beled and unlabeled examples, and present preliminary empirical results
showing the plausibility of the extended method in a semi-supervised
setting.

1 Introduction

Data clustering is a fundamental and challenging routine in information pro-
cessing and pattern recognition. Informally, when we cluster a set of elements
we attempt to partition it into subsets such that points in the same subset are
more “similar” to each other than to points in other subsets. Typical clustering
algorithms depend on a choice of a similarity measure between data points [2],
and a “correct” clustering result can be dependent on an appropriate choice of a
similarity measure. However, the choice of a “correct” measure is an ill-defined
task without a particular application at hand. For instance, consider a hypo-
thetical data set containing articles by each of two authors, so that half of the
articles authored by each author discusses one topic, and the other half discusses
another topic. There are two possible dichotomies of the data which could yield
two different bi-partitions: one according to topic, and another, according to
writing style. When asked to cluster this set into two sub-clusters, one cannot
successfully achieve the task without knowing the goal: Are we interested in clus-
ters that reflect writing style or semantics? Therefore, without a suitable target
at hand and a principled method for choosing a similarity measure suitable for
the target, it can be meaningless to interpret clustering results.
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The information bottleneck (IB) method of Tishby, Pereira and Bialek [3] is
a new framework that can sometimes provide an elegant solution to this prob-
lematic aspect of data clustering. Let the data be a set of observed values of
some random variable S. The main idea of the IB method is to use some “target
information” that can guide the clustering process towards the desired goal. Let
this target information be the observed values of the random variable T'. The
goal is to extract the essence of S which can still predict T. Thus, we aim to
compute a compressed representation S of S (e.g., a clustering of S) so as to
preserve [ (5‘ ,T), the mutual information between S and T, as much as possible.
Tishby et al. [3] also present an algorithm for computing the desired clustering
S, which is a “soft” assignment of data points into cluster centroids.

In ], Slonim and Tishby developed a simplified “hard” variant of this IB
clustering, where there is a hard assignment of points to their clusters. Employ-
ing this hard IB clustering, the same authors introduced an effective two-stage
clustering procedure called Double Clustering (DC) [1]. Roughly, the idea is as
follows. Let X represent the data where each data point is a vector over real val-
ued features. The goal is to cluster X based on the joint empirical distribution
of data points and their features. Informally, during the first stage, a cluster-
ing of the features F' is performed using the above (S, T)-IB procedure with S
representing the features and T representing the data points. This results in a
compressed representation F of the features F' that preserves information about
the points. During the second stage, the data X is compressed with respect to
the feature clusters F (ie.with S =X and T = F ), thus generating a clustering
X of the data X. An experimental study of DC on text categorization tasks [
showed a consistent advantage of IB clustering over other clustering methods. A
striking finding in [1] is that DC sometimes even attained results close to those
of supervised learning.

In this paper we present a powerful extension of the DC procedure which
we term Iterative Double Clustering (IDC). As its name suggests, IDC performs
iterations of DC so that the input data variable of the next iteration is the clus-
tered data of the previous DC iteration (and the first iteration is a standard DC).
Whenever the first DC iteration succeeds in extracting a meaningful structure
of the data, a number of the next consecutive iterations can continually improve
the clustering quality. Intuitively, this continual improvement achieved by IDC
is due to generation of progressively less noisy target variables that serve better
the IB clustering of the features (see details in Section []). Using synthetically
generated data, we study some properties of the IDC method. Not only that IDC
can dramatically outperform DC whenever the data is noisy, our experiments
indicate that IDC attains impressive categorization results on text categoriza-
tion tasks. In particular, we show that our unsupervised IDC procedure can
outperform an SVM trained over a small sized training set.

These findings and the studies of Baker and McCallum [5] and of Slonim
and Tishby [4J6] on supervised applications of the information bottleneck for

! Specifically, the DC method obtained in some cases accuracy close to that obtained
by a naive Bayes classifier trained over a small sized sample [I].
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word clustering provided us with the motivation for extending the IDC method
into a semi-supervised setting, and we propose a natural extension of IDC for
transductive and semi-supervised learning. Our preliminary empirical results
indicate that our transductive IDC can yield effective text categorization.

2 Problem Setup and Preliminaries

We consider a data set X of elements, each of which is a d-dimensional vec-
tor over a set F' of features. In this paper we focus on the case where feature
values are non-negative real numbers. For every element © = (f1,...,fq) € X
we consider the empirical conditional distribution {p(f;|x)} of features given z,
where p(filz) = fi/ Z?Zl fi. For instance, X can be a set of documents, each
of which is represented as a vector of word-features where f; is the frequency of
the ith word (in some fixed word enumeration). Thus, we represent each element
as a distribution over its features, and are interested in a partition of the data
based on these feature conditional distributions. Given a predetermined number
of clusters, a straightforward approach to cluster the data using the above “dis-
tributional representation” would be to choose some (dis)similarity measure for
distributions (e.g. based on some L, norm or some statistical measure such as
the KL-divergence) and employ some “plug-in” clustering algorithm based on
this measure (e.g. agglomerative algorithms). Perhaps due to feature noise, this
simplistic approach can result in mediocre results (see e.g. [1]).

2.1 The Information Bottleneck Method

Let S and T' be two random variables. The information bottleneck (I1B) method
[B] aims to extract a compressed representation S of S with minimum com-
promise of information content with respect to the variable T. Let I(S,T) =

> ses.ier P(s:1) log pé)jf(i)? the mutual information between S and T [7]. The

IB method attempts to compute p(3|s), a “soft” assignment of a data point s
to clusters 3, so as to minimize (S, S) — BI(S,T), given the Markov condition
T — S — S (ie, T and S are conditionally independent given S). Here, /3 is a
Lagrange multiplier that controls a constraint on I(S,T). As shown in [3], this
minimization yields a system of coupled equations for the clustering mapping
p(8|s) in terms of the cluster representations p(t|s) and the cluster weights p(3).
The paper [3] also presents an algorithm similar to deterministic annealing [8]
for recovering a solution for the coupled equations.

Slonim and Tishby [4] proposed a simplified IB approach for the computation
of “hard” cluster assignments. Specifically, for any cardinality m = |S| (i.e. m is
the desired number of clusters), the coupled equations in [3] induce, in the limit
8 — o0, the following coupled equations.

- 1, ifses
p(sls) = {O, otherwise Vs €8
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Using the above equations and the identity I(S,T) = > cg,;erp(s)

p(t]s)log L Ig’zl{;)? a greedy agglomerative clustering algorithm was proposed in [4].

This algorithm initializes with a trivial clustering, where each data point s is a
single cluster. Then, at each step, the algorithm merges the two clusters that
minimize the loss of mutual information I(S,T). As shown in [4], the reduction
in 1(S,T) due to a merge of two clusters 3; and 3; is

(p(5:) + p(5;))Dus(p(t|si), p(]5;)], (1)

where, for any two distributions p(x) and ¢(x), with priors A\, and A, Ap+Ag =1,
Djsp(z), q(z)] is the Jensen-Shannon divergence (see [9[10]),

p+q

p—|—q)
o .

Dyslp(z),q(z)] = \pyDxr(pl| )+ ADrrlall=——

Here, 212 denotes the distribution (p(z) +¢(2))/2 and Dk ,(-||-) is the Kullbak-
Leibler divergence [7]. The Jensen-Shannon divergence is non-negative, symmet-
ric and bounded but does not satisfy the triangle inequality (and therefore is
not a metric). Note that the priors used in the Jensen-Shannon divergence ()
for p(t|5;) and p(t|s;) are proportional to p(3;) and p(§,), respectively. For a
detailed description of the (soft and hard) IB method the reader is referred to
[314).

As all agglomerative clustering algorithms, the agglomerative IB clustering
algorithm derived using the dissimilarity measure of Equation () is only locally
optimal, since at each step it greedily merges the two most similar clusters.
Another disadvantage of this algorithm is its time complexity, which can be
accomplished in O(n?) for a data set of n elements (see [I] for details).

The IB method can be viewed as a meta-clustering procedure that, given
observations of the variables S and T (via empirical co-occurrence samples
of p(s,t)), attempts to cluster s-elements represented as distributions over t¢-
elements. Clearly, one can attempt to approximate IB clustering using any vec-
torial clustering algorithm that can be applied within the simplex containing the
distributional representations of the s-elements.

2.2 Double Clustering (DC)

Employed with the IB clustering method we now return to our problem setup
(see Section ) and describe the double clustering (DC) method of [I]. Notice
that in the IB clustering method the roles of the random variables S and T
can be switched. In our problem setup, this means that we can cluster elements
as distributions over features, but can also cluster features as distributions over
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elements. For instance, we can cluster documents as distributions over words but
also cluster words as distributions over documents.

DC is a two-stage procedure where during the first stage we cluster features
represented as distributions over elements, thus generating feature clusters. Dur-
ing the second stage we cluster elements represented as distributions over the
feature clusters (a more formal description follows). For instance, considering the
document clustering domain, in the first stage we cluster words as distributions
over documents to obtain word clusters. Then in the second stage we cluster
documents as distributions over word clusters, to obtain document clusters.

Intuitively, the first stage in DC
generates more coarse pseudo fea-
tures (i.e. feature centroids), which
can reduce noise and sparseness
that might be exhibited in the orig-
inal feature values. Then, in the
second stage, elements are clus-
tered as distributions over the “dis-

Input:

X (input data)

Ny (number of element clusters)

N (number of feature clusters to use)
k (number of iterations)

Initialize: S < F, T < X,

loop {k times}

tilled” pseudo features, and there- Jy « Ni
fore can generate more accurate ]{‘[: 1;\? ~N (§| i )X T P
element clusters. As reported in - X ’
[, this DC two-stage procedure X IBN(T'*S:)
outperforms various other cluster- S F T+ X
ing approaches as well as DC vari- end loop

Output X

ants applied with other dissimilar-
ity measures (such as the varia-
tional distance) different from the Fig. 1. Pseudo-code for IDC
optimal JS-divergence of Equation (). It is most striking that in some cases,
the accuracy achieved by DC was close to that achieved by a supervised Naive
Bayes classifier.

3 Iterative Double Clustering (IDC)

Our Iterative Double Clustering (IDC) is a novel extension of the DC algorithm,
which performs multiple iterations of the original DC. It works by feeding the
element clusters output of each DC iteration as input to the first stage of the
following DC iteration. As we shall later see, IDC consistently improves (in a
sense to be defined) over DC whenever the data is noisy.

Denote by I By (T|S) the clustering result, into N clusters, of the information
bottleneck hard clustering procedure when the data is S and the target variable
is T (see Section ). For instance, if T represents documents and S represents
words, the application of IBy(documents|words) will cluster the words, repre-
sented as distributions over the documents, into N clusters. Using the notation
of our problem setup, with X denoting the data, and F' denoting the features,
suppose we are interested in clustering X into Nz clusters. In Figure [Il we pro-
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vide a pseudo-code of the IDC meta-clustering algorithm. Note that the DC
procedure is simply an application of IDC with k = 1.

The code of Figure [ requires to specify k, the number of IDC iterations to
run. It also requires as input both Ng, the number of element clusters (e.g. the
desired number of of document clusters), and N, the number of feature clusters
to use during each iteration. The question of how to choose these parameters
requires study and some of the results we present in this paper provide partial
answers. In general, a correct choice of N; is a model selection problem and
is beyond the scope of this paper. In the experiments reported in the paper we
always assumed that we know the correct N¢. A correct choice of N is also re-
lated to model selection, but we cannot avoid it. Fortunately, as we discuss later,
the algorithm is not too sensitive to an overestimate of V5. We also studied the
behavior of IDC as a function of the parameter k& (number of iterations). Perhaps
the first question to ask is whether or not IDC converges to a steady state (e.g.
where two consecutive iterations generate identical partitions). Unfortunately,
a theoretical understanding of this convergence issue is left open in this paper.
Nevertheless, in all our experiments IDC converged. Our empirical experience
with IDC is that convergence takes between a few iterations and a few dozens of
iterations. We discovered that in most cases IDC achieved its best performance
after 8-10 iterations. Unless otherwise is specified, in the experiments reported
below we used a fixed k = 15.

The first DC iteration is the most computationally intensive. After this iter-
ation the co-occurrence (joint) distribution maintained by IDC reduces in size
from |X||F| to |X||F| where |X| is the sample size, and |X| is the number of
clusters (which corresponds to the number of classes) and typically |X| < |X].

As noted earlier, the “hard”
implementation of IB-clustering
(and of DC) originally presented
by [I] uses an agglomerative pro-
cedure as the basic clustering al-
gorithm (see Section 2I)). The
“soft” implementation of IB [3]
applies a deterministic annealing
clustering [§] as its underlying
clustering procedure. As already
discussed, the IB method can be
viewed as a meta-clustering algo-

Input:
a sample z1,..., Ty,
a distance measure d(-, ),
the desired number of clusters &
Initialize:
¢ := 0 (current number of clusters)
for each point z; in the sample do
if ¢ > 0 then
Let c¢; be the d-closest centroid to x;
Assign c; to be the center of gravity
of the cluster C; together with z;

. end if
rithm. Thirefoie, fvetcap emliloy if ¢ — k then
matly vectorlal ciustering algo- merge the two d-closest clusters
rithms in the underlying IB proce- end if
dure used by DC and IDC. We im- ..
. create a new cluster containing x;
plemented IDC using several clus- end for

tering algorithms including ag-
glomerative clustering and de-

terministic annealing. Since both Fig. 2. Pseudo-code for Add-C
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these algorithms are computationally intensive, we also implemented IDC using
a fast algorithm called Add-C' proposed by Guedalia et al. [1I]. Add-C is an
online greedy clustering algorithm with linear running time.

A pseudo-code of Add-C appears in Figure 2l In the code we left the choice
of the distance measure open. In order to better approximate the original hard
information bottleneck procedure we applied Add-C with the Jensen-Shannon
divergence of Equation (IJ). For the exact details of this algorithm, the reader
is referred to [II]. Our experience with information bottleneck clustering with
both Add-C and the agglomerative algorithm indicates that the IDC implemen-
tation with Add-C yields inferior results to those produced by IDC with the
agglomerative clustering routine. Specifically, when we apply the first iteration
of IDC (= DC) using the agglomerative routine we usually get better results
than a first iteration of IDC applied with the Add-C routine. Nevertheless, we
gain a significant runtime speed-up since Add-C maintains a linear time com-
plexity in the number of points. Moreover, as we later discuss, several iterations
of IDC applied with Add-C are always superior to one iteration (DC) applied
with agglomerative clustering (or Add-C). Due to its computational intensity
we have not experimented much with a (multi-round) IDC applied with the
agglomerative routine.

Following [I] we chose to evaluate the performance of IDC with respect to a
labeled data set. Specifically, we count the number of classification errors made
by IDC as obtained from labeled data.

In order to better understand the properties of IDC, we first examined it
within a controlled setup of synthetically generated data points whose feature
values were generated by d-dimensional Gaussian distributions (for d features)
of the form N(u,Y), where ¥ = 021, with o constant. In order to simulate
different sources, we assigned different p values (from a given constant range)
to each combination of source and feature. Specifically, for data simulating m
classes and |F| features, |F| x m different distributions were selected.

Not surprisingly, when the range for selecting p values was large in proportion
to o (i.e. the sources were far apart), both DC and IDC performed well and gave
results close to the Bayes error. Our next step was to introduce feature noise
and see how IDC reacts. We used the following two noise models.

Constant feature noise: Distorts each of the features by adding random val-
ues sampled from N(0,0?), where o is a constant “noise amplitude”. Resulting
negative values are rounded to zero.

Proportional feature noise: Distorts each entry with value v by adding a
random sample from N (0, (o -v)?), where « is the “noise amplitude”. Resulting
negative values are again rounded to zero.

In figure Bi(a), we plot the average accuracy of 10 runs of IDC. The solid
line plots (average) accuracies achieved in the last (15th) round of IDC wvs.
proportional feature noise amplitude («). The dashed line plots first rounds of
IDC (equivalent to DC) vs. o. Each error bar specifies one standard deviation.
As can be seen, at low level noise amplitudes IDC attains perfect accuracy. When
the noise amplitude increases, both IDC and DC deteriorate but the multiple
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rounds of IDC can better resist the extra noise. A similar effect is observed when
applying constant feature noise.

After observing the large accuracy gain between DC and IDC at a specific
interval of noise amplitude within the proportional feature noise setup, we set
the noise amplitude to a value in that interval and examined the behavior of
the IDC run in more detail. Figure B[b) shows a trace of the accuracy obtained
at each of the 20 iterations of an IDC run over noisy data. This learning curve
shows a quick improvement in accuracy during the first few rounds, and then
reaches a plateau.

4 Empirical Results for Text Categorization

Following [1] we used the 20 Newsgroups (NG20) [12] data set to evaluate IDC on
real, labeled data. NG20 consists of 20,000 newsgroup articles from 20 different
newsgroups, each group containing 1,000 documents. In this section we describe
experiments with various subsets of NG20. We chose subsets with various degrees
of difficulty. In the first set of experiments we used the following four newsgroups
(denoted as NG4), two of which deal with sports subjects: ‘rec.sport.baseball’,
‘rec.sport.hockey’, ‘alt.atheism’ and ‘sci.med’. In these experiments we tested
some basic properties of IDC. In all the experiments reported in this section
we performed the following preprocessing: We lowered the case of all letters,
filtered out low frequency words which appeared only 3 times in the entire set
and filtered out numerical and non-alphabetical characters. We also stripped off
newsgroup headers which contain the class labels.

In Figure[3(c) we display accuracy vs. number of feature clusters (Nz). The
accuracy deteriorates when N is too small and we see a slight negative trend
when it increases. A possible interpretation is that when the number of clusters
is too small, there are not enough clusters to represent the inherent structure (in
our case, word clusters with contextually similar meanings) of the data. It may
also suggest that when the number of clusters is too large, either not enough
features are grouped together to form ‘semantic’ units, or not enough noise is
filtered by the clustering procedure. We performed an additional experiment
which tested the performance using very large numbers of feature clusters. In-
deed, these results indicate that after a plateau in the range of 10-20 there is a
minor negative trend in the accuracy level. Thus, with respect to this data set,
the IDC algorithm is not too sensitive to an overestimation of the number Ny
of feature clusters.

Other experiments over the NG4 data set confirmed the results of [I] that
the JS-divergence dissimilarity measure of Equation (Il) outperforms other mea-
sures, such as the variational distance (L norm), the KL-divergence, the square-
Euclidean distance and the ‘cosine’ distance. Details of all these experiments will
be presented in the full version of the paper.

In the next set of experiments we tested IDC’s performance on the same
newsgroup subsets used in [I]. Table [[[(a) compares the accuracy achieved by
DC to the the last (15th) round of IDC with respect to all data sets described
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Fig. 3. (a) Average accuracy over 10 trials for different amplitudes of proportional fea-
ture noise. Data set: A synthetically generated sample of 200 500-dimensional elements
in 4 classes (max p = 50, 0 = 50). (b) A trace of a single IDC run. The z-axis is the
number of IDC iterations and the y-axis is accuracy achieved in each iteration. Data
set: Synthetically generated sample of 500, 400-dimensional elements in 5 classes (max
1 = 50, o = 45); Noise: Proportional feature noise with a = 1.0; (c¢) Average accu-
racy (10 trials) for different numbers of feature clusters. Data set: NG4. (d) Average
accuracy of (10 trials of) transductive categorization of 5 newsgroups. Sample size:
80 documents per class, X-axis is training set size. Upper curve shows trans. IDC-15
and lower curve is trans. IDC-1. (e) Average accuracy of (10 trials of) transductive
categorization of 5 newsgroups. Sample size: constant training set size of 50 documents
from each class. The x-axis counts the number of unlabeled samples to be categorized.
Upper curve is trans. IDC-15 and lower curve is trans. IDC-1. Each error bar (in all
graphs) specifies one std.
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in [1]. Results of DC were taken from [I| where DC is implemented using the
agglomerative routine.

Table [[[b) displays a preliminary comparison of IDC with the results of
a Naive Bayes (NB) classifier (reported in [6]) and a support vector machine
(SVM) classifier. In each of the 5 experiments the supervised classifiers were
trained using 25 documents per class and tested on 475 documents per class.
The input for the unsupervised IDC was 500 unlabeled documents per class. As
can be seen, IDC outperforms in this setting both the naive Bayes learner and
the SVM. It should be emphasized that all the IDC results in this section were
achieved by an unsupervised algorithm.

Table 1. (a) Accuracy of DC vs. IDC on most of the data sets described in [I]. DC
results are taken from [I]; (b) Accuracy of Naive Bayes (NB) and SVM classifiers vs.
IDC on some of the data sets described in [6]. The IDC-15 column shows final accuracy
achieved at iteration 15 of IDC; the IDC-1 column shows first iteration accuracy. The
NB results are taken from [6]. The SVM results were produced using the LibSVM
package [I3] with its default parameters. In all cases the SVM was trained and tested
using the same training/test set sizes as described in [6] (25 documents per newsgroup
for training and 475 for testing; the number of unlabeled documents fed to IDC was
500 per newsgroup). The number of newsgroups in each hyper-category is specified in
parenthesis (e.g. COMP contains 5 newsgroups).

lNewsgroup[ DC [IDC-15‘
Binaryl [0.70| 0.85
Binary2 068 0.83 | |_DataSet | NB|SVMI[[IDC-15[IDC-1|
Binary3 |0.75| 0.80 COMP (5) 0.50| 0.51 0.50 0.34
Multi5;  |0.59| 0.86 SCIENCE (4) ||0.73| 0.68 0.79 0.44
Multi52 |0.58| 0.88 POLITICS (3)|/0.67| 0.76 0.78 0.42
Multibs  [0.53] 0.86 RELIGION (3)[/0.55| 0.78 0.60 0.38
Multil0; |0.35| 0.56 SPORT (2) 0.75| 0.78 0.89 0.76
Multil0p 0.35] 049 |[ Average [[0.64[0.70[ 0.71 [ 0.47 |
Multil03 [0.35] 0.55
Average |0.54| 0.74

5 Learning from Labeled and Unlabeled Examples

The impressive performance of IDC in unsupervised classification of data raises
the question of whether the IDC procedure can serve for (semi) supervised learn-
ing or transductive learning. In this section, we present a natural extension of
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IDC for transductive and semi-supervised learning that can utilize both labeled
and unlabeled data. In transductive learning, the testing is done on the unla-
beled examples in the training data, while in semi-supervised learning it is done
on previously unseen data.

For motivating the transductive IDC, consider a data set X that has emerged
from a statistical mixture which includes several sources (classes). Let C be a
random variable indicating the class of a random point. During the first iteration
of a standard IDC we cluster the features F' so as to preserve I(F, X). Typically,
X contains predictive information about the classes C. In cases where I(X,C)
is sufficiently large, we expect that the feature clusters F will preserve some
information about C as well. Having available some labeled data points, we may
attempt to generate feature clusters F which preserve more information about
class labels.

This leads to the following straightforward idea. During the first IB-stage of
the IDC first iteration, we cluster the features F' as distributions over class labels
(given by the labeled data). This phase results in feature clusters F. Then we
continue as usual; that is, in the second IB-phase of the first IDC iteration we
cluster X, represented as distributions over F. Subsequent IDC iterations use
all the unlabeled data.

In Figure[3[d) we show the accuracy obtained by DC and IDC in categorizing
5 newsgroups as a function of the training (labeled) set size. For instance, we
see that when the algorithm has 10 documents available from each class it can
categorize the entire unlabeled set, containing 90 unlabeled documents in each
of the classes, with accuracy of about 80%. The benchmark accuracy of IDC
with no labeled examples obtained about 73%.

In Figure Bl(e) we see the accuracy obtained by DC and transductive IDC
trained with a constant set of 50 labeled documents, on different unlabeled (test)
sample sizes. The graph shows that the accuracy of DC significantly degrades,
while IDC manages to sustain an almost constant high accuracy.

6 Concluding Remarks

Our contribution is threefold. First, we present a natural extension of the success-
ful double clustering algorithm of [I]. Empirical evidence indicates that our new
iterative DC algorithm has distinct advantages over DC, especially in noisy set-
tings. Second, we applied the unsupervised IDC on text categorization problems
which are typically dealt with by supervised learning algorithms. Our results
indicate that it is possible to achieve performance competitive to supervised
classifiers that were trained over small samples. Finally, we present a natural ex-
tension of IDC that allows for transductive learning. Our preliminary empirical
evaluation of this scheme over text categorization is very promising.

A number of interesting questions are left for future research. First, it would
be of interest to gain better theoretical understanding of several issues: the gen-
eralization properties of DC and IDC, the convergence of IDC to a steady state
and precise conditions on attribute noise settings within which IDC is advanta-



132 R. El-Yaniv and O. Souroujon

geous. Second, it would be important to test the empirical performance of IDC
with respect to different problem domains. Finally, we believe it would be of great
interest to better understand and characterize the performance of transductive
IDC in settings having both labeled and unlabeled data.
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