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Abstract. In this paper, we show that there exists a &cheater identifi- 
able (k, n) threshold secret sharing scheme such as follows for cheating 
probability e > 0. If k 2 31 + 1, then 

1. Just k participants are enough to identify who are cheaters. 
2. 1x1 is independent of n. That is, 1x1 = lSl(l/e)(t+2), where S de- 

notes the set of secrets and V ,  denotes the set of shares of a partici- 
pant Pi, respectively. 

(Previously, no schemes were known which satisfy both requirements.) 
Further, we present a lower bound on lvtl for our model and for the 
model of Tompa and Woll. Our bound for the TW model is much more 
tight than the previous bound. 

1 Introduction 

In a (L, n) threshold secret sharing scheme [l, 21, a secret s is distributed by the 
dealer to n participants, P I , .  . . , P,, in such a way that L or more participants 
can recover 8 and k - 1 or less participants have no information on s. A piece of 
information held by Pi is called a share and it is denoted by v i .  

Various researches considered the problem of cheaters in threshold schemes. 
Some participants may attempt to cheat, that is, to deceive other participants by 
lying about shares they hold. A threshold scheme is said to be unconditionally 
secure against cheating if the probability of successful cheating is limited to a 
specified probability even if the cheaters are infinitely powerful. Assume that the 
dealer is honest. Then, several constructions have been given such as follows. (If 
the cheaters are polynomially time bounded, this problem is easily solved by 
using a digital signature scheme.) 

McEliece and Sarwate [3] showed that Shamir's scheme itself has a cheater 
detection capability. Any set of k + 2t participants containing at most t cheaters 
can detect who are cheating. They can reveal the correct secret, as well. This 
scheme, however, requires more than k participants to detect who are cheaters. 
A secret sharing scheme of [4] also requires more than L participants to detect 
cheaters. 
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T.Rabin and Ben-Or [5] showed a scheme such that each participant can 
always detect who are cheating with high probability. Therefore, any set of par- 
ticipants containing at least k honest participants can reveal the correct secret 
with high probability. In this scheme, however, l&l is very large, where t;. de- 
notes the set of shares ui .  That is, \&I = IS)(3"-2), where S denotes the set of 
secrets. 

At the same time, Brickell and Stinson [6] showed such a nonperfect scheme 
in which IKl = )S)("+2'-3). In this scheme, k - 1 participants can have a small 
amount of information on the secret. In this scheme, is also an exponential 
function on n. 

On the other hand, Tompa and Woll[7] showed a scheme such that an honest 
participant can detect only the fact of cheating with high probability. Honest 
participants, however, cannot detect who are cheating nor reveal the correct 
secret. Carpentieri, De Santis and Vaccaor [a] showed a lower bound on IKI for 
this model. 

Here, we note that cheater identifiable schemes proposed 90 far are either 

1. k + 1 or more participants are necessary to detect who are cheaters, or 
2. IKl is an exponential function on n. 

Further, no lower bound on I&! is known. 
In this paper, we consider a model in which there are at most t cheaters. After 

formulation, we show that there exists a t-cheater identifiable (k, n) threshold 
scheme such as follows for cheating probability E > 0. If k 2 3t + 1, then 

1. Just k participants are enough to identify who are cheating. 
2. I&[ is independent of n. That is, IKI = IS((1/.s)(t+2). 

The proposed scheme uses an orthogonal array OA( t+ l ,  nISl, !). It is interesting 
to compare with a 2 error correcting BCH codes in which a generator polynomial 
G(z) has 2t consecutive zeros. Further, we present a lower bound on for our 
model and for the model of Tompa and Woll [7]. Our bound for the TW model 
is much more tight than the previous bound [B]. 

Our scheme and bound are closely related to unconditionally secure authen- 
tication codes [12]-[16]. Especially, our bound on IKl is derived from a bound 
for splitting authentication codes shown in [16]. 

In section 3, we give a formulation of our problem. The proposed scheme is 
shown in section 4. A lower bound on IqI for our model is presented in section 
5.  A lower bound on for the TW model is presented in section 6. 

2 Preliminaries 

2.1 (k, n) threshold scheme 

In a secret sharing scheme, a dealer D randomly produces (q, . . . , v,) on input 
s, where s is a secret and vi is called a share of the secret s. vi is given to 
a participant Pi, where i = 1,2,  + . . , n. Let S be the random variable induced 
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by s and Vi be the random variable induced by vj,  respectively. We also use S 
to denote the set of s and & to denote the set of v,, respectively. In a ( k , n )  
threshold scheme [l,  21, any k or more participants can recover s but no subset 
of less than k participants can determine any partial information on s. 

Shamir’s (k, n) threshold scheme [I] has error correcting capability such as 
follows [3]. 

Proposition 1. [3] Let i l ,  . . . , i, be fixed distinct values of GF(p) .  Let 

b C = { ( f ( i l ) , .  . . , f ( i , ) ) l f ( z )  is a degree t polynomial over G F ( p ) }  

where rn 2 t .  Then, C is a linear code with the minimum Hamming distance 
m - t .  

Proof. It is clear that C is a linear code. Since the degree of f(z) is t ,  the number 
of zeros of f ( z )  is at most t .  Therefore, the Hamming weight of ( f ( i l ) ,  . . . , f(im)) 
is greater than or equal to rn - t .  Further, there exists a f(z) which has t zeros. 
Hence, the minimum Hamming weight of G is m - t .  In a linear code, the 
minimum Hamming distance is equal to the minimum Hamming weight. 0 

[9, 101 showed that log, lb$/ 2 H(S)  for (k, n) threshold schemes. This bound 
was improved by Kurosawa and Okada as follows [ll] 

Proposition2. [Ill In a ( k ,  n) threshold scheme, 1x1 2 1st for any probability 
distribution on S. 

2.2 Authentication code 

In the model of unconditionally secure authentication codes, there are three 
participants, a transmitter TI a receiver R and an opponent 0. T and R share a 
common encoding rule e .  On input a source state u, T sends a message rn = e ( u )  
to R. R accepts or rejects m based on e .  0 tries to cheat R by an impersonation 
attack or a substitution attack. We assume independent probability distributions 
on source states and on encoding rules. In the impersonation attack, 0 sends m 
to R before T sends. 0 succeeds if R accepts rn. This cheating probability PI is 
defined by 

PI = maxPr[R accepts m] 

In the substitution attack, 0 observes a message rn transmitted by T and sub- 
stitutes it with another message ria. This cheating probability PS is defined by 

m 

Ps = Pr(m) maxPr[R m accepts lSzl0 observed m] (2.1) 
m 

where the maximum is taken over ria such that the source state of ria is different 
from that of rn. 

Definition3. An authentication code is called no splitting 
if l{m I e(u) = m}l = 1 for Vu and Ve.  Otherwise, it is called splitting. 
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Let U be the set of source states and Message be the set of messages respec- 
tively. Further, let 

A A 
Message(e, u) = { m  I e ( u )  = m } ,  Message(e) = u Message(e, u). 

U 

Proposition4. In an authentication code, 

( i )  [l4, 151 if it is no splitting, 

(ii) [16] i f  it is splitting, 

IMessage(e)l- max,Ecr IMessage(e, u)l 
IMessageI - min,Ev IMessage(e, u)I 

Ps 2 min 
e 

3 Formulation 

In this section, we formulate our model of t-cheater identifiable (k, n )  threshold 
scheme. In section 3-5, we assume the following assumption. 

Assumption5. The dealer is honest. There are at most t cheaters in n padie-  
ipants. (Cheaters may collude.) 

Informally, our model is defined as follows. 

(Tl) Completeness Any set of participants containing at least E honest par- 

(T2) Soundness N o  subset of less than 6 participant can determine any partial 

(T3) Detectability There exists a Turing machine M which detects who are 

ticipants can reveal the original secret s with high probability. 

information on the secret s. 

cheating with high probability if Ic or more participants open their shares. 

First, we define ( k , n )  threshold schemes with cheaters. In what follows, let 
A =  {il , . . .  , i m } .  

Definition6. ( d l ,  . . . , dm) E l4, x . . . x l4, is honest on A if 

Pr[VI:, = d l ,  . . . , V;, = dm] > 0 

Definition7. A (t, n) threshold scheme is a secret sharing scheme such as fol- 
lows. 
(i) If m 2 t, for any honest ( d l ,  . . . ,dm), 

3s, Pr[S = slg, = d l ,  . . . , V,, = dm] = 1 (3.1) 

(ii) If rn < I c ,  for any honest ( d l ,  . . . , dm), 

VS, Pr[S = s l ~ ,  = dl ,  . . . , K,,, = dm] = Pr[S = s] 
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Deflnition8. If m 2 k and ( d l ,  . . . , dm) is honest, s is uniquely determined 
from eq.(3.1). Denote such s by Secret(d1, . . . , dm) = s. 

Next, we divide vi, x . - .  x K,, into three subsets. 

Honest(A) f ( ( d l ,  . . . , dm) I ( d l , .  . . ,dm) is honest on A }  

Let M be a deterministic Turing machine. For M ,  define 
A DishonestM(A) = { ( d l , .  . .,d,,,) I ( d l ,  . . . ,dm) 4 Honest(A), 

SernihonestM(A) = { ( d l , .  . ., dm) I ( d l , .  . . , dm) # Honed(A),  

A4 detects who are cheaters from (d1, . . . , dm) correctly} 
A 

( d l , .  . . , d m )  4 Dishonest,w(A)) 

Suppose that Pi,, . . . , Pi, are cheaters and they open dl ,  . . , , d t  while the dealer 
distributed ( d l , .  . .,dm) to A .  If ( d ~ ,  . . . , d t , d t + l , .  . ., dm) E Dishonest,w(A), M 
can detect who are cheaters. Successful cheating occurs if case 1 or case 2 below 
occurs. 

(case 1) ( ( i l , ,  . . , dt ,  d t + l , .  . . ,d , )  E SernihonestM(A). In this case, M can de- 

(case 2) ( d l , .  . . , d t ,  d t + l , .  . .,dm) E Honest(A) and 
tect only the fact of cheating. 

Secret(&, . . . , (it, dt+l, .  . . , dm) + Secret(d1, . . . , dm) (= original secret). 
In this case, cheaters succeed completely. 

If case 1 or case 2 occurs, M cannot identify who are cheaters. This probability 
CheatM(A) is formulated as follows. Let 

F004M,A)(d^17.. . , 4 I d l ,  * .  1 d t )  
A 
= {(dt+l,-..,dm) I ( d l , . . . , d t , d t + l , . . . , d m )  E Honest(A), 

case 1 or 2 occurs for (dl, . . . , d t , d t + l , .  . ., dm)} 

Definition 9. 

CheaiM(A) 2 m a {  Cheal,w(Alil), CheaiM(Ali1, i ~ ) ,  . . . , CheatM(Alil, .  . . , i t ) }  

DefInition10. We say that a (k, n) threshold scheme is a ( t ,  E )  cheater identi- 
fiable (k, n) threshold scheme if there exists a deterministic Turing machine M 
such as follows. 

CheatM(A) 5 E for VA such that IAI 2 A .  
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4 Proposed scheme 

In this section, we show a (1,  E )  cheater identifiable (k, n) threshold scheme for 
k 2 3t + 1 such that IKI is independent of la. To obtain our scheme, we use an 
orthogonal array of strength t + 1 as an unconditionally secure authentication 
code and combine it with Shamir's (A, n) threshold scheme and the linear code 
of proposition 1. Each share vi of the proposed scheme has a form of (ail Pj, ri). 
crj is a share of the secret generated by Shamir's (k, n) threshold scheme. pi is an 
authenticator for ai of our authentication code. The key of the authentication 
code is encoded as a codeword (71 , . . . , yR) by the code of proposition 1. In the 
reconstruction phase, the key is reconstructed first. For any i l l  . . . , i, such that 
m 2 k, (ri,, . . . ,rim) has t-error correcting capability. Therefore, cheaters cannot 
forge the key. Once the key is reconstructed, a forged (&,/$) is detected with 
high probability by the property of the authentication code. Thus, our scheme 
is ( t ,  e)  cheater identifiable. 

Definitionll. An orthogonal array O A ( t +  1, np, q )  is a q'+' x np array of q 
symbols such that, in any t + 1 columns of the array, every one of the possible 
q'+' ordered tuples of symbols occurs in exactly one row. 

In what follows, let S = (0, 1, . . . , p  - l}, where p is a prime power. 

Dealer D produces a share wi = (mi, pi , Ti) such as follows for i = 1,2, . . . , n. 

(Cl) As in Shamir's scheme, D chooses a (k - 1)-th order random polynomial 

[Proposed Scheme] 

over CF(p) such that, 

k-1 f ( z )  = 8 + a12 + ' ' ' + a k - 1 2  

Let c r i  = f ( i )  for i = 1,2,. . ., n.  
(C2) Let OA(t + 1, np, q )  be an orthogonal array such that q is a prime power. 

D chooses a random number e such that 1 5 e 5 q'+'. Let pi be the e-th 
row and the 
( i  - 1)p + ai t h  column element of OA(t + 1, np, q). 

(C3) D chooses a t-th order random polynomial over CF(q'+') such that 

Let Ti = g ( i )  for i = 1,2,. . .,n. 

Remark. We assume that OA(t + 1, np, q )  is publicly known. 

Theorem 12. The above scheme i s  a ( t ,  E )  cheater identifia6Ze (k, n)  threshold 
scheme ij k 2 3t + 1, where E = l j q .  
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Proof. (1) Def.7 is satisfied because cri is a share of Shamir’s (L, n) threshold 
scheme. 
(2) Suppose that A = {il,. . . , im)  and rn 2 k. Let dj = (crij,/3ij,yij) for j = 
1,2  ,.”, m. 
Clearly, 

Honest(A) = { ( d l , .  . . ,dmj I ( d l , .  . . , d,) satisfies (Cl)  - (C3j.) 

We show that there exists a deterministic Turing machine M such that 

DDishoneslw(A) = { ( d l ,  . . . , dm) I ( d l ,  . . . , dm) doesn’t satisfy (C2) or (C3).} 
( 4 4  

Suppose that (dl, . . . , dm) doesn’t satisfy ((23). That is, 

(Ti1 9 * .  * 1 r im)  # ( g ( i l ) ,  . . . ?  $(ha)), 
where g(z) is a degree t polynomial chosen by D. From Proposition 1, 
{(g(il), , . . , g(im))} is a linear code with the Hamming distance d = rn - 1 .  In 
our case, 

m > L > 3 t + l  
Hence 

d >  3t + 1 - t  = 2t + 1 

Therefore, there is a deterministic algorithm which can identify t errors in 
(rill * * ., Tim j- 

Also, there is a deterministic algorithm which can recover g(z). Then, e is 
reconstructed. Now, we see that there is a deterministic algorithm which finds e 
in any case. Once e is found, it is easy to detect which 

Thus, there exists a deterministic Turing machine which detects who are 
cheaters if ( d l ,  . . . , d m )  doesn’t satisfy (C2) or (C3). Let M be a deterministic 
Turing machine which detects who are cheaters if (dl , . , . , d,) doesn’t satisfy 
(C2) or (C3). Then, eq.(4.1) holds. 
(3) Finally, we prove that Cheatw(A) 5 l / q  for the above M. Suppose that 
Pi,, . . .,Pi, are cheaters and they open cfl,. . . , (ii while the dealer distributed 

violates (C2). 

(dl,  . . . , dm) to A. Let 

F ( I W , A ) [ ~ ~ ~  . . ., &ldl, . . . Y d t )  
A 
={(dt+l,...,d,) I(dl,...,d,)€Honesl(A), 

(a,, . . . , & , & I , .  . . , d,) # Dishoneslw(A)} 

Then, it is easy to see that 

F~~,~)($~...,dr(di,...,dt) 2 F 0 0 1 ~ ~ , ~ ) ( a i , ~ . . ~ ( i t l d i ~ . .  . , d t )  

Let 

Fl~($l,-..,dt) = { ( ~ ~ t l  ,..., dm)l(di, ..., dm) E Honest(A)} 

F2A(Cilr.. .,&) = {(&+I, .  . . ,drn)I(d1,..  . , & , d r + l , .  . . ,d,) 4 DishonestM(A)} 

A 

A 
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Then

Let's compute |F lyi (di , . . . , dt)\. Fix an honest di,. ..,dt arbitrarily. From the
definition of OA(t + l,np,q) and since degg(x) = t, there are q rows which
matches (di,...,dt). That is,

| { e | /3ij = t h e ( c , (ij - l ) p + a{j) e l e m e n t o f OA(t + 1 , np, q ) , l<j<t}\ = q

For each e, ^(*) is uniquely determined. Then, 7tj is uniquely determined for
t + 1 < j < m. On the other hand, there are pk~* possible f(x) which matches
(d\,.. .,dt). For each f(x) and e, (ajy,/?ty) is uniquely determined for t + 1 <
j < m. Therefore, |FU(rfi, . . . , dt)\ = qpk~f.
Similarly, we see that

\F(M,A)(du -.., dt\di, ••-, d t ) \ = 0 o r / " '

Then,

max ^ Pi[dt+i,...,dm\di,...,dt]

< max Y^ Pi[dt+i,...,dm\di,...,dt]

^ ' ( M , < * ) ( < ' l > - - - > < ' « l < ' l > - - - i ( ' « )

\F{M,A)(d\,...,dt\di,...,dt)\
— max r—-—— -r-rj

(rf,,...,d,) \FlA(di,...,dt)\
_ pk-' _ I

~ qpk-t ~ q

Therefore,

CheatM(A\h,...,it)<

Similarly,
CheatM(A\iu ..., ij) < l/q, 1 < j < t - 1

Therefore,

D

In this scheme,

log2 \Vi\ = log2 |a,-| + log2 |A| + log2 |7i|

Equivalently,
\Vi\ = \S\(l/e)t+2

Thus, |m is independent of n.
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5 Lower bound on Ivl 
From proposition 2, 2 IS1 in any ( k , n )  threshold scheme. In general, a 
perfect secret sharing scheme is called ideal if l&l = IS( for V i .  First, we show 
a refinement of this bound and the concept. Let A = { i l ,  . . . , i k }  (/A1 = k). Let 
dj be the share of Pi,, where j = 1,. . . , k. 
Theorem 13. In u (k, n )  threshold scheme, 

lid1 I Pr(s,dl,dz,...,dk)>O)I> 1 

for  any secret s and ony honed (dz ,  . . . , db).  

PmoK From Def.7 (ii), for any honest (da, . . . , dk),  s can take any value of S. 
From Def.7 (i), each s of S must be determined by some dl  together with this 

0 (da, . . . , dk).  This means that Theorem 13 holds., 

Definition 14. A (k, n) threshold scheme is c-compact on (A, i l )  if 

I { &  I P r ( s , d l , d 2 , .  . . , d ~ ) > O } I = c  

for any secret s and any honest (dz ,  . . . , dk). 

Next, for simplicity, suppose that only Pi, is a cheater. Let Cheat(Ali1) be 
the cheating probability that the case 2 occurs for (d l ,  dz ,  . . . , dk)  for a forged 
dl . Formally, 

Fool~(81)d l )  2 {(dz,.  . . , d k )  1 ( d l , d z , .  . . , d k )  E Honesi(A), 
case 2 occurs for (& , dz ,  . . . , dk)}  

Note that the subscript M is dropped in the above definitions because case 2 is 
independent of M. 

Theorem 15. Suppose that a (k, n) threshold scheme i s  c-compact on (A, i l )  for 
some A 3 i l .  If Cheat(Ali1) e ,  

Proof. Consider a splitting authentication code such as follows (see subsection 
2.2). The receiver R has an encoding rule e = ( d 2 , .  , . , d k )  such that ( d a ,  . . . , d k )  
is honest. R accepts a message m = dl if ( d l ,  dz ,  . . . , dk) is honest. The source 
state u conveyed by dl is a secret s such that s = Secrei(d1, dz ,  . . . , dk).  (see 
Def.8.) Pj, is the opponent. He observes dl and substitutes dl with another dl 
(substitution attack). Then 
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Cheol(Ali1) = Pr[dl] myc Pr[da, . . . , dkldl] 
F O O ~ A  (81 I& 1 di  

= Pr[dl ]  m-ycPr[R accepts 41 lPil observed d l ]  (5 .2 )  

where the maximum is taken over d1 such that the source state (secret) deter- 
mined by 81 is different from that of d l .  Now, we see that Cheai(Ali1) is equal to 
the substitution attack probability PS (compare eq.(5.2) with eq.(2.1)). In this 
authentication code, 

di 

IMessage(= l(d1)l = IK,l 
IMessage((d2,. . . , d k ) , s ) l  = I(d1 I Pr(s,dl,da,. . . , d k )  > 0)l = c 

lMessage((d2,. . . , db))l = I u Yessage( (d2 , .  . . , dk) ,  .)I = clSl 
3 

Then from proposition 4 (ii), 

Therefore, eq.(!5.1) is obtained 

Finally, we show a lower bound on lKl of our model. 

0 

Corollary 16. If a ( t ,  E )  cheater identifiable (k, n) threshold scheme is c-compact 
on ( A ,  i l )  for some A 3 i l ,  

Proof. There exists a deterministic Turing machine M such that 
CheutM(Ali1) 5 CheatM(A) 5 E .  Clearly, Cheat(A1il) 5 CheaiM(Ali1). There- 

0 fore, Cheai(Ali1) 5 E .  Then, from Theorem 15, we obtain this corollary. 

6 Lower bound for TW model 

Tompa and Woll [7l showed a (k, n) threshold scheme such that an honest par- 
ticipant can detect only the fact of cheating with high probability. Honest par- 
ticipants, however, cannot detect who are cheating nor reveal the correct secret. 
Carpentieri, De Santis and Vaccaor [S] showed a lower bound on IKI for this 
model. 

In this section, we show a much more tight lower bound on IKI for the model 
of Tompa and Woll. (We don’t assume Assumption 5 in this section while we 
use the same notation as before.) 

In the model of Tompa and Woll [A, the cheating probability, &w, is defined 
as the probability that from k - 1 forged shares d i ,  . . . , d i - l  and any d k ,  the 
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secret s' reconstructed is legal but not a correct one. Formally, it should be
defined as follows.

cheated = Pk has d* such that (d'j, . . . , d'k_v dk) is honest and
Secret(di,..., dk) ^ Secret{d'x,..., d'k_v dk)-

PTW = V"* Pr(di,.. .,djt_i) max Pr(c/iea<ed|di,.. .,dt-\)

* * d'ii...td'._1

For a technical reason, [8] defined the following probability.

Pover = V^ Pr(di,.. .,djt_i,s) max Pr(c/ieated|di,. ..,dfc_i,s)

Lemma 17. For any function f{x\,X2),

Proo/. ForVfi,
/(a;i, x2) >

I] «3

D

Lemma 18. Pover > ^VJV

Froo/ From Def.7 (ii), Pr(d!,... ,dk-X, s) = Pr(di,. . . , d*_i) Pr(s). Then,

Pr(di,...,d)t_i)Pr(s) max PT(cheated\di,.. .,dk-i,s)

x max Pr(5 = s and cheated\d\,...,
d'd'

x y ^ max Pr(5 = s and

From lemma 17,

max ^ P r ( ^ = s a n d cheated\di,
u . , . . . ,u« .

1 fc™ 1 j
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[7] showed a scheme such that Po,,, 5 E and 

lvil 2 {(IS1 - l ) ( k  - I)/€ + k I 2  

IKI 2 I W E  

[8] showed that,, if Po,,, 5 E and S is uniformly distributed, then 

From lemma 18, these results [7, 81 can be restated aa follows. 

1. There exists a (k, n.) threshold scheme such that PTW 5 E and 

IKI 2 ((IS1 - 1Nk. - I)/& + k.12 (6.1) 

2. If PTW 2 E and S is uniformly distributed, then 

l K l 1  I W E  

However, there is a big gap between eq.(S.l) and eq.(6.2). In what follows, we 
show a much more tight lower bound on lvil than eq.(6.2). 

Lemma 19. PTW 2 Cheat(Ali1) .  

Proof. 

P r W  

Let 
A 

A = Pk has dk such that ( d i d z , .  . . , dk) is honest 

B = Pz , . . . , Pk-1 has d2, . . . , d k -  1 .  

and Seerei(d1, .  . . , dk) # Secret(di ,  dz, . . . , d k ) .  

Then. 

Therefore, from lemma 17, 
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Corollary20. Suppose that a ( k ,  n) threshold scheme is c-compact on ( A ,  i l )  
for some A 3 i l .  If&w 5 E ,  then 

Proof. From lemma 19, if &w E ,  then Cheat(Ali1) 5 E .  Then, from Theorem 
15, we obtain this corollary. 

Eq.(6.3) is more tight than eq.(6.2) if c 2 2. The ( k ,  n) threshold scheme of 
Tompa and Woll [7] is r-compact on V(A,  i )  such that c 2 (IS1 - 1)/(1 - l ) / ~ .  
Then, our bound becomes 

This bound is much closer to eq.(6.1) than eq.(f3.2). 

Remark. In Theorem 15, Corollary 16 and Corollary 20, we can eliminate “C- 

compact” to obtain a more general bound on 1x1, which is aa general as Propo- 
sition 4 (ii). The details will be given in the final paper. 

References 

1. A.Shamir, How to share a secret, Comm.ACM, 22(1979), pp.612-613. 
2. G.R.BlaMey, Safeguarding cryptographic keys, Proc. National Computer Confer- 

ence, AFIPS Conference Proceedings, 48( 1979), pp.313-317. 
3. R.J.McEliece and D.V.Sarwate, On sharing secrets and Reed-Solomon codes, 

Comm.ACM, 24(1981), pp.583-584. 
4. G.Simmons, Robust shared secret schemes or “how to be sure you have the right an- 

swer even though you don’t know the question,” Congr.Numer., 68(1989), pp.215- 
248. 

5. T.Rabin and M.Ben-Or, Verifiable secret sharing and multiparty protocols with 
honest majority, Proc. 21st ACM Symposium on Theory of Computing (1989), 

6. E.F.Brickell and D.R.Stinson, The Detection of Cheaters in Threshold Schemes, 

7. M.Tompa and H.Woll, How to share a secret with cheaters, Journal of Cryptology, 

8. Marco Carpentieri, Alfred0 De Santis and Ugo Vaccaro, Size of Shares and Prob- 
ability of Cheating in Threshold Schemes, Proceedings of Eurocrypt’93, Lecture 
Notes in Computer Science, LNCS 765, Springer Verlag (1993), pp.118-125. 

9. E.D.Karnin, J.W.Greene, and M.E.Hellman, On Secret Sharing Systems, IEEE 
Trans. on Inform. Theory, vol.IT-29 (1983), pp.35-41. 

10. R.M.Capocelli, A.De Santis, L.Gargano and U.Vaccaro, On the size of shares for 
secret sharing schemes, Proceedings of Crypto’91, Lecture Notes in Computer Sci- 
ence, LNCS 576, Springer Verlag (1991), pp.101-113. 

11. K.Kuroaawa and K.Okada, Combinatorial interpretation of secret sharing schemes, 
In Pre-Proceedings of Asiacrypt’94 (1994), pp.38-48. 

pp.73-85. 

SIAM J. DISC. MATH, v01.4, N0.4, Nov.1991, pp.502-510. 

~01.1(1988), pp. 133-138. 



423 

12. G.J.Simmons, A survey of Information Authentication, in Contemporary Cryptol- 
ogy, The science of information integrity, ed. G.J.Simmons, IEEE Press, New York 
(1992). 

13. G.J.Simmons, Message authentication: a game on hypergraphs, Congr. Numer. 45 

14. D.R.Stinson, Some constructions and bounds for authentication codes, Journal of 

15. J.L.Massey, Cryptography - a selective survey, in Digital Communications, North- 

16. M.De Soete, New Bounds and Constructions for Authentication/Secrecy Codes 

(1 984), pp. 161 -1 92. 

CryptOlogy, ~01.1 (1988), pp.37-51. 

Holland (pub.) (1986), pp.3-21. 

with Splitting, Journal of Cryptology, vo1.3, no.3 (1991), pp.173-186. 


	t-Cheater Identifiable (k, n) Threshold SecretSharing Schemes
	Introduction
	Preliminaries
	(k, n) threshold scheme
	Authentication code

	Formulation
	Proposed scheme
	Lower bound on Ivl
	Lower bound for TW model
	References


