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Abstract. Biologists have determined that the control and regulation of
gene expression is primarily determined by relatively short sequences in
the region surrounding a gene. These sequences vary in length, position,
redundancy, orientation, and bases. Finding these short sequences is a
fundamental problem in molecular biology with important applications.
Though there exist many different approaches to signal/motif (i.e. short
sequence) finding, in 2000 Pevzner and Sze reported that most current
motif finding algorithms are incapable of detecting the target signals in
their so-called Challenge Problem. In this paper, we show that using an
iterative-restart design, our new algorithm can correctly find the targets.
Furthermore, taking into account the fact that some transcription factors
form a dimer or even more complex structures, and transcription process
can sometimes involve multiple factors, we extend the original problem
to an even more challenging one. We address the issue of combinatorial
signals with gaps of variable lengths. To demonstrate the efficacy of our
algorithm, we tested it on a series of the original and the new challenge
problems, and compared it with some representative motif-finding algo-
rithms. In addition, to verify its feasibility in real-world applications, we
also tested it on several regulatory families of yeast genes with known
motifs. The purpose of this paper is two-fold. One is to introduce an
improved biological data mining algorithm that is capable of dealing
with more variable regulatory signals in DNA sequences. The other is to
propose a new research direction for the general KDD community.

1 Introduction

Multiple various genome projects have generated an explosive amount of biose-
quence data; however, our biological knowledge has not been able to increase in
the same pace of the growth of biological data. This imbalance has stimulated
the development of many new methods and devices to address issues such as
annotation of new genes [1][2]. Once the Human Genome Project is completed,
it can be expected that related experiments will be carried out soon. The tough
computational challenges resulting from large-scale genomic experiments lie in
the specificity and complexity of the biological processes, e.g., how we identify
the genes directly involved in diseases, how these genes function, and how these
genes are regulated, etc. Answers to the questions above are absolutely related
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to the future of health care and genomic medicine that will lead to personalized
therapy. The success of the future health care will definitely affect the entire hu-
man race in terms of life quality and even life span. Though the content of this
paper is focused on one specific biological problem, another important objective
of this paper is to draw the attention of the general KDD community to a new
research area which needs considerable efforts and novel techniques from a wide
variety of research fields, including KDD.

A cluster of co-regulated genes isolated by gene expression measurements
can only show which genes in a cell have similar reaction to a stimulus. What
biologists further want to understand is the mechanism that is responsible for
the coordinated responses. The cellular response to a stimulus is controlled by
the action of transcription factors. A transcription factor, which itself is a special
protein, recognizes a specific DNA sequence. It binds to this regulatory site to
interact with RNA polymerase, and thus to activate or repress the expression
of a selected set of target genes. Given a family of genes characterized by their
common response to a perturbation, the problem we try to solve is to find these
regulatory signals (aka motifs or patterns), i.e. transcription factor binding sites,
that are shared by the control regions of these genes.

It has been determined that the control and regulation of gene expression
is primarily determined by relatively short sequences in the region surrounding
a gene. These sequences vary in length, position, redundancy, orientation, and
bases. In any case these characteristics make the problem computationally dif-
ficult. For example, a typical problem would be: given 30 DNA sequences, each
of length 800, find a common pattern of length 8. Let us simplify the problem,
as many algorithms do, and assume the pattern occurs exactly once in each
sequence. This means that there are approximately 80030 potential locations
for a motif candidate. Research on finding subtle regulatory signals has been
around for many years, and still draws a lot of attention because it is one of the
most fundamental but important step in the study of genomics [3-9]. Despite
that there already exist many various algorithms, this problem is nevertheless
far from being resolved [10]. They found several widely used motif-finding algo-
rithms failed on the Challenge Problem as follows.

Let S = {s1, ..., st} be a sample of t n-letter sequences. Each sequence con-
tains an (l, d)-signal, i.e., a signal of length l with d mismatches. The problem is
how to find the correct (l, d)-signal.

In their experiments, they implanted a (15,4)-signal in a sample of 20 sequences.
To verify the effect of the sequence length, they varied n from 100 to 1000.
The experimental results showed that as the sequence length increased, the per-
formance of MEME [3], CONSENSUS [4] and the Gibbs sampler [5] decreased
dramatically. There are two causes to their failures. First, the algorithms may
lodge in local optima. The increase of the sequence length can incur more local
optima, and further aggravates the problem. Second, they rely on the hope that
the instances of the target signal appearing in the sample will reveal the signal
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itself. However, in the Challenge Problem, there are no exact signal occurrences
in the sample, only variant instances with 4 mismatches instead. Pevzner and Sze
proposed WINNOWER and SP-STAR to solve the Challenge Problem, but the
applicability of WINNOWER is limited by its complexity and the performance
of SP-STAR drops significantly like others as the sequence length increases.

Due to the fact that transcription factors may form a dimer or more complex
structures, and some transcription initiations may require the binding of two or
more transcription factors at the same time, we further extend the Challenge
Problem by addressing the issue of combinatorial signals with gaps of variable
lengths. Most of the current approaches can only find motifs consisting of contin-
uous bases without gaps. Some methods have been proposed to deal with motifs
or alignments with gaps, but they either limit the focus on fixed-gaps [11-13]
or use other less expressive representations than the weight matrix, e.g., regular
expression-like languages or the IUPAC code [14][15]. To alleviate the limitations
of current approaches, we introduce a new algorithm called MERMAID, which
adopts the matrix for motif representation, and is capable of dealing with gaps of
variable lengths. This presentation expands upon work by others by combining
multiple types of motif significance measures with an improved iterative sam-
pling technique. We demonstrate its effectiveness in both the original and the
extended Challenge Problems, and compare its performance with that of several
other major motif finding algorithms. To verify its feasibility in real-world ap-
plications, we also tested MERMAID on many families of yeast genes that share
known regulatory motifs.

2 Background

There are three main interrelated computational issues: the representation of a
pattern, the definition of the objective function, and the search strategy. While
we examine the algorithms on computational grounds, the final, gold-standard
is how well the algorithm does at predicting motifs.

2.1 Representation

As the primary DNA sequences are described by a double-stranded string of nu-
cleic bases {A,C,G,T}, the most basic pattern representation is the exact base
string. Due to the complexity and flexibility of the motif binding mechanism,
there is rarely any motif that can be exactly described by a string of nucleic
bases. To obtain more flexibility, the IUPAC code was designed, which extends
the expressiveness of the simple base string representation by including all dis-
junctions of nucleotides. In this language there is a new symbol for each possible
disjunction, e.g. W represents A or T.

A more informative pattern representation is a probability matrix in which
each element reflects the importance of the base at a particular position. Such
matrices can be easily translated into the IUPAC code, while the converse is
not true. These matrices are often transformed from the observed occurrence
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frequencies. For example, in the NIT regulatory family [6] which contains 7
members, a possible 6-base motif matrix is illustrated in Fig. 1. The normalized
matrix is also shown in this figure.

A 0 7 0 7 7 0 A 0.00 1.00 0.00 1.00 1.00 0.00
G 6 0 0 0 0 7 normalized to G 0.86 0.00 0.00 0.00 0.00 1.00
C 1 0 0 0 0 0 C 0.14 0.00 0.00 0.00 0.00 0.00
T 0 0 7 0 0 0 T 0.00 0.00 1.00 0.00 0.00 0.00

Fig. 1. A 6-base Motif Matrix Example

2.2 Objective Function

The purpose of an objective function is to approximate the biological meanings
of the patterns in terms of a mathematical function. The objective function are
heuristics. Once the objective function is determined, the goal is to find those
patterns with high objective function value. Different objective functions have
been derived from the background knowledge, such as the secondary structures
of homologous proteins, the relation between the energetic interactions among
residues and the residue frequencies, etc [17][18]. Objective functions based on
the information content or its variants were proposed [4][5]. Others evaluate the
quality of the pattern by its likelihood or by some other measures of statistical
significance [3][13].

Even though there are many different objective functions currently used, it is
still unclear what is the most appropriate object function or the best representa-
tion for patterns that will correspond to biological significant motifs. More likely,
additional knowledge will need to be incorporated to improve motif characteri-
zation. In the final analysis, the various algorithms can only produce candidate
motifs that will require biological experiments to verify.

2.3 Search Strategy

If one adopts the exact string representation, then one can exhaustively check
every possible candidate. However this approach is only able to identify short
known motifs or partial long motifs [13]. Therefore, the primary representation
used is a probability matrix [3][4][5][7]. Once one accepts a probability matrix as
the representation, then there is no possibility for an exhaustive search. Initial
approaches started with hill-climbing strategies, but these typically fell into local
optimum. Standard approaches to repairing hill-climbing, such as beam and
stochastic search, were tried next[4]. The current approaches involve a mixture
of sampling and stochastic iterative improvement. This avoids the computational
explosion and maintains or improves the ability to find motifs [3][5][7].
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3 MERMAID: Matrix-Based Enumeration and Ranking
of Motifs with gAps by an Iterative-Restart Design

According to the objective function they apply, most current approaches based
on greedy or stochastic hill-climbing algorithms optimize the probability matrix
with all positions within a sequence [4][5]. This is not only inefficient, but may
also increase the chance of getting trapped in local optima in case of subtle
signals contained in long sequences due to a greater number of similar random
patterns coexisting in the sequences. To avoid this drawback, we can begin by
allowing each substring of length l to be a candidate signal. We then convert this
particular substring into a probability matrix, adopting an idea from [3]. This
gives us a set of seed probability matrices to be used as starting points for iter-
ative improvement. We use the seed probability matrix as a reference to locate
the potential signal positions with match scores above some threshold. The op-
timization procedure only checks these potential positions instead of all possible
locations in a sequence. By directing the attention to the patterns same as or
close to the substring that is considered a motif candidate, we can significantly
constrain the search space during the iterative improvement process.

Nevertheless, when the target signal is very subtle, e.g., (15,4)-signal, the way
that we only consider the selected potential signal positions becomes biased.
This bias is based on the assumption that the instances of the target signal
existing in the sample have sufficient regularity so that we can finally derive the
correct target signal from these instances through optimization. Unfortunately,
this optimistic assumption does not hold if the regularity represented by the
signal instances is inadequate to distinguish themselves from similar random
patterns. As a consequence, the chance of mistaking random patterns for real
signal instances gets higher. The optimization process may thus converge to
other variant patterns than the correct signal.

When dealing with subtle signals, a stochastic approach is not guaranteed to
find the correct target signal owing to the influence of similar random patterns.
However, the pattern it converges to must be close to the target itself because the
random patterns must carry some resemblance to the target signal; otherwise,
they would not be selected to participate in the optimization process. Suppose
the target signal is the most conserved pattern in the sample as usually expected
and we use one signal instance as the seed for optimization. No matter what
pattern it finally converges to, this pattern is at least closer to the target signal
than the substring (i.e. the signal instance in the sample) used as the seed even
if it is not the same as the target. Since the converged pattern is closer to the
target signal, one way to further refine this pattern is to reuse it as a seed, and
run through the optimization again. We can iteratively restart the optimization
procedure with the refined pattern as a new seed until no improvement is shown.
With this iterative restart strategy, we expect to successfully detect subtle signals
like (l, d)-signals in the Challenge Problem.

Pevzner and Sze proposed some extension to SP-STAR to deal with gapped
signals [10], but their method typically addressed the fixed-gap issue only. How-
ever, in some real domains, motifs may contain gaps of variable lengths, and
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simultaneous and proximal binding of two or more transcription factors may
be required to initiate transcription[9][14]. Therefore, a natural extension to the
Challenge Problem is to find combinatorial (l, d)-signals. A combinatorial (l, d)-
signal signal may consist of multiple (l, d)-signals as its components, and the
length of gap between two components may vary within a given range. For ex-
ample, a (l, d)-X(m, n)-(l, d)-signal is one that has two (l, d)-signals with a gap
of variable lengths between m and n bases. Note that the signal length and the
number of mutations may be different in various components.

There are generally two approaches to finding combinatorial signals. The first
is a two-phase approach. We find signal component candidates in the first phase.
In the second phase, we use the component candidates to form and verify signal
combinations [16]. This approach is effective when the signal components are
significant enough per se so they can be identified in the first phase for later
combination check. In cases that the signal components gain significance only in
combinations, the former approach may overlook the interaction between com-
ponents and thus fail to find meaningful combinations. To avoid this limitation,
an alternative approach is to find combinatorial signals directly. We developed
MERMAID (Matrix-based Enumeration and Ranking of Motifs with gAps by
an Iterative-restart Design) to deal with subtle combinatorial signals.

The main process flow of MERMAID is divided into four steps. Given a
biosequence family, it first translates substring combinations into matrices. We
convert this particular substring into a probability matrix in two steps, adopting
an idea from [3]. First we fix the probability of every base in the substring to
some value 0 < X < 1, and assign probabilities of the other bases according
to 1−X

4−1 (4 nucleic bases). Following Bailey and Elkan, we set X to 0.5. We also
tried setting X to 0.6. The result showed no significant difference. Each matrix
represents a component of a combinatorial motif. This step gives us a set of seed
probability matrices to be used as starting points for iterative improvement.
Second, it filters the potential motif positions in the family of sequences. Note
that each single motif is derived from a substring combination. Thus, besides
the matrices, MERMAID also keeps the locations of substrings for all potential
motifs to deal with the flexible gaps. Third, given the set of potential motif
positions that include the location of each motif component (i.e. substring), it
performs an iterative stochastic optimization procedure to find motif candidates.
Finally, it ranks and reports these candidates according to the motif significance
that is based on the combination of different types of quality measures, including
consus [4], multiplicity [6][13] and coverage [7]. The consus quality is derived from
the relative entropy, which is used to measure how well a motif is conserved.
The multiplicity is defined as the ratio of the number of motif occurrences in
the family to that in the whole genome. This measures the representativeness
of a motif in a family relative to the entire genome, and consequently, discounts
motifs which are common everywhere, such as tandem repeats or poly A’s. We
define motif coverage as the ratio of the number of the sequences containing
the motif to the total number of biosequences in the family. This reflects the
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importance of a motif’s being commonly shared by functionally related family
members. Due to limited space, please refer to [16] for more details.

A pseudocode description of the iterative-restart optimization procedure in
MERMAID is given in Fig. 2. Let n be the sequence length. The pseudocode
(4)-(9) scan the entire sample against each matrix m to find the highest match
scoring substring combination in each sequence, locate the potential positions
of the combinatorial motif, and form an initial matrix combination M. These
totally take O(n · GN−1 · |S|) operations, where G is the maximum gap range
and N is the total number of motif components. Let p be the maximum number
of potential positions in a sequence, p typically � n. The inner repeat-loop (10)-
(14) takes (p · L) operations to check different positions, where L is a constant
for the cycle limit. Pseudocode (15)-(19), which scan the entire sample against
matrix M to isolate signal repeats, and form the final probability matrix FM,
also take O(n ·GN−1 · |S|) operations. From above, the outer repeat-loop (3)-(21)
totally takes O(L(2n · GN−1 · |S| + pL)) = O(n · GN−1 · |S|). Now considering
the outer for-loop (1)-(21) and (22)-(23), we conclude the whole procedure is
bounded by O(n ·GN−1 · |S| ·n ·GN−1 · |S|) = O((n ·GN−1 · |S|)2). When G and
N are relatively small, O((n · GN−1 · |S|)2) = O((n · |S|)2), which is the same as
MEME and SP-STAR, but lower than WINNOWER’S O((n · |S|)k+1), where k
is the clique size, k ≥ 2 in general.

4 Experimental Results

One of the goals of this paper is to demonstrate that enhanced by applying an
iterative restart strategy, our new motif detection algorithm is able to find subtle
signals, e.g. (15,4)-signal. Based on its definition, we reproduced the Challenge
Problem, and used it to compare our new algorithm with others.

Pevzner and Sze’s study [10] showed that for a (15,4)-signal, CONSENSUS,
the Gibbs sampler and MEME start to break at sequence length 300-400bp.
Their system called SP-STAR breaks at length 800 to 900, and their other al-
gorithm named WINNOWER performs well through the whole range of lengths
till 1000bp. Using the same data generator to create data samples (thanks to Sze
for providing the program), we demonstrate our new algorithm is competitive
with other systems. We tested MERMAID over eight samples, as Pevzner and
Sze did, each containing 20 i.i.d. sequences of length 1000bp. The comparison
of performance of the various algorithms is shown in Table 1. The numbers in
Table 1 present the performance coefficients as defined in [10] averaged over
eight samples. Let K be the set of known signal positions in a sample, and let
P be the set of predicted positions. The performance coefficient is defined as
|K ∩ P |/|K ∪ P |.

Moreover, in order to show that it is the synergy of the iterative restart
strategy and the optimization procedure combined with the multiple objective
functions in MERMAID that helps find the subtle signals, we implanted in the
sample the motif found by MEME with minimum mismatches to the target
signal at a random position. We then reran MEME. We repeated the above
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Given: a set of biosequences, S
the total width of a combinatorial motif, W (excluding gaps)
the maximal gap range, G
the number of components in a combinatorial motif, N
the cycle limit, L

Return: a set of ranked motif candidates, C

(1)For each substring combo s in S Do
(2) Set s to ss as a seed

(3) Repeat
(4) Translate each substring in ss into candidate probability

matrix m via:
m(i,base) = .50 if base occurs in position i

= .17 otherwise

(5) Find highest match scoring substring combo in each sequence in S
(6) Compute the mean of the highest match scores in S
(7) For each sequence in S Do
(8) Set Potential Positions to those with match score >= mean

(9) Randomly choose a Potential Position in each sequence
to initialize matrix combo M

(10) Repeat
(11) Randomly pick a sequence s in S
(12) Check if M’s significance can be improved by using a

different Potential Position in s
(13) Update matrix combo M
(14) Until (no improvement in M’s consensus) or (reach the

cycle limit L)

(15) Compute the mean of match scores of substring combo
contributing to M

(16) For each sequence s in S Do
(17) Isolate motif repeats to those with match score >= mean
(18) Form the final matrix combo FM with all repeats in S
(19) Convert matrix combo FM into string combo ss as a new seed
(20) Until (no improvement in FM’s significance) or (reach the

cycle limit L)
(21) Put FM in C

(22)Sort all motif candidates in C according to significance
(23)Return C

Fig. 2. Pseudocode of MERMAID
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Table 1. Comparison of performance for (15,4)-signals in 20 i.i.d. sequences of length
1000bp

CONSENSUS Gibbs MEME MEME oligonucleotide WINNOWER SP-STAR MERMAID
(w/ iterative restart) analysis (clique size is 3)

0.06 0.11 0.02 0.09 0.00 0.88 0.23 0.75

Table 2. Performance of MERMAID for (6,1)-X(m,n)-(6,1)-signal in 20 i.i.d. sequences
of length 1000bp

g = 3 g = 5 g = 7 g = 9
0.91 0.88 0.90 0.56

process, and checked whether this iterative restart strategy alone could improve
MEME’s performance. The reason we tested MEME is that MERMAID adopts
the same motif enumeration method as MEME. Since MEME exhaustively tests
every substring in the sample, the implanted substring will be used as a seed in
the next run. We only implanted the motif closest to the real signal (i.e., mini-
mum mismatches) to ensure that the base distribution in the sample was nearly
unchanged. Though we did not actually re-code MEME, this approximate sim-
ulation could still effectively reflect its performance. The result is also presented
in Table 1.

Table 1 indicates that MERMAID outperforms CONSENSUS, the Gibbs
sampler and MEME (with or w/o iterative restart) by a significant scale. Note
that the performance coefficients of WINNOWER and SP-STAR reported in
(Pevzner and Sze, 2000) are included only for reference because we did not have
access to these two systems at the time. However, this indirect evidence may
suggest that MERMAID performs better than SP-STAR, and is expected to be
comparable with WINNOWER. We also tested MERMAID on ten real regulons
collected by van Helden et. al. [6] to verify its usefulness in finding motifs in
real-world domains. MERMAID successfully identified all the known motifs in
each regulon.

For the extended Challenge Problem, we tested MERMAID on (6, 1)-X(m, n)-
(6, 1)-signals in a set of 20 sequences of length 1000bp, where m and n were
varied to form a gap ranging from three to nine bases. The experimental results
are presented in Table 2, in which g presents the gap range. It shows that the
performance of MERMAID is quite stable till the gap length reaches nine.

In addition to the artificial problem, we also tested MERMAID on several real
regulons [13] in which the known binding sites have fixed gaps. The summary
of the regulons is presented in Table 3, and we show the results in Table 4.
In the fourth column of Table 4, the number within the brackets presents the
rank of the signal found by MERMAID. Converting the matrices found into the
IUPAC codes, we compared them with the published motifs, and found they
have significant similarity. The known motifs in the regulatory families are all
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Table 3. Summary of regulons used in the experiments

Family Genes
GAL4 GAL1 GAL2 GAL7 GAL80 MEL1 GCY1
CAT8 ACR1 lCL1 MLS1 PCK1 FBP1
HAP1 CYB2 CYC1 CYC7 CTT1 CYT1 ERG11 HEM13 HMG1 ROX1
LEU3 GDH1 lLV1 LEU1 LEU2 LEU4
LYS LYS1 LYS2 LYS4 LYS9 LYS20 LYS21
PPR1 URA1 URA3 URA4
PUT3 PUT1 PUT2

ranked in the top ten. The experimental results indicate MERMAID, which
was originally developed to deal with variable gaps, also performs well on real
domains where motifs have fixed gaps.

5 Conclusion and Future Work

In this paper we have described a new subtle signal detection algorithm called
MERMAID, which iteratively restart a multi-strategy optimization procedure
combined with complementary objective functions to find motifs. The exper-
imental results show that the system performs significantly better than most
current algorithms in the Challenge Problem. To argue the success of MER-
MAID is attributed to the synergy of iterative restart and other components in
the system, i.e. optimization procedures and objective functions, we have demon-
strated that simply attaching a iterative restart strategy with MEME shows little
improvement.

The difficulty of finding the biologically meaningful motifs results from the
variability in (1) the bases at each position in the motif, (2) the location of
the motif in the sequence and (3) the multiplicity of motif occurrences within
a given sequence. In addition, the short length of many biologically significant
motifs and the fact that motifs gain biological significance only in combinations
make them difficult to determine. MERMAID was developed to deal with subtle
combinatorial signals. Our experiments showed MERMAID successfully detected
combinatorial signals composed of proximal components as well as the known
motifs with gaps in many real regulons of yeast genes.

For the future work, we aim to improve MERMAID in two directions. One
is efficiency and the other is flexibility. First, the optimization process in MER-
MAID for a single candidate is independent of each other. Therefore, MERMAID
can be easily implemented on a parallel or distributed system to improve its ef-
ficiency. Second, MERMAID only performs well on combinatorial signals with
gaps within a relatively tight range. A wider range of gap length produces a
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larger search space for motif-finding algorithms, and in such cases, it is compu-
tationally prohibited to enumerate all possibilities exhaustively. We thus plan
to apply a second stochastic sampling process to search through the space of
variable gaps, and incorporate domain knowledge when available to constrain
the search space.
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