
Fusion of Meta-knowledge and Meta-data for
Case-Based Model Selection

Melanie Hilario and Alexandros Kalousis

CUI - University of Geneva, CH-1211 Geneva 4
{hilario,kalousis}@cui.unige.ch

Abstract. Meta-learning for model selection, as reported in the sym-
bolic machine learning community, can be described as follows. First, it is
cast as a purely data-driven predictive task. Second, it typically relies on
a mapping of dataset characteristics to some measure of generalization
performance (e.g., error). Third, it tends to ignore the role of algorithm
parameters by relying mostly on default settings. This paper describes
a case-based system for model selection which combines knowledge and
data in selecting a (set of) algorithm(s) to recommend for a given task.
The knowledge consists mainly of the similarity measures used to retrieve
records of past learning experiences as well as profiles of learning algo-
rithms incorporated into the conceptual meta-model. In addition to the
usual dataset characteristics and error rates, the case base includes ob-
jects describing the evaluation strategy and the learner parameters used.
These have two major roles: they ensure valid and meaningful compar-
isons between independently reported findings, and they facilitate repli-
cation of past experiments. Finally, the case-based meta-learner can be
used not only as a predictive tool but also as an exploratory tool for
gaining further insight into previously tested algorithms and datasets.

1 Issues and Objectives

Broadly speaking, the model selection problem concerns the choice of an appro-
priate model for a given learning task. However, the term has been used with
varying nuances, or at least shifting emphases, among the different communi-
ties now involved in data mining. The divergence seems to concern the level of
generality at which one situates the search for the appropriate model. Among
statisticians, model selection takes place within a given model family: it typically
refers to the task of creating a fully specified instance of that family, called the
fitted model, whose complexity has been fine-tuned to the problem at hand [9].
This convention has been carried over to neural network (NN) learning, where
model complexity is a function of parameters specific to a family of network
architectures – e.g., the number of hidden layers and units for feedforward NNs
or the number of centers for Radial Basis Function Networks [15]. In the sym-
bolic machine learning (ML) community, the term model selection designates
the task of selecting a learning algorithm for a specific application; thus search
is conducted in the space of all known or available model families and the se-
lection of a learning algorithm circumscibes a model class or family from which

L. De Raedt and A. Siebes (Eds.): PKDD 2001, LNAI 2168, pp. 180–191, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Fusion of Meta-knowledge and Meta-data for Case-Based Model Selection 181

the learned model will eventually emerge. However, the task of finding the most
appropriate model instantiation from the selected family has been relatively ne-
glected. In other words, ML researchers tend to end where statisticians and NN
researchers tend to start. Thus, while the latter seldom envisage model selection
beyond the frontiers of a specific model family (e.g. multilayer perceptrons), the
former often overlook the role of model parameters when doing cross-algorithm
comparisons; the Statlog [12] and Metal projects [11], for instance, have adopted
the expedient of systematically evaluating learning algorithms with their default
parameter settings. In the broader perspective of data mining, however, these
diverse definitions should be seen as partial and complementary perspectives on
a complex multifaceted task. The first research objective of this work is to in-
tegrate the choice of learning methods as well as model parameters in a unified
framework for model selection.

Given that no learning algorithm can systematically outperform all others
[17], the model selection problem arises anew with each learning task. The most
common approach consists in experimenting with a number of alternative meth-
ods and models and then selecting one which maximizes certain performance
measures. However, with the increasing number and diversity of learning meth-
ods available, exhaustive experimentation is simply out of the question. There
is a need to limit the initial set of candidate algorithms on the basis of the
given task or data, and one can legitimately hope that algorithms which have
proved useful for a certain class of tasks will confirm their utility on other, simi-
lar tasks. Hence the idea that by examining results of past learning experiences,
one might determine broad mappings between learning methods and task classes
so that model selection does not start from scratch each time. Meta-learning is
an attempt at automating the realization of this idea.

The meta-learning approach to model selection has been typically based on
characterizations of the application dataset. In Statlog, meta-learning is a classi-
fication task which maps dataset attributes to a binary target variable indicating
the applicability or non-applicability of a learning algorithm. Data characteris-
tics can be descriptive summary statistics (e.g., number of classes, number of in-
stances, average skew of predictive variables) or information-theoretic measures
(e.g., average joint entropy of predictive and target variables). There have since
been a number of attempts to extend or refine the Statlog approach. In the Metal
project, for instance, datasets have also been characterized by the error rates
observed when they are fed into simple and efficient learning algorithms called
landmarkers (e.g., Naive Bayes or linear discriminants) [13]. However, the basic
idea underyling the Statlog approach remains intact – i.e., that meta-attributes
describing the application task/dataset suffice to predict the applicability or the
relative performance of the candidate learning algorithms.

To broaden the range of meta-level predictors, we propose algorithm profiling
as a complement to dataset characterization in general and to landmarking in
particular. Landmarking uses specially selected learners to uncover information
about the nature of the learning task or data. By contrast, algorithm profiling
uses specially designed datasets to deliver information about a learning algorithm



182 M. Hilario and A. Kalousis

– its bias/variance profile, scalability, tolerance to noise, irrelevant variables or
missing data. While landmarking attempts to describe a dataset in terms of
the areas of expertise to which it belongs (as witnessed by the landmarkers
which perform well on it), algorithm profiling strives to describe in concrete,
quantitative terms what makes up the region of expertise of a learning algorithm.
The second objective is to complement dataset characterizations with algorithm
profiles as predictors in the meta-learning process.

There is a fundamental difference between dataset and algorithm character-
izations behind their apparent symmetry. Dataset characteristics are meta-data
extracted from individual datasets whereas algorithm profiles embody meta-
knowledge about learning algorithms which can be brought to bear on model
selection over different datasets. The essential difference lies in the fact that al-
gorithm characteristics have been derived via a process of abstraction and/or
generalization. This generalized knowledge may be borrowed from the collective
store of expertise in the domain or alternatively abstracted via controlled exper-
imentation, as in the case of meta-attributes concerning sensitivity to missing or
irrelevant data. In addition to prior meta-knowledge about learning/modelling
tools, a domain expert’s background knowledge of her application domain can
be expressed in the form of constraints that should be taken into account in the
search for an appropriate tool. The third objective is to strike an effective and ef-
ficient balance between meta-learning and the use of prior (base- and meta-level)
knowledge in the model selection process.

With the introduction of prior knowledge about learning algorithms and
application domains, meta-learning becomes a multi-relational task which calls
for greater expressive power than that offered by attribute value vectors. In
this paper we describe an object-oriented case-based meta-learning assistant
which addresses the issues and objectives described above. Section 2 describes
the knowledge embedded in the system’s underlying conceptual (meta) model.
Section 3 describes the current implementation – the extensive case base gathered
to date as well as the different ways in which it can be exploited – and proposes
a strategy for evaluating its incremental meta-learning capabilities. Section 4
summarizes and argues for its possible utility as a long-term meta-memory of
machine learning experiments.

2 The Embedded Knowledge

This section focuses on the knowledge embedded in the meta-model of the learn-
ing process. A simplified view of the conceptual schema is shown in Fig. 1.

2.1 Modelling Processes

The core of the meta-model is the modelling process, which depicts a specific
learning episode or experiment. It is described by a number of performance
measures such as the error rate, the training/testing time, and the size of the
learned model or hypothesis. More importantly, theModProcess object is the hub



Fusion of Meta-knowledge and Meta-data for Case-Based Model Selection 183

Fig. 1. The conceptual metamodel (see Sect. 2 for explanation)

which links together three main components according to a precise semantics:
a modelling or learning tool (ModTool) is trained and tested on the given data
(Dataset) following a particular evaluation strategy (EvalStrat). The structure
and attributes of these three components comprise the background information
which will be brought to bear in the meta-learning and model selection process.

2.2 Datasets

The object depicting a dataset can be seen as a simple, albeit extended, impor-
tation of the Statlog dataset characteristics. These will not be described here
(see [12] for a detailed discussion); rather, we present several major extensions
which have been made possible by the structured representation adopted. In
the Statlog formalism, only summary statistics over all predictive variables of
a dataset could be recorded; the consequence was that atypical variables (e.g.,
irrelevant variables) were impossible to detect since the symptoms of this atyp-
icality (e.g., an extremely low measure of mutual information with the target
variable) somehow got dissolved in the overall statistics (e.g., average mutual in-
formation). Such problems disappear in a multi-relational representation, where
a dataset can be characterized more thoroughly by the collection of objects that
describe its component variables.

In addition, both variables and datasets can be divided into subclasses
and thus described only by features that are certain to make sense for the spe-
cific category in question. One persistent problem of meta-learning in Statlog



184 M. Hilario and A. Kalousis

and other propositional approaches is that different types of datasets are forced
into a single attribute vector, with the result that many meta-attributes have
missing values when they turn out to be non applicable to a certain data type.
For instance, summary statistics of continuous variables (eg mean skewness,
departure from normality) are not applicable to categorical variables; also, in-
formation theoretic measures are often not computed for continuous variables.
The result is that comparisons between symbolic, numeric, and mixed datasets
become highly problematical. This difficulty is circumvented quite naturally in
a typed multi-relational setting. Variables can be divided into subclasses along
two dimensions. According to their role in the dataset, they are either predictors
or targets; according to the data type, they are either continuous or discrete.
Similarly, datasets may be symbolic, numeric, or mixed, depending on the types
of their component variables. Along a different dimension, datasets are either
labelled (e.g., for classification) or unlabelled (e.g., for association). Labelled
datasets contain a number of attributes such as average joint entropy or average
mutual information which make sense only for supervised learning tasks.

2.3 Modelling Tools

The ModTool class subsumes any fully implemented modelling or learning
method which can be used for supervised or unsupervised knowledge discov-
ery from data. Each tool is formalized as a ModTool sublcass. The tools used
in our initial study are C5.0 in its tree (c50tree) and rule (c50rule) versions, an
oblique decision tree (ltree) [4], a sequential covering rule inducer (ripper) [3],
the MLC++ implementations of Naive Bayes (mlcNB) and IB1 (mlcIB1) [7],
Joao Gama’s implementation of Fisher’s linear discriminant (lindiscr), and the
Clementine implementations of radial basis function networks (clemRBFN) and
backpropagation in multilayer perceptrons (clemMLP)1. All learning tools inherit
the meta-features defined for the ModTool class; in addition, each subclass has
its specific attributes corresponding to the tool’s user-tunable model and search
parameters – e.g., pruning severity for (c50tree), the number of centers and their
overlap for (clemRBFN). Each application of a learning tool is recorded as an
instance of the corresponding subclass, and the actual parameters override the
default values predefined in the conceptual schema.

There are no intermediate subhierarchies of modelling tools according to
learning paradigm or computational approach. This design option has been taken
deliberately: since the aim of our meta-learner is to discover mappings of data
and task types onto classes of learners, we have avoided a priori classifications
that may hinder the discovery of novel or unexpected affinities or clusters among
learning methods. On the other hand, we have tried to embed as much knowledge
as possible about the biases, strengths and weaknesses of each learning tool.

Representation and Approach. The simplest form of knowledge concerns
the basic requirements, capabilities and limitations of each tool, which have
1 The parenthesized names will be used throughout the rest of this paper to identify
the specific implementations of the learning algorithms studied.



Fusion of Meta-knowledge and Meta-data for Case-Based Model Selection 185

Table 1. Characterizing representation and approach of modeling tools

ModTool Data Inc CH VH Par Meth Strat Cum
c50rules NS N Y Seq Sym Logic E L
c50tree NS N Y Seq Sym Logic E L
clemMLP NS N N Par NN Thresh E M
clemRBFN NS N N Par NN Comp E M
lindiscr NS N N Par Stat Thresh E H
ltree NS N N SP Sym Logic E M
mlcib1 NS Y N Par Sym Comp L M
mlcnb NS N N Par Sym Comp E H
ripper NS N N Seq Sym Logic E L

generally been gathered from algorithm specifications or instruction manuals of
the implemented tool. Attributes in this group indicate the type of data (Data
in Table 1) supported by a learning tool (N for numeric/continuous, S for sym-
bolic/discrete, NS for both), whether the tool learns incrementally or not (Inc),
or whether it can handle externally assigned costs (CH). These characteristics
can be determined in a straightforward manner and they are usually invariant
for all instantiations of a given learning tool.

As tool specifications provide only a minimal characterization of learner func-
tionality, knowledge of less obvious features (see last five columns of Table 1) has
been gathered mainly from cumulative results of past research. We borrowed the
paradigm-based categorization of learning algorithms (Par) as symbolic, statis-
tical, or connectionist as well as Langley’s distinction between logical, competi-
tive, and threshold-based learning approaches (Meth). From the point of view of
learning strategy (Strat), modelling tools are either lazy or eager, depending on
whether they simply store data, deferring learning until task execution time, or
use given data to create a model in view of future task requests. Another dimen-
sion is the way a learner handles input variables in the generalization process
(VH). Sequential algorithms (e.g., decision trees) examine one input variable at
a time, while parallel algorithms examine all input variables simultaneously [14].
Neural networks are clearly parallel; so are instance-based learners and Naive
Bayes classifiers, which aggregate distances or probabilities over all variable val-
ues simultaneously. A third, hybrid category includes algorithms such as oblique
decision trees which alternate between sequential and simultaneous processing
of variables depending on the data subset examined at a node.

An additional aspect of learning bias which has been brought to light by
recent research is what Blockeel [2] calls cumulativity (Cum). This is a gener-
alization of the statistical concept of additivity: two features are cumulative if
their effects are mutually independent, so that their combined effect is the trivial
composition of their separate effects. The cumulativity of learning algorithms is
nothing more than their ability to handle cumulativity of features, which can
be discretized roughly on a three-step scale. Linear regressors and discriminants
are naturally situated on the high end of the scale; so is Naive Bayes with its
assumption of the class-conditional independence of predictors (the product of



186 M. Hilario and A. Kalousis

Table 2. Characterizing resilience of modeling tools

ModTool Var ErrSIrr TimeSIrr MCAR MAR
c50rules 0.4503 0.0324 4.76 0.2475 0.2527
c50tree 0.4548 0.0337 4.26 0.2098 0.2094
clemMLP 0.4230 0.1292 378.25 ? ?
clemRBFN 0.3626 0.0910 9595.93 ? ?
lindiscr 0.2308 0.0351 4.92 0.1913 0.1624
ltree 0.4154 0.0413 14.57 0.1111 0.1251
mlcib1 0.3868 0.1347 56.98 0.2283 0.2292
mlcnb 0.2273 0 3.64 0.1073 0.0940
ripper 0.3862 0.0173 98.67 0.1310 0.1444

likelihoods and priors it maximizes translates directly to addivity of their respec-
tive logarithms). At the other extreme, sequential learners like decision trees
and rule induction systems allow for maximal interaction between variables and
therefore have low cumulativity. Instance-based learners and neural networks
occupy the midpoint of the scale. Neural nets handle cumulativity by means of
linear combinations while handling interaction by superposing multiple layers
and using nonlinear threshold functions.

Resilience. A second group of characteristics concerns the resilience of a mod-
elling tool, i.e., its capability of ensuring reliable performance despite variations
in training conditions and especially in the training data. Resiliency characteris-
tics reflect the sensitivity or tolerance of an algorithm to data characteristics or
pathologies that are liable to affect performance adversely. Examples are stabil-
ity, scalability, and resistance to noise, missing values, and irrelevant or redun-
dant features. Contrary to representational and methodological meta-attributes,
there is no consensus regarding the resilience of the ten learning tools included
in our initial knowledge base. We thus undertook extensive experimental studies
concerning their bias/variance trade-off and their sensivity to missing values and
irrelevant features.

Table 2 shows the results of these experiments. The column labelled Var gives
the proportion of variance in the generalization error. This was obtained by ap-
plying Kohavi and Wolpert’s bias-variance decomposition method for zero-one
loss [8] to each tool, averaged over 40 datasets from the UCI Machine Learn-
ing Repository. Note that the variance measures given here concern each tool as
applied with its default parameter settings. For instance, 0.4548 is the mean vari-
ance observed for Clementine RBF networks with the default number of hidden
units, i.e., 20; variances have also been recorded as the number of hidden units
is varied from 5 to 150. The next two columns quantfy a learner’s sensitivity
to irrelevant attributes as measured by its mean increase in generalization error
(ErrSIrr) or in training time (TimeSIrr) for each additional percent of irrelevant
attributes. These measures were obtained in a series of 10-fold cross-validation
experiments on 43 UCI datasets; each learning algorithm was run with default
parameters on the original datasets, then on 6 corrupted versions containing



Fusion of Meta-knowledge and Meta-data for Case-Based Model Selection 187

respectively 5%, 10%, 20%, 30%, 40%, and 50% irrelevant features. A full dis-
cussion of these experiments and the results is given in [5]. The last two columns
depict mean increase in generalization error with each per cent increase in miss-
ing values – either values that are missing completely at random (MCAR) or
missing at random (MAR). A value is said to be missing completely at random if
its absence is completely independent of the dataset; it is missing at random if its
absence depends, not on its own value, but on the value of some other attribute
in the dataset [10]. Here again, we followed a strategy of “progressive corrup-
tion” to observe how learners cope with incomplete data. Generalization error
was estimated for each learner on the original datasets, then on five increasingly
incomplete versions from which 5%, 10%, 20%, 30%, and 40% of the feature
values were deleted. For the MCAR series, feature values were deleted randomly
following a uniform distribution; for the MAR series, values of selected features
were deleted conditional on the values of other attributes. The interested reader
is referred to [6] for details.

It should be stressed that all characteristics as well as any conclusions drawn
about a modelling tool concern the specific software implementation under study
rather than the generic learning algorithm or method. It is well known that the
specification of an algorithm leaves considerable flexibility in implementation,
and differences between implementations of the same algorithm can turn out to
be as significant as differences between distinct methods or algorithms. Thus,
while we have taken pains to include a wide variety of learning approaches in
our study, the findings reported should not be extrapolated from the individual
tool implementation to the generic method without utmost precaution.

Practicality. Finally, other features concern more practical issues of usability.
They do not impact a learner’s generalization performance but can be used to
pre-select tools on the basis of user preferences. Examples of such characteris-
tics are the comprehensibility of the method, the interpretability of the learned
model, or the degree to which model and search parameters are handled auto-
matically. Since values of these meta-characteristics are qualitative and highly
subjective, we assigned 5-level ordinal values on what we deemed to be intu-
itively obvious grounds. For instance, parameter handling is rated very high for
lindiscr, ltree, mlcib1, and mlcnb – tools which require absolutely no user-tuned
parameter. When an algorithm involves user-tunable parameters, its rating de-
pends on how well the algorithm performs without user intervention, that, when
run with its default parameter settings. Thus c50tree and c50rules are marked
high, clemMLP medium, and clemRBFN low (the default of 20 centers often leads
to poor performance and even to downright failure to converge). As for method
comprehensibility and result interpretability, we relied heavily on the Statlog
characterization, since these are among the few characteristics that are intrinsic
to the method and vary little across implementations. For instance, the neural
network tools rate very low on both comprehensibility and interpretability; de-
cision trees and rules rate high on both counts whereas for mlcib1, the method
(learning by similarity) is easier to grasp than the ’model’ (distance measures of
nearest neighbors).



188 M. Hilario and A. Kalousis

2.4 Evaluation Strategies

To ensure that all recorded learning episodes conform to the elementary rules of
tool evaluation, each modelling process is associated with a fully specified evalua-
tion strategy. Examples of generic strategies are simple holdout, cross-validation,
bootstrap, and subsampling without replacement. Each has its own particular
set of parameters: the proportion of the training set for holdout, the number of
folds for cross-validation, or the number of replicates for bootstrap. Attributes
common to all strategies are the number of trials (complete runs of the selected
strategy) and the random seed used. Such detailed accounts have a two-fold mo-
tivation. First, we all know that the same method applied to the same dataset
can lead to widely different performance measures, depending on whether these
were estimated using simple holdout or leave-one-out cross-validation. Many
of the cross-experimental comparisons reported in the literature deserve little
credence for lack of evidence that performance measures were obtained under
identical or at least comparable learning conditions. Secondly, information about
the evaluation strategy followed in an experiment should be sufficiently precise
and complete to allow for replication and take-up by other researchers.

3 The Implementation

3.1 The Case Base

The conceptual schema described in the preceding section has been implemented
using CBR-Works Professional. Given the sheer volume of the collected meta-
data, interactive data entry was out of the question. A set of scripts was im-
plemented to automate the translation of data characterization files as well as
results of learning experiments into CBR-Works’ Case Query Language. The
current case base contains objects representing:

– more than 1350 datasets for classifications tasks (98 UCI and other bench-
marks plus semi-artificial datasets generated from these for irrelevance and
missing values experiments)

– around 37500 variables belonging to the above datasets
– around 11700 experiments involving the training and evaluation of 9 classi-
fication algorithms on the above datasets.

3.2 Exploitation Scenarios

The basic scenario follows the standard CBR cycle consisting of the four R’s:
retrieve, reuse, revise, retain [1]. A query case is entered in the form of aModPro-
cess object whose minimal content is a set of links to a three objects representing
a dataset, a modelling tool, and an evaluation strategy. While the last two can
be left completely unspecified, the application dataset should be fully charac-
terized in the query case’s Dataset object, itself linked to objects describing its
component variables. Optionally, users can fill out slots of all the other objects



Fusion of Meta-knowledge and Meta-data for Case-Based Model Selection 189

of the query case in order to specify a set of constraints based on the nature
of the application task or their own preferences. For instance, they can impose
preferences on the incrementality, comprehensibility, or stability of a modelling
tool by filling out the relevant slot of the ModTool object. In such cases, learner
characteristics serve in prior model selection by restricting from the outset the
space of tools to consider. Users can also use the ModProcess object to specify
what they consider acceptable performance (e.g., a lower bound on the accuracy
gain ratio or an upper bound on the error rate or the time to be spent in training
or testing). The system retrieves k most similar cases (where k is a user-specified
parameter), each of which can be taken as a combined recommendation for a
modelling tool, its parameter settings, and an evaluation strategy. The user runs
the recommended algorithms and the results are integrated into the case mem-
ory as k new cases and their associated objects. This basic scenario illustrates
the use of standard CBR to incrementally improve model selection by learning
from experience.

For case retrieval to work properly, additional domain-specific knowledge
has been embedded in the similarity measures. While standard symmetric cri-
teria work well with boolean or categorical meta-attributes such as learner
incrementality, method, or cost handling ability, ordered features usually call
for asymmetrical similarity criteria. Ordinal (including real) values specified in
a query case are often meant as lower or upper bounds on the corresponding
attribute. For instance, a user who requires medium interpretability of learned
models would be even happier with high or very high interpretability. Similarly,
an error specification of 0.2 in the query case should be taken to mean the high-
est acceptable error, with errors <0.2 getting proportionally higher similarity
scores as they approach 0. On the contrary, an accuracy gain ratio of 0.1 should
be interpreted as a minimum, with higher values becoming progressively more
”similar ” as they approach 1.

The reverse exploitation scenario illustrates the use of the system as an ex-
ploratory workbench which the user (who may happen to be a KDD researcher)
can use to gain insights about learning tools of interest. In problem-solving cum
learning mode, the goal is: Given this dataset, which modelling tool(s) should I
use to get best results? In exploratory mode, the goal can be stated thus: Given
this modelling tool, for which class(es) of tasks/data is it most appropriate? To
chart the region of expertise of a learning algorithm, the user enters a query
case consisting mainly of the learning algorithm and a bound on some perfor-
mance measure (e.g., an error rate <learning algorithm’s region of competence
as defined by the performance criteria used.

3.3 Validating the System

We have described an initial implementation of a case-based assistant which
recommends modelling tools for a given learning task. It provides decision sup-
port by incorporating meta-knowledge of the model selection problem into its
basic learning mechanism. The goal is to develop a workbench for incremental
meta-learning which is on the agenda for the third year of the Metal project.



190 M. Hilario and A. Kalousis

To validate the system we need to set a baseline, i.e., measure the perfor-
mance of the system with its initial knowledge and case base, and then evaluate
its ability to improve performance with experience. We propose the following
experimental setup: First, divide the exising meta-dataset into 3 roughly equal
subsets (around 4500 learning episodes each) and prime the learner with subset
1. Second, use subset 2 to ”grow ” the system. Enter each case without the
target performance measure (e.g., accuracy gain ratio) as a query, then com-
pare system recommendations with known results and add the query case to the
growing base. After addition of a fixed number of cases (e.g., 200), test the case
base on subset 3 in view of plotting performance variation with experience.

4 Summary

We presented a case-based assistant for model selection which combines three
major features. First, it combines knowledge of learning algorithms with dataset
characteristics in order to facilitate model selection by focusing on the most
promising tools on the basis of user specified constraints and preferences. Second,
it incorporates a mechanism for distinguishing between different parameteriza-
tions of learning tools, thus extending model selection to cover both the choice
of the learning algorithm and its specific parameter settings. Third, it integrates
meta-data gathered from different learning experiences with meta-knowledge not
only of learning algorithms but also of modelling processes, performance metrics
and evaluation strategies. We are aware of no other system that has all these
features simultaneously. As pointed out in the introduction, mainstream meta-
learning for model selection has focused mainly on dataset characteristics as
predictors of the appropriateness of candidate learning algorithms. Todorowski
[16] has tried to go beyond summary dataset statistics and examine character-
istics of the individual variables in the data in order to learn first-order model
selection rules. However he does not incorporate knowledge of learning tools or
their parameters.

We believe that the proposed system is not just useful for meta-learning but
can also evolve into some kind of meta-memory of machine learning research.
There is a need for a system that manages and maintains meta-knowledge in-
duced from experimentation together with information about the experiments
themselves. First, such a long-term memory would allow reliable cross-experi-
mental comparisons. It is common practice among machine learning researchers
to compare new observations on tool performance and efficiency with past find-
ings; however, in the absence of clear indications concerning experimental condi-
tions (parameter settings of the learning tools, evaluation strategies used, train-
ing and test sample sizes, statistical significance of results, etc.), there is no
guarantee that the measures being compared are indeed comparable. Second,
it would avoid redundant effort, as researchers pursuing an idea or hypothe-
sis could first consult the store of accumulated knowledge before designing new
experiments.



Fusion of Meta-knowledge and Meta-data for Case-Based Model Selection 191

Acknowledgements. We are very grateful to Maria Malek, ESTI (France),
for several fruitful discussions on the subject of CBR modelling. We also thank
Johann Petrak of OFAI (Vienna) for his most useful experimentation scripts.
The work reported in this paper was partly supported by a grant from the Swiss
OFES in the framework of ESPRIT LTR Project METAL.

References

1. A. Agnar and E. Plaza. Case-based reasoning: Foundational issues, methodological
variations, and system approaches. AI Communications, 7(1), 1994.

2. H. Blockeel. Cumulativity as inductive bias. In Data Mining, Decision Support,
Meta-Learning and ILP: Forum for Practical Problem Presentation and Prospective
Solutions, pages 61–70, Lyon, France, July 2000.

3. W. W. Cohen. Fast effective rule induction. In A. Prieditis and S. Russell, editors,
Proc. of the 11th International Conference on Machine Learning, pages 115–123,
Tahoe City, CA, 1995. Morgan Kaufmann.

4. J. Gama and P. Brazdil. Linear tree. Intelligent Data Analysis, 3:1–22, 1999.
5. M. Hilario and A. Kalousis. Quantifying the resilience of inductive classification
algorithms. In Principles of Data Mining and Knowledge Discovery. Proceedings of
the 4th European Conference, pages 106–115, Lyon, France, 2000. Springer-Verlag.

6. A. Kalousis and M. Hilario. Supervised knowledge discovery from incomplete data.
In International Conference on Data Mining, Cambridge, UK, 2000.

7. R. Kohavi, G. John, R. Long, D. Manley, and K. Pfleger. MLC++: A machine
learning library in C++. Technical report, CSD, Stanford University, August 1994.
An abridged version of this report appears in AI’94: Tools in AI.

8. R. Kohavi and D. Wolpert. Bias plus variance decomposition for zero-one loss func-
tions. In L. Saitta, editor, Proc. of the 13th International Conference on Machine
Learning, pages 275–283, Bari (Italy), 1996. Morgan Kaufmann.

9. H. Linhart and W. Zucchini. Model Selection. J. Wiley, NY, 1986.
10. R. J. Little and D. B. Rubin. Statistical Analysis with Missing Data. Wiley, 1987.
11. MetaL Consortium. Project Homepage. http://www.metal-kdd.org/.
12. D. Michie, D. J. Spiegelhalter, and C. C. Taylor, editors. Machine learning, neural

and statistical classification. Ellis-Horwood, 1994.
13. Bernhard Pfahringer, Hilan Bensusan, and Christophe Giraud-Carrier. Metalearn-

ing by landmarking various learning algorithms. In Proc. Seventeenth International
Conference on Machine Learning, ICML’2000, pages 743–750, San Francisco, Cal-
ifornia, June 2000. Morgan Kaufmann.

14. J. R. Quinlan. Comparing connectionist and symbolic learning methods. In S. J.
Hanson, G. A. Drastal, and R. L. Rivest, editors, Computational Learning Theory
and Natural Learning Systems, volume I, chapter 15, pages 446–456. MIT Press,
1994.

15. B.D. Ripley. Pattern Recognition and Neural Networks. Cambridge U. Press, 1996.
16. L. Todorowski. Experiments in meta-level learning with ILP. In International

Workshop on Inductive Logic Programming, Bled, Slovenia, 1999. Springer-Verlag.
17. D. Wolpert. The lack of a priori distinctions between learning algorithms. Neural

Computation, 8(7):1381–1390, 1996.

http://www.metal-kdd.org/

	Issues and Objectives
	The Embedded Knowledge
	Modelling Processes
	Datasets
	Modelling Tools
	Evaluation Strategies

	The Implementation
	The Case Base
	Exploitation Scenarios
	Validating the System

	Summary

