
Using Grammatical Inference to Automate
Information Extraction from the Web

Theodore W. Hong and Keith L. Clark

Department of Computing
Imperial College of Science, Technology, and Medicine

180 Queen’s Gate, London SW7 2BZ
United Kingdom

{twh1,klc}@doc.ic.ac.uk

Abstract. The World-Wide Web contains a wealth of semistructured
information sources that often give partial/overlapping views on the same
domains, such as real estate listings or book prices. These partial sources
could be used more effectively if integrated into a single view; however,
since they are typically formatted in diverse ways for human viewing, ex-
tracting their data for integration is a difficult challenge. Existing learn-
ing systems for this task generally use hardcoded ad hoc heuristics, are
restricted in the domains and structures they can recognize, and/or re-
quire manual training. We describe a principled method for automati-
cally generating extraction wrappers using grammatical inference that
can recognize general structures and does not rely on manually-labelled
examples. Domain-specific knowledge is explicitly separated out in the
form of declarative rules. The method is demonstrated in a test setting
by extracting real estate listings from web pages and integrating them
into an interactive data visualization tool based on dynamic queries.

1 Introduction

The World-Wide Web contains a wealth of information resources, many of which
can be considered as semistructured[1] data sources: that is, sources containing
data that is fielded but not constrained by a global schema. For example, doc-
uments such as product catalogs, staff directories, and classified advertisement
listings fall into this category. Often, multiple sources provide partial or over-
lapping views on the same underlying domain. As a result, there has been much
interest in trying to combine and cross-reference disparate data sources into a
single integrated view.

Parsing web pages for information extraction is a significant obstacle, how-
ever. Although the markup formatting of web sources provides some hints about
their record and field structure, this structure is also obscured by the presenta-
tion aspects of formatting intended for human viewing and the wide variation in
formats from site to site. Manually constructing extraction wrappers is tedious
and time-consuming, because of the large number of sites to be covered and the
need to keep up-to-date with frequent formatting changes.
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We propose the use of grammatical inference to automate the construction of
wrappers and facilitate the process of information extraction. Grammatical in-
ference is a subfield of machine learning concerned with inferring formal descrip-
tions of sets from examples. One application is the inference of formal grammars
as generalized structural descriptions for documents.

By applying an inference algorithm to a training sample of web pages from
a given site, we can learn a grammar describing their format structure. Using
domain-specific knowledge encoded in declarative rules, we can identify produc-
tions corresponding to records and fields. The grammar can then be compiled
into a wrapper which extracts data from those pages. Since the data pages on
a given website typically follow a common site format, particularly if they are
dynamically created from scripts, such wrappers should be able to operate on
the rest of the pages as well.

This process can be largely automated, making it easy to re-generate wrap-
pers when sites change formatting. Although others have explored the use of
machine learning for wrapper creation, previous systems have generally relied
on hardcoded ad hoc heuristics or the manual labelling of examples, and/or have
been restricted in the domains and structures they can recognize. Our method is
more principled, based on an objective method for inferring structure and a de-
scription language (context-free grammars) of high expressive power. We avoid
manual intervention as far as possible and explicitly separate out domain-specific
knowledge using declarative rules. These characteristics should make our system
easier to use and more broadly applicable in different domains.

Taking the real estate domain as an example, we demonstrate the use of our
approach to extract property listings from a set of mock web pages. We also
briefly show an interactive data visualization tool based on dynamic queries for
exploring the resulting high-dimensional data space.

The rest of this paper is organized as follows: in Sect. 2, we introduce the
formal background to grammatical inference before describing our inference al-
gorithm in Sect. 3. We then apply the algorithm to the real estate domain in
Sect. 4. Related work is discussed in Sect. 5, and finally Sect. 6 gives conclusions
and future work.

2 Grammatical Inference

Grammatical inference[17] is a class of inductive inference in which the target
is a formal language (a set of strings over some alphabet Σ) and the hypothesis
space is some family of grammars. The objective is to infer a consistent grammar
for the unknown target language, given a finite set of examples.

The classical approach to grammatical inference was first given by Gold[13],
who introduced the notion of identification in the limit. This notion is concerned
with the limiting behavior of an inference algorithm on an infinite sequence
of examples. Formally, a complete presentation of a language L is an infinite
sequence of ordered pairs (w, l) in Σ∗ × {0,1}, where l = 1 if l ∈ L and 0
otherwise, and every string w ∈ Σ∗ appears at least once. If an inference method
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M is run on larger and larger initial segments of a complete presentation, it will
generate an infinite sequence of guesses g1, g2, g3, etc. M is said to identify L
in the limit if there exists some number n such that all of the guesses gi are the
same for i ≥ n, and gn is equivalent to L.

This approach is not directly applicable to the web document task, since only
positive examples are available (these being the actual documents existing at a
site). Gold showed that any class of languages containing all the finite languages
and at least one infinite language cannot be identified in the limit from only
positive examples without negative ones. For example, the classes of regular and
context-free languages both fit this criterion. The problem is that the task is
under-constrained. Given only positive examples, the inferencer has no basis for
choosing among hypotheses which are too general (e.g. the language consisting
of all strings), too specific (e.g. the language consisting of exactly the examples
seen so far), or somewhere in between.

3 Inference Algorithm

We approach the inference problem differently as a search for the simplest gram-
mar which has a consistent fit with the provided sample, on the assumption that
simple grammars are more likely to convey meaningful structure. We introduce
a learning bias to constrain the search by starting from a specialized grammar
which has high fit but low simplicity, and applying various transformations to
generalize and simplify it while retaining fit. To guide this process, we take
the set of stochastic context-free grammars as the hypothesis space and define
a complexity function on it in terms of description length. Stochastic context-
free grammars[4] are context-free grammars with probabilities attached to their
productions. The probabilities aid inference by providing additional information
about the relative weight of alternative productions—for example, given two al-
ternatives for some nonterminal, are both equally important or is one likely to
be just noise? This information is useful for assessing relative complexity and
performing simplifications or extracting data later on.

3.1 Measuring Grammar Complexity

Let G be a stochastic context-free grammar with productions and associated
probabilities given by:

X1 → w11 | w12 | . . . | w1,m1 [P11, P12, . . . , P1,m1 ]
X2 → w21 | w22 | . . . | w2,m2 [P21, P22, . . . , P2,m2 ]

...
Xn → wn1 | wn2 | . . . | wn,mn [Pn1, Pn2, . . . , Pn,mn ] ,

(1)

where the Xi are nonterminals, the wij are alternatives, and the Pij are the
probabilities associated to those alternatives (i.e.

∑mn

j=1 Pij = 1 for each i).
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Following Cook et al.[7], we define the complexity C(G) as:

C(G) =
n∑

i=1

mn∑

j=1

− log Pij + c(wij) (2)

where c(wij) is a second complexity function on the wij strings. This definition
has the intuitively desirable properties that the complexity of G is the sum of the
complexities of its productions and that the complexity of a production is the
sum of the complexities of its alternatives. The complexity of an alternative has
two components, the information-theoretic information content of its probability
and the complexity of the string produced. Finally, the complexity of a string w
is a function of its length and the proportions of distinct symbols in it:

c(w) = (K + 1) log(K + 1) −
r∑

i=1

ki log ki (3)

where w has length K and contains r distinct symbols each occurring k1, k2, . . . ,
kr times, respectively. Longer and more varied strings are rated more complex.

3.2 Inference as Search

We can formulate the goal of looking for the simplest consistent grammar as
a search in the space of grammars where the cost function is the complexity
function C. Our starting point is the overspecific grammar that simply generates
the training set with perfect fit:

S → w1 | w2 | . . . | wm [P1, P2, . . . , Pm] , (4)

where w1 . . . wm are the strings occurring in the set and P1 . . . Pm are their
relative frequencies. If all the strings are different, then the Pi will all be equal
to 1/m; however, the Pi may vary if some strings appear more than once in the
set. This initial grammar will generally have very high complexity.

We can then perform a search by considering various transformation steps
which might lower the complexity and generalize the grammar while retaining
good fit. Some of the transformations used (again following [7]) are:

1. Substitution: If a substring s occurs multiple times in different alternatives
(e.g. in the grammar X1 → asb, X2 → csd), create a new rule Y → s
and replace all occurrences of s by Y ’s. This transformation helps identify
subunits of structure. For example, when applied to the productions “John
is eating cake” and “Mary is eating bread,” it will separate “is eating” into
another rule.

2. Disjunction: If two substrings s and t occur in similar contexts (e.g. in the
grammar X1 → asb, X2 → atb), create a new rule Y → s | t and replace
all occurrences of s and t by Y ’s. This transformation introduces generaliza-
tion based on context. For example, when applied to the productions “John
throws baseballs” and “John catches baseballs,” it will propose “throws”
and “catches” as alternatives for the same production.



220 T.W. Hong and K.L. Clark

3. Expansion: Remove a rule Y → s | t | . . . | v by replacing every alternative
that mentions Y with a set of alternatives in which Y is replaced with s, t,
etc. This can reverse previous substitutions and disjunctions later on.

4. Truncation: Remove alternatives having very low probability and redistribute
their probability among the remaining alternatives. This can be used to re-
move noise below some threshold.

5. Normalization: Merge redundant alternatives (e.g. X → s | s) and drop pro-
ductions that are inaccessible (cannot be reached from the start symbol) or
blocking (result in some nonterminal that cannot be rewritten). This is often
necessary to “clean up” grammars to show the full extent of simplification
resulting from another transformation.

Other variations on these transformations are also considered. For practical rea-
sons, since the branching factor of possible search steps can be very large (some-
times exceeding 100), we perform searching using a greedy deterministic hill-
climbing strategy. Simulated annealing is another possibility we are examining.

3.3 Example: Parenthesis Expressions

To demonstrate the algorithm, we consider the language of balanced parenthesis
strings. Take the set of all such strings up to length 6 as the training set, with
frequencies as shown (to be justified later):

sample = {(), ()(), (()), ()()(), ()(()), (())(), (()()), ((()))}
[0.5, 0.125, 0.125, 0.0625, 0.03125, 0.03125, 0.0625, 0.0625] .

(5)

The initial grammar, with complexity 99.68, is:

S → () | ()() | (()) | ()()() | ()(()) | (())() | (()()) | ((()))
[0.5, 0.125, 0.125, 0.0625, 0.03125, 0.03125, 0.0625, 0.0625] .

(6)

Ten substrings are candidates for substitution: (), )(, ((, )), ()(,)(), ((), ()), ()(),
and (()). The greatest reduction in complexity is obtained by substituting on ().
Since it already appears as an alternative for S, we simply substitute S for ()
everywhere. The resulting grammar has complexity 88.09:

S → () | SS | (S) | SSS | S(S) | (S)S | (SS) | ((S))
[0.5, 0.125, 0.125, 0.0625, 0.03125, 0.03125, 0.0625, 0.0625] ,

(7)

Now the repeated substrings are SS, (S, S), and (S). Choosing (S) gives:

S → () | SS | (S) | SSS | SS | SS | (SS) | (S)
[0.5, 0.125, 0.125, 0.0625, 0.03125, 0.03125, 0.0625, 0.0625] .

(8)

After normalizing by merging redundant alternatives and summing their associ-
ated probabilities, we obtain a grammar with complexity 42.19:

S → () | SS | (S) | SSS | (SS)
[0.5, 0.1875, 0.1875, 0.0625, 0.0625] .

(9)
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The final set of repeated substrings are SS, (S, and S), of which SS lowers
complexity the most. This gives:

S → () | SS | (S) | SS | (S)
[0.5, 0.1875, 0.1875, 0.0625, 0.0625] ,

(10)

which after normalizing is the usual grammar for the parenthesis language:

S → () | SS | (S)
[0.5, 0.25, 0.25] .

(11)

The final complexity is 20.51. Notice that if these probabilities are used to gen-
erate a set of strings up to length 6, we recover the string frequencies in the
original sample. In this example, only substitution and normalization operations
were used, but in general other transformations may be needed as well.

4 Information Extraction

We tested our algorithm on a set of mock web pages containing London real
estate listings. The pages all followed the same general layout (see Figs. 1 and 2)
but contained varying numbers of listings on each page, some containing pictures
of the described property and some without. The set of pages was taken as the
training set and the algorithm attempted to construct a suitable description
from which extraction wrappers could be generated.

4.1 Grammatical Inference Phase

The web pages in the training set were first converted to abstract strings over
the alphabet {HTML tag types} ∪ {text}. This was done by discarding HTML
attributes from the tags encountered, so that tags of the same type (e.g. an-
chor start tags) would be treated as the same alphabet symbol (e.g. a). Free
text occurring between tags was converted to the symbol text. In using this
transformation, we assume that structure is mainly present at the tag type level
and focus on that level by ignoring variations in text and attributes (e.g. href
values). For example, two contact links:

<hr><a href="mailto:sales@a.com">A-1 Realtors</a>
<hr><a href="mailto:help@b.com">Bee Estate Agents</a>

would both be transformed to the same abstract string, hr a text /a.
Each page string then became an alternative in the initial grammar, which

had perfect fit but high complexity (1056.32):

html head . . . table tr td b text /b br text . . . /html
S → | html head . . . table tr td img b text /b br . . . /html

| etc.
(12)
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Fig. 1. A sample real estate listing page

<html><head>
<title>Listings in Southwest London</title>
</head>
<body>
<h1>Southwest London</h1>
<table border=1 width=100%>
<tr><td><b>New Kings Road, SW6</b><br>
&pound;120,000<br>
A quiet and secluded studio flat with a garden situated at
the rear of this Victorian converted building in the heart
of Fulham. Contact: 020-722-3322.
</td></tr>...

Fig. 2. Part of the HTML source for Fig. 1

The inference algorithm ran in five seconds on a Pentium 233 and examined
386 candidate grammars, lowering the complexity to a value of 119.19 (see Fig. 3
for the quality curve). The final grammar was:

S → html head title text /title /head body h1 text /h1
table T /table p address text /address /body /html

T → TT | tr td U b text /b br text br text /td /tr
U → e | img br .

(13)
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Fig. 3. Quality curve for the real estate grammar search

We can interpret this structure as follows. The start symbol S represents
a complete page. A page begins with a fixed header, followed by one or more
occurrences of T , each of which represents a single listing. A listing consists
of a table row of data optionally containing an image U . Finally, the page is
terminated by a fixed trailer.

In this process we have not made use of the DTD (document type definition)
specification which defines the HTML language. Since by definition the HTML
DTD is a general structure describing all HTML documents, it is not useful as
a close fit to any particular set of pages. However, taking account of constraints
from the DTD during transformations (for example, to keep blocks of elements
from being split) might be a useful refinement to the algorithm. Alternately, a
different approach altogether might be to start from the general HTML DTD
and specialize it to the training set, rather than starting from a specific grammar
and generalizing.

4.2 Domain-Specific Phase

The grammatical inference phase performs a coarse segmentation of the page into
units of varying sizes, corresponding to different nonterminals. To complete the
segmentation, we need to apply domain-specific knowledge to determine which
units correspond to records and to segment the fields within records.

Domain knowledge is expressed as declarative information extraction rules
for domain fields. Each rule consists of a field name and type plus a regular
expression defining the context in which that field might appear. Rules are exe-
cuted by applying the regular expression to a chunk of text. If a match is found,
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a specified portion of the matching text is extracted as the value of the field.
Disjunctions can be used to define multiple contexts for a field. For example, in
the real estate domain we might have a default set of rules such as the following:

number price = (&pound;|&#163;|£){[0-9]+}
string telephone = {[0-9]+-[0-9]+-[0-9]+}
boolean garden = garden|yard

The first rule says that a price looks like some form of pound sign followed
by a number. The part of the match delimited by braces is returned as the field
value. The second declares a telephone number as a string of digits interspersed
with dashes, all of which becomes the field value. The third defines a boolean
attribute which is true if either of the strings “garden” or “yard” is present.

These rules are then applied to the units discovered by the grammatical infer-
ence phase. More precisely, the following procedure is used. Parse the training
pages according to the inferred grammar. For each occurrence of a nontermi-
nal, collect all of the text appearing below it in the parse tree into an associated
chunk. For the page shown in Fig. 1, the nonterminal S would be associated with
one chunk containing all of the text on the page; T would be associated with
four chunks, each containing the text of one listing; and U would be associated
with four chunks containing no text.

Now apply the information extraction rules to each chunk. If a chunk yields
multiple matches for several rules, as S does, it probably contains more than
one record. However, if few or no rules match, as in U , the chunk is proba-
bly smaller than a record. The nonterminal matching the most rules without
duplicate matches is assumed to correspond to a record—in this case, T .

4.3 Wrapper Generation Phase

Having identified the nonterminal T as corresponding to a listing record, we
can now compile the grammar into a wrapper that extracts records from pages
as chunks of text and applies domain rules to extract typed fields from those
records. At this point, the user can manually add additional site-specific rules for
fine-tuning. These rules may be optionally qualified by a piece number to restrict
the match range to a particular piece (i.e. the section of text corresponding to a
specific text symbol) within a chunk. For example, the following rules:

string address = 1 : {.*},
string description = 3

specify that the address is the part of the first piece appearing before a comma,
and that the description is the entire content of the third piece.

Running the wrapper on the sample page yields the records shown in Table 1.
Once wrappers for all of the data sources to be used have been generated, the
system can extract records from each and integrate the resulting data into a
combined database. If a partial database is already available, it may be of use
in helping to identify domain fields and formulate extraction rules for them.
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Table 1. Partial listing of extracted records

Address Price Garden Description

New Kings Road 120,000 yes A quiet and secluded studio flat. . .

Addison Gardens 124,000 yes A particularly quiet and convenient. . .

Cheval Court 120,000 yes A refurbished first floor studio. . .

Jeffreys Road 130,000 no A good sized lower ground floor. . .

Note that complete integration may not be possible, by nature of the data’s
origin in multiple collections of semistructured text. Some extraction rules may
fail on some records, and not all fields may be present on all sites in the first
place or even present in all records within a site. However, a mostly-complete
overview can still be of significant value.

As a final step, this database can then be used as input into a data mining
or information integration system. See for example [14], which describes an in-
teractive real estate visualization system based on dynamic queries (see Fig. 4
for a screenshot). In this system, sliders continuously set selection criteria for
properties (shown as color-coded points on a map) and can be used to naturally
and rapidly explore the data space.

Although these preliminary results are qualitatively encouraging, more rig-
orous testing remains to be done to quantify performance on real-world data
in terms of recognition rates, etc. Further work is also necessary to determine
how robust the method is under different conditions and whether it might get
stuck in local optima (switching to simulated annealing may be useful) or have
difficulty identifying records properly.

5 Related Work

Ahonen[2] has used grammatical inference to generate structural descriptions for
tagged SGML documents such as dictionaries and textbooks, while Freitag[10]
explored the use of grammatical inference to find field boundaries in free text.
A large amount of work has been done on developing inference algorithms; [17]
presents a useful overview.

Work on integrating data from multiple websites has been carried out by
a number of researchers. One of the first, Krulwich’s BargainFinder[15], was
able to scan product listings and prices from a set of on-line web stores and
extract them into a unified ordered table. However, it was based entirely on
hand-coded wrappers tailored specifically to each source site. ShopBot[9] went a
step further by using various ad hoc heuristics to automate wrapper building for
online stores, but was extremely domain-specific. Kushmerick[16] extended this
work by defining some classes of wrappers that could be induced from labelled
examples, while Ashish and Knoblock[3] built a toolkit for semi-automatically
generating wrappers using hardcoded heuristics.
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Fig. 4. Screenshot of an interactive real estate visualization system

Craven et al.[8] describe an inductive logic programming algorithm for learn-
ing wrappers, also using labelled examples. Cohen[6] introduced a method for
learning a general extraction procedure from pairs of page-specific wrappers and
the pages they wrap, although the method was restricted to simple list structures.
AutoWrapper[11] induces wrappers from unlabelled examples but is restricted
to simple table structures. Ghani et al.[12] combined extraction of data from cor-
porate websites with data mining on the resulting information. The TSIMMIS
project[5] is another system aimed at integrating web data sources; however, its
main focus is on query planning and reasoning about source capabilities rather
than information extraction (performed by hand-coded wrappers).

6 Conclusions and Future Work

In conclusion, we have demonstrated a principled method for generating informa-
tion extraction wrappers using grammatical inference that enables the integra-
tion of information from multiple web sources. Our approach does not require the
overhead of manually-labelled examples, should be applicable to general struc-
tures, and ought to be easily adaptable to a variety of domains using domain
knowledge expressed in simple declarative rules.

These are still preliminary results, and further work is necessary to test the
inference algorithm on more complicated web pages from real-world sources in
different domains, and to conduct a more rigorous quantitative evaluation. We
would also like to examine the use of simulated annealing in the search.
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