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Abstract. Fuzzy association rules provide a data mining tool which is
especially interesting from a knowledge-representational point of view
since fuzzy attribute values allow for expressing rules in terms of nat-
ural language. In this paper, we show that fuzzy associations can be
interpreted in different ways and that the interpretation has a strong
influence on their assessment and, hence, on the process of rule mining.
We motivate the use of multiple-valued implication operators in order to
model fuzzy association rules and propose quality measures suitable for
this type of rule. Moreover, we introduce a semantic model of fuzzy as-
sociation rules which suggests to consider them as a convex combination
of simple association rules. This model provides a sound theoretical ba-
sis and gives an explicit meaning to fuzzy associations. Particularly, the
aforementioned quality measures can be justified within this framework.

1 Introduction

Association rules, syntactically written A ⇒ B, provide a means for representing
dependencies between attributes in databases. Typically, A and B denote sets
of binary attributes, also called features or items. The intended meaning of a
(binary) rule A ⇒ B is that a transaction (a data record stored in the database)
that contains the set of items A is likely to contain the items B as well. Several
efficient algorithms for mining association rules in large databases have been
devised [1, 19, 21]. Typically, such algorithms perform by generating a set of
candidate rules from selected itemsets which are then filtered according to several
quality criteria.

Generally, a database does not only contain binary attributes but also at-
tributes with values ranging on (completely) ordered scales, e.g. cardinal or or-
dinal attributes. This has motivated a corresponding generalization of (binary)
association rules. Typically, a quantitative association rule specifies attribute
values by means of intervals, as e.g. in the simple rule “Employees at the age of
30 to 40 have incomes between $50,000 and $70,000.”

This paper investigates fuzzy association rules, which are basically obtained
by replacing intervals in quantitative rules by fuzzy sets (intervals). The use of
fuzzy sets in connection with association rules – as with data mining in general
[20] – has recently been motivated by several authors (e.g. [2, 3, 5–8, 13, 15, 23,
25]). Among other aspects, fuzzy sets avoid an arbitrary determination of crisp
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boundaries for intervals. Furthermore, fuzzy associations are very interesting
from a knowledge representational point of view: The very idea of fuzzy sets is
to act as an interface between a numeric scale and a symbolic scale which is
usually composed of linguistic terms. Thus, the rules discovered in a database
might be presented in a linguistic and hence comprehensible and user-friendly
way. Example: “Middle-aged employees dispose of considerable incomes.”

Even though fuzzy association rules have already been considered by some
authors, the investigation of their semantics in the context of data mining has
not received much attention as yet. This is somewhat surprising since a clear
semantics is a necessary prerequisite, not only for the interpretation, but also
for the rating and, hence, for the mining of fuzzy association rules.

The semantics of fuzzy associations and their assessment by means of ad-
equate quality measures constitute the main topics of the paper. By way of
background, Section 2 reviews the aforementioned types of association rules. In
Section 3, we discuss quality measures for fuzzy associations. In this connection,
it is shown that a generalization of (quantitative) association rules can proceed
from different perspectives, which in turn suggest different types of measures.
We especially motivate the use of multiple-valued implication operators in order
to model fuzzy association rules. In Section 4, we introduce a semantic model
of fuzzy associations which considers them as convex combinations of simple
association rules. This model clarifies the meaning and provides a sound theo-
retical basis of fuzzy association rules. Particularly, the aforementioned quality
measures can be justified within this framework.

2 Association Rules

2.1 Binary Association Rules

Consider an association rule of the form A ⇒ B, where A and B denote subsets
of an underlying set A of items (which can be considered as binary attributes).
As already said above, the intended meaning of A ⇒ B is that a transaction
T ⊂ A which contains the items in A is likely to contain the items in B as well.

In order to find “interesting” associations in a database D, a potential rule
A ⇒ B is generally rated according to several criteria, none of which should
fall below a certain (user-defined) threshold. In common use are the following
measures (DX

.= {T ∈ D |X ⊂ T } denotes the transactions in the database D
which contain the items X ⊂ A, and |DX | is its cardinality):
– A measure of support defines the absolute number or the proportion of trans-
actions in D containing A ∪ B:

supp(A ⇒ B) .= |DA∪B| or supp(A ⇒ B) .=
|DA∪B|
|D| . (1)

– The confidence is the proportion of correct applications of the rule:

conf(A ⇒ B) .=
|DA∪B|
|DA| . (2)
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– A rule A ⇒ B should be interesting in the sense that it provides new infor-
mation. That is, the occurrence of A should indeed have a positive influence
on the occurrence of B. A common measure of the interest of a rule is

int(A ⇒ B) .=
|DA∪B|
|DA| − |DB|

|D| . (3)

This measure can be seen as an estimation of Pr(B |A)− Pr(B), that is the
increase in probability of B caused by the occurrence of A.

2.2 Quantitative Association Rules

In the above setting, a transaction T can be seen as a sequence (x1, . . . , xm) of
values of binary variables Xı with domain DXı = {0, 1}, where xı = T [Xı] = 1
if the ıth item Xı is contained in T and xı = 0 otherwise. Now, let X and
Y be quantitative attributes (such as age or income) with completely ordered
domains DX and DY , respectively. Without loss of generality we can assume
that DX , DY ⊂ R. A quantitative association rule involving the variables X
and Y is then of the following form:

A ⇒ B : If X ∈ A = [x1, x2] then Y ∈ B = [y1, y2], (4)

where x1, x2 ∈ DX and y1, y2 ∈ DY . This approach can simply be generalized
to the case where X and Y are multi-dimensional vectors and, hence, A and
B hyper-rectangles rather than intervals. Subsequently, we proceed from fixed
variables X and Y , and consider the database D as a collection of data points
(x, y) = (T [X ], T [Y ]), i.e. as a projection of the original database.

Note that the quality measures from Section 2.1 are applicable in the quan-
titative case as well:1

supp(A ⇒ B) = |({(x, y) ∈ D |x ∈ A ∧ y ∈ B}|, (5)

conf(A ⇒ B) =
|{(x, y) ∈ D |x ∈ A ∧ y ∈ B}|

|{(x, y) ∈ D |x ∈ A}| . (6)

In fact, each interval [x1, x2] does again define a binary attribute Xx1,x2 =
I[x1,x2]. Thus, not only the rating but also the mining of quantitative rules can
be reduced to the mining of binary association rules, by simply transforming the
numerical data into binary data [18, 22]. Still, finding a useful transformation
(binarization) of the data is a non-trivial problem by itself which affects both, the
efficiency of subsequently applied mining algorithms and the potential quality of
discovered rules. Apart from data transformation methods, clustering techniques
can be applied which create intervals and rules at the same time [16, 24].

1 Subsequently we focus on support and confidence measures. The results can be trans-
ferred to other measures such as interest in a straightforward way.
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2.3 Fuzzy Association Rules

Replacing the sets (intervals) A and B in (4) by fuzzy sets (intervals) leads to
fuzzy (quantitative) association rules. Thus, a fuzzy association rule is under-
stood as a rule of the form A ⇒ B, where A and B are now fuzzy subsets rather
than crisp subsets of the domains DX and DY of variables X and Y , respec-
tively. We shall use the same notation for ordinary sets and fuzzy sets. Moreover,
we shall not distinguish between a fuzzy set and its membership function, that
is, A(x) denotes the degree of membership of the element x in the fuzzy set A.
Note that an ordinary set A can be considered as a “degenerate” fuzzy set with
membership degrees A(x) = IA(x) ∈ {0, 1}.

3 Quality Measures for Fuzzy Association Rules

The standard approach to generalizing the quality measures for fuzzy association
rules is to replace set-theoretic by fuzzy set-theoretic operations. The Cartesian
product A×B of two fuzzy sets A and B is usually defined by the membership
function (x, y) �→ min{A(x), B(y)}. Moreover, the cardinality of a finite fuzzy
set is simply the sum of its membership degrees [17]. Thus, (5) and (6) can be
generalized as follows:

supp(A ⇒ B) .=
∑

(x,y)∈D

min{A(x), B(y)}, (7)

conf(A ⇒ B) .=

∑
(x,y)∈D min{A(x), B(y)}∑

(x,y)∈D A(x)
. (8)

Note that the support of A ⇒ B corresponds to the sum of the individual
supports, provided by tuples (x, y) ∈ D:2

supp[x,y](A ⇒ B) = min {A(x), B(y)} . (9)

According to (9), (x, y) supports A ⇒ B if both, x ∈ A and y ∈ B.

3.1 Support

The fact that the antecedent A and the consequent B play symmetrical roles in
(9) might appear strange. Indeed, a more logic-oriented approach to modeling a
fuzzy rule “If X is A then Y is B” would use a generalized implication operator
�, i.e. a mapping [0, 1]× [0, 1] → [0, 1] which generalizes the classical material
implication (particularly, � is non-increasing in the first and non-decreasing in
the second argument). Thus, individual support can be defined as

supp[x,y](A ⇒ B) .= A(x) � B(y) (10)

2 See [12] for an alternative approach where the frequency of a fuzzy item is measured
by a fuzzy cardinality, i.e. by a fuzzy (rather than by a crisp) number.
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and, hence, the overall (now asymmetric) support as

supp(A ⇒ B) .=
∑

(x,y)∈D

A(x) � B(y). (11)

In order to realize the difference between (9) and (10), consider a simple rule
“A ⇒ B: If X is approximately 10 then Y is almost 0” defined by two fuzzy
subsets of the non-negative integers,

A : x �→
{
1− |10−x|

5 if 6 ≤ x ≤ 14
0 otherwise

, B : y �→
{
1− x

5 if 0 ≤ x ≤ 4
0 otherwise

.

To which degree does the tuple (x, y) = (8, 3) support the above rule? According
to (9), the support is 2/5, namely the minimum of the membership of 8 in A and
the membership of 3 in B. According to (10) with � the Goguen implication

α � β
.=

{
1 if α = 0

min{1, β/α} if α > 0

the individual support is larger, namely 2/3. In fact, (x, y) = (8, 3) does hardly
violate (and hence supports) the rule in the sense of (10): It is true that y = 3
does not fully satisfy the conclusion part of the rule; however, since x = 8 does
not fully meet the condition part either, it is actually not expected to do so.

1098765 11 12 13 14 15
0

1

2

3

4

5

Fig. 1. A simple functional relation between two variables
that can be described by means of a gradual fuzzy rule.

As can be seen, the definition of adequate quality measures for fuzzy as-
sociation rules depends strongly on the interpretation of the rule.3 For further
illustration, consider the nine observations shown in Figure 1.4 In the sense of
(10), each of these observations does fully support the rule “If X is approximately
10 then Y is almost 0.” In fact, this rule is actually interpreted as “The closer X

3 Particularly, the strategy of first using (7) and (8) to find interesting fuzzy associa-
tions and then interpreting these rules as implications appears questionable [4].

4 Needless to say, this is a somewhat artificial example not at all typical of data mining.
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is to 10, the closer Y is to 0” or, more precisely, “The closer X is to 10, the more
it is guaranteed that Y is close to 0.” Therefore, (11) yields supp(A ⇒ B) = 9.
As opposed to this, the overall support is only 5 according to (7), since the indi-
vidual support min{A(x), B(y)} which comes from a point (x, y) is bounded by
B(y), the closeness of y to 0. For instance, the support through (6, 4) is only 1/5
rather than 1. Note that, in the sense of (11), the support of the rule A ⇒ B is
larger than the support of B ⇒ A! This reflects the fact that the closeness of x
to 10 is less guaranteed by the closeness of y to 0 than vice versa. For instance,
y = 2 is “rather” close to 0, whereas x = 14 is only “more or less” close to 10,
hence supp[2,14](B ⇒ A) = 1/3 < 1 = supp[14,2](A ⇒ B).

The above example shows that the implication-based approach should be
preferred whenever an association rule is thought of as expressing a gradual “the
more ... the more ...”-relation between variables and all the more if this relation
is not symmetric. For instance, the rule “Young people have low income” might
actually be understood as “The younger a person, the lower the income,” and
this rule might well be distinguished from its inversion “The lower the income,
the younger the person.”

Concerning the adequacy of (11) as a support measure for association rules,
two points deserve mentioning. Firstly, the concept of support in the context of
association rules is actually intended as non-trivial support. Yet, the truth degree
of a (generalized) implication α � β is 1 whenever α = 0: From a logical point
of view, a false premise entails any conclusion. That is, the rule A ⇒ B would
also be supported by those points (x, y) for which x �∈ A. In order to avoid this
effect, (10) can be modified as follows:

supp[x,y](A ⇒ B) =

{
A(x) � B(y) if A(x) > 0

0 if A(x) = 0
. (12)

According to (12), a point (x, y) supports a rule if both, it satisfies the rule (from
a logical point of view) and it is non-trivial. Here, non-triviality is considered as a
binary concept. However, it can also be quantified as a gradual property, namely
as the degree to which x is in A. Combining satisfaction and non-triviality by
means of a generalized logical conjunction �, a so-called t-norm, then yields
supp[x,y](A ⇒ B) = �(A(x), A(x) � B(y)). For example, by using the product
operator as a special t-norm we obtain

supp[x,y](A ⇒ B) = A(x) · (A(x) � B(y)). (13)

Note that (9), (12), and (13) are identical in the case where A and B are intervals,
that is where A(x), B(y) ∈ {0, 1}.

The second point concerns the choice of the implication operator �. In fact,
different types of implication operators exist which support different interpreta-
tions of a fuzzy rule [11]. The gradual “the more ... the more...”-interpretation
discussed above is supported by so-called R(esiduated)-implications. An impli-
cation � of this type can be derived from a t-norm � by residuation (hence the
name):

α � β
.= sup{γ ∈ [0, 1] | �(α, γ) ≤ β}.
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A second important class is given by so-called S(trong)-implications, which are
defined by α � β

.= n(α)⊕β, where ⊕ is a t-conorm (a generalized disjunction)
and n a strong (hence the name) negation. For example, taking n(·) = 1−(·) and
⊕ = max, one obtains the Kleene-Dienes implication α � β = max{1− α, β}.

S-implications support a different type of fuzzy rule, often referred to as
certainty rules. Basically, they attach a level of uncertainty to the conclusion
part of the rule, in correspondence with the truth degree of the condition part.
These rules, however, appear less reasonable in the context of association rules.
This can be exemplified by the Kleene-Dienes implication. For this operator, the
truth degree is lower-bounded by 1−A(x). Thus, (13) entails supp[x,y](A ⇒ B) ≥
min{A(x), 1 − A(x)} regardless of the value B(y). For example, if A(x) = 1/2,
then supp[x,y](A ⇒ B) = 1/2, no matter whether B(y) is 1/2, 1/4, or even 0.
This contrasts with R-implications, for which β = 0 generally implies α � β = 0.

3.2 Confidence

A measure of confidence of a fuzzy association rule can be derived from a cor-
responding measure of support. Indeed, in the non-fuzzy case, the confidence of
A ⇒ B is nothing else than the support of A ⇒ B over the support of A, that
is, the support of A ⇒ DY . Interestingly enough, however, the minimal confi-
dence condition conf(A ⇒ B) ≥ ∆ (where ∆ is a user-specified threshold) can
be interpreted in different ways, which in turn suggest different generalizations.

According to the aforementioned interpretation which relates the support of
A ⇒ B to the support of A, one obtains the generalized confidence measure

conf(A ⇒ B) .=

∑
(x,y)∈D supp[x,y](A ⇒ B)∑

(x,y)∈D supp[x,y](A ⇒ DY )
. (14)

Note that A(x) � DY (y) = A(x) � 1 = 1 for all (x, y). Thus, the denominator
in (14) simplifies to

∑
(x,y)∈D I(0,1](A(x)) for (12) and

∑
(x,y)∈D A(x) for (13).

A second possibility is to relate the support of A ⇒ B to the support of
A ⇒ ¬B. In this case, the minimal confidence condition means that the rule
A ⇒ B should be supported much better than A ⇒ ¬B:

conf(A ⇒ B) =

∑
(x,y)∈D supp[x,y](A ⇒ B)∑

(x,y)∈D supp[x,y](A ⇒ ¬B)
. (15)

Note that A(x) = supp[x,y](A ⇒ DY ) = supp[x,y](A ⇒ B) + supp[x,y](A ⇒ ¬B)
for all (x, y) in the non-fuzzy case, which means that (14) and (15) are equivalent
in the sense that one criterion can mimic the other one by adapting its threshold:

supp(A ⇒ B)
supp(A ⇒ DY )

≥ ∆ ⇔ supp(A ⇒ B)
supp(A ⇒ ¬B)

≥ ∆

1− ∆
.
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4 Semantic Interpretation of Fuzzy Association Rules

In this section, we propose a semantic model of implication-based fuzzy rules
which can directly be applied to fuzzy association rules. The idea is to represent
a fuzzy rule as a collection of crisp (implication-based) rules. According to this
model, a fuzzy association rule can be considered as a convex combination of
non-fuzzy association rules. In this connection, we shall also justify the support
measures (12) and (13).

4.1 Pure Gradual Rules

Consider two variables X and Y ranging on domains DX and DY , respectively.
Moreover, let A and B denote fuzzy subsets of DX and DY . For the sake of
simplicity, we assume the range of A and B to be a finite subset L ⊂ [0, 1]. That
is, membership degrees A(x) and B(y) are elements of L = {λ1, . . . , λn}, where
0 = λ1 < λ2 < . . . < λn = 1.

A special type of fuzzy rule, called pure gradual rule [10], is obtained for the
Rescher-Gaines implication

α → β
.=

{
1 if α ≤ β

0 if α > β
. (16)

A pure gradual rule does actually induce a crisp relation of admissible tuples
(x, y). In fact, the fuzzy rule A ⇒ B, modeled by the implication (16), is equiv-
alent to the following class of non-fuzzy constraints:

X ∈ Aλ ⇒ Y ∈ Bλ (λ ∈ L) (17)

where Aλ = {x |A(x) ≥ λ} is the λ-cut of A. Now, in some situations one
might wish to modify the constraints (17), that is to weaken or to strengthen a
conclusion Y ∈ Bλ drawn from the condition X ∈ Aλ. This leads to a collection

X ∈ Aλ ⇒ Y ∈ Bm(λ) (λ ∈ L) (18)

of (non-fuzzy) constraints, where m is a mapping L → L. These constraints can
be written compactly in terms of membership functions as m(A(X)) ≤ B(Y ),
and correspond to the rule A ⇒ B modeled by the modified Rescher-Gaines
implication→m with α →m β = 1 of m(α) ≤ β and 0 otherwise. Given two fuzzy
sets A and B, we can thus associate a gradual rule A →m B (which is short for:
A ⇒ B modeled by the implication →m) with each function m : L → L. Note
that m should be non-decreasing: If the premise X ∈ Aλ entails the conclusion
Y ∈ Bm(λ), then a more restrictive premise X ∈ Aλ′ (λ < λ′) justifies this
conclusion all the more, that is m(λ) ≤ m(λ′). Thus, the scale L gives rise to
the following class of gradual rules:

G = GA,B = {A →m B |m : L → L is non-decreasing}. (19)
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4.2 Other Implication-Based Rules

The tuples (x, y) that satify a pure gradual rule A →m B define an ordinary
relation πm ⊂ DX × DY :

πm(x, y) =

{
1 if m(A(x)) ≤ B(y)
0 if m(A(x)) > B(y)

. (20)

More generally, an implication operator � induces a fuzzy relation π�, where
π�(x, y) = A(x) � B(y) is the degree of admissibility of (x, y). Subsequently,
we assume a multiple-valued implication � to be non-increasing in the first and
non-decreasing in the second argument, and to satisfy the identity property:
λ � 1 = 1 for all λ ∈ L.

4.3 Randomized Gradual Rules

We are now going to establish a helpful relationship between an implication-
based rule A � B, i.e. the rule A ⇒ B modeled by the implication operator �,
and the class (19) of pure gradual rules A →m B associated with A and B.

Definition 1 (randomized rule). A randomized rule associated with a condi-
tional statement “If X is A then Y is B” is a tuple (G, p), where G = GA,B is
the (finite) set of pure gradual rules (19) and p is a probability distribution on
G. Each rule A →m B is identified by the corresponding function m : L → L.
Moreover, pm = p(A →m B) is interpreted as the probability (or, more generally,
the weight) of the rule A →m B.

Recall that each pure gradual rule A →m B induces an admissible set (20) of
tuples (x, y). Therefore, a randomized rule (G, p) gives rise to a random set over
DX × DY and, hence, induces the following fuzzy relation:

π(G,p) =
∑
m∈G

pm · πm. (21)

Moreover, (21) is completely determined by the following implication operator
associated with (G, p):

λı
(G,p)� λ =

∑
m∈G : m(λı)≤λ

pm. (22)

Namely, π(G,p)(x, y) = A(x)
(G,p)� B(y) for all (x, y) ∈ DX × DY .

Recall that a pure gradual rule corresponds to a collection of simple, non-
fuzzy constraints and, hence, disposes of a very simple semantics. Since a random
rule is a convex combination of pure gradual rules, it can also be interpreted in
a very simple way. This lets the representation of a general implication-based
fuzzy rule in terms of a random rule seem appealing. Concerning this represen-
tation, we have proved the following existence and uniqueness results [9]: For
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each implication operator �, a probability p exists such that the rule A � B is
equivalent to the randomized rule (G, p) in the sense that π� = π(G,p). That is,
the rule A � B and the randomized rule (G, p) induce the same admissibility re-
lation on DX ×DY . Moreover, the probability p is guaranteed to be unique if the
implication operator � does not have a certain (strict) monotonicity property.

Theorem 1. For each fuzzy rule A ⇒ B formalized by means of an implication
operator � an equivalent random rule (G, p) exists. Moreover, the representation
in terms of (G, p) is unique if the condition ¬(γk < γı < γıl)∨¬(γk < γkl < γıl)
holds for all 1 ≤ ı < k ≤ n and 1 ≤  < l ≤ l, where γı = λı � λ.

4.4 Application to Association Rules

In Section 2, we have proposed to consider a fuzzy association A ⇒ B as an
implication-based (gradual) fuzzy rule. Referring to the above interpretation, a
rule A ⇒ B can hence be seen as a convex combination of simple or pure gradual
association rules

A →m B (m ∈ G), (23)

weighted by the probability degrees pm. Each of these gradual association rules
in turn corresponds to a collection

Aλ ⇒ Bm(λ) (λ ∈ L) (24)

of ordinary association rules. In fact, if the level-cuts Aλ and Bm(λ) of the fuzzy
sets A and B are intervals, which holds true for commonly used membership
functions, then (24) reduces to a class of interval-based association rules.

The interpretation as a randomized rule assigns an association rule a concrete
meaning and might hence be helpful in connection with the acquisition (mining)
and interpretation of such rules. Apart from this, it provides a basis for justifying
quality measures for fuzzy association rules. In fact, proceeding from the convex
combination of rules (23) it is obvious to define the support of A ⇒ B as the
convex combination of the supports of the rules A →m B:

supp(A ⇒ B) =
∑
m∈G

pm · supp(A →m B). (25)

Thus, it remains to define the (non-trivial) support of a pure gradual association
rule A →m B, that is of a collection of ordinary association rules (24). To which
degree does a point (x, y) support this class of constraints? One possibility is to
say that (x, y) supports A →m B if it satisfies all individual constraints, and,
furthermore, at least one of these constraints is non-trivial:

supp[x,y](A →m B) =

{
1 if A(x) > 0 ∧ m(A(x)) ≤ B(y)
0 otherwise

. (26)
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A second possibility is to define supp[x,y](A →m B) as the sum of weights of
those individual constraints which are indeed non-trivially satisfied:

supp[x,y](A →m B) =

{
A(x) if m(A(x)) ≤ B(y)
0 otherwise

. (27)

It is readily verified that (26), in conjunction with (25), yields the support mea-
sure (12), and that (27) in place of (26) implies (13). This result provides a sound
basis for these measures of (individual) support and, hence, for further quality
measures derived from them.

5 Concluding Remarks

We have proposed an implication-based approach to fuzzy association rules as
well as a semantic model which suggests of consider such rules as a convex
combination of simple, non-fuzzy association rules. Thus, a fuzzy association
can be seen as a compact representation of a class of simple rules. This model
clarifies the meaning and provides a sound basis of fuzzy association rules.

The paper has mainly focused on theoretical foundations of fuzzy association
rules. An important aspect of ongoing research is the practical realization of
the results, that is the development of rule mining procedures. Our current
implementation (not presented here due to space limitations, see [14]) is an
extension of the Apriori algorithm [1] which is able to cope with fuzzy attribute
values and asymmetric support measures. This algorithm takes advantage of the
fact that the support (13) of A ⇒ B is lower-bounded by the support of the
premise A: supp[x,y](A ⇒ B) = A(x) · (A(x) � B(y)) ≤ A(x). Consequently, the
premise A of a minimally supported rule A ⇒ B must be a frequent itemset or,
put in a different way, the frequent itemsets (which can be found by Apriori)
constitute a superset of the condition parts of minimally supported association
rules. Furthermore, the algorithm makes use of a monotonicity property for
implications which is similar to the monotonicity property of frequent itemsets
employed by Apriori: supp(A ⇒ B) ≤ supp(A ⇒ B′) for all B′ ⊂ B. Thus, if
A ⇒ B satisfies the minimum support condition, the same condition holds for
each rule A ⇒ B′ with B′ ⊂ B. This provides the basis for filtering candidate
rules (obtained by combining frequent itemsets A with conclusions B) in an
efficient way.
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