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Abstract. This paper analyzes the security of the RC5 encryption al- 
gorithm against differential and linear cryptanalysis. RC5 is a new block 
cipher recently designed by Ron Rivest. It has a variable word size, a 
variable number of rounds, and a variable-length secret key. In RC5, the 
secret key is used to fill an expanded key table which is then used in en- 
cryption. Both our differential and linear attacks on RC5 recover every 
bit of the expanded key table without any exhaustive search. However, 
the plaintext requirement is strongly dependent on the number of rounds. 
For 64-bit block size, our differential attack on nine-round RC5 uses 2*5 
chosen plaintext pairs (about the same as DES), while 2" pairs are 
needed for 12-round RC5. Similarly, our linear attack on five-round RC5 
uses 2*' known plaintexts (about the same as DES), and the plaintext 
requirement is impractical for more than six rounds. We conjecture that 
the linear approximations used in our linear cryptanalysis are optimal. 
Thus, we conclude that Rivest's suggested use of 12 rounds is sufficient 
to make differential and linear cryptanalysis of RC5 impractical. 

1 Introduction 

The RC5 encryption algorithm [9] is a new block cipher designed by Ron Rivest 
in 1994. RC5 has a variable word size, a variable number of rounds, and a 
variable-length secret key. A particular Rc5 algorithm is designated as RC5- 
wlrlb,  where w is the word size in bits ( w  = 16,32,64), r is the number of rounds 
(0 5 r 5 255), and b is the number of bytes in the secret key (0 5 b 5 255). 
RC5 has a two-word (2w-bit) input and output block size. 

RC5 encryption consists of three primitive operations: (1) addition modulo 
2" denoted by "+," (2) bit-wise exclusive-OR denoted by "@," and (3) rotation: 
the rotation of z left by y is denoted by z y (the log,(w) low-order bits of Y 
are used). Before encryption, the secret key is used to  fill an expanded key table 
S with 2r + 2 words. Let ( A , B )  denote the two words in both the input and 
output block. The encryption algorithm is described below. 

A = A -t S[O] 
B = B + S[1] 
for i = 1 to r do 

A = ( ( A $ B )  < B )  + S[2i] 
B = ( ( B  @ A )  < A) + S[2i + 11 

D. Coppersmith (Ed.): Advances in Cryptology - CRYPT0 '95, LNCS 963, pp. 171-184, 1995. 
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A distinguishing feature of RC5 is its heavy use of data-dependent r o t a t i o n s  
the rotation amounts are random variables dependent on the input data, and 
they are not predetermined values. The security of RC5 relies on the rotation 
operation as well as the mixed use of different operations. 

In this paper, we analyze the security of RC5 against differential cryptanaly- 
sis [l] and linear cryptanalysis [7]. We first briefly review both types of cryptanal- 
ysis. For differential cryptanalysis, the basic idea is that two chosen plaintexts 
P and P” with a certain difference P’ = P @ P” can encipher to two ciphertexts 
C and C” such that C’ = C @ C’ has a specific value with non-negligible prob- 
ability, and such a “characteristic” (P‘,C’) is useful in deriving certain bits of 
the key. For linear cryptanalysis, the basic idea is to find linear approximations 
(parity relations among certain bits of plaintext, ciphertext, and key) which hold 
with probability # 1/2 (i.e., bias = ) p  - 1/21 # 0); such approximations can be 
used to obtain information about the key. 

To attack RC5, one can try to find either the original secret key or the 
expanded key table S; both our differential attack and linear attack use the 
latter approach, and hence they are independent of the length of the secret key. 

Our differential attack is quite effective on RC5 when the number of rounds 
T is relatively small, and it recovers every bit of the expanded key table S. The 
number of chosen plaintext pairs needed for RC5-32 is 245 for T = 9 (about the 
same as 16-round DES), and the number of plaintext pairs is 262 for P = 12. 
Hence, the number of plaintext requirement of our attack becomes impractical 
when the number of rounds is large, which is also the case for other block ciphers. 
We implemented our attack on for certain choices of w and T, and the actual 
number of plaintexts used matched our theoretical calculation. 

A notable feature of our differential attack is that the type of the characteris- 
tics used is quite different from the characteristics used in attacks on other block 
ciphers, e.g. DES. In particular, for a given plaintext difference P’ and ciphertext 
difference C’, there are many possible paths (intermediate differences) from P’ 
to C’, each with the same probability. (In contrast, while there may be many 
paths for other block ciphers [4], generally one path dominates the rest.) These 
paths are of a similar form, allowing us to  treat them uniformly. The feature has 
a boosting effect on the probability of getting a plaintext pair with specified P’ 
and C‘. 

In our linear cryptanalysis of RC5, we construct linear approximations for 
RC5 and use them to compute every bit of the expanded key table S. Our linear 
attack on five-round RC5-32 uses 247 known plaintexts (about the same as 16- 
round DES), and the plaintext requirement becomes impractical when P > 6. We 
also try to establish an upper bound on the bias of the best linear approximation. 
We prove that for each half-round of RC5, the best linear approximation that 
can be alternated with a trivial linear approximation holds with bias 1/2w, and 
we conjecture that by alternating the two approximations, we indeed obtain the 
best appraximation for RC5 for the proposed word sizes. 

Roth our differential and linear attacks on RC5 are very effective in determin- 
ing key bits. After enough plaintext/cipherLext pairs are generated, the entire S 
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cable is computed bit by bit without any exhaustive search. For examples, in the 
implementation of our differential attack, all the running time was used for gen- 
erating plaintext/ciphertext pairs, and the time for key search (i.e., computing 
S) was negligible-less than a second on a Sun4. 

We conclude that the nominal choice r = 12 for RC5-32 proposed by Rivest [9] 
provides good security against differential and linear cryptanalysis. Of course, 
the possibility remains that there are other ways to attack RC5, and further 
study is needed to fully determine the security of RC5 for any particular param- 
eter values. 

The remainder of the paper is organized into sections as follows. In $2, we 
introduce some useful notation. In $3, we present our differential attack on RC5, 
and in $4, we describe our linear attack on RC5. In $5, we summarize our recent 
progress in analyzing the security of RC5 with focus on the use of dat*dependent 
rotations. In $6, we conclude with some future research directions. 

2 Notation 

In Rivest’s description of RC5 [9], a round consists of two equations, and in each 
equation, one of A or B is modified while the other remains unchanged. We will 
refer to each equation as a half-round. So one half-round of RC5 is similar to 
a full-round in a Feistel cipher. For ease of discussion, we adopt the common 
notation for Feistel ciphers and rewrite RC5 as follows. 

L1 = Lo + so 
RI = & t S1 
for i = 2 to 2r + 1 do 

Li = &-I 

Ri = ((&-I @ &-I) a %-I) + Si 
We will use the above description of RC5 throughout the paper. We will refer 

to the two equations which involve (&I, &-I) and (L i ,  &) as the i th  half-rouncr 
of RC5. Hence, the two initial equations ( L l  = LO + SO and R1 = & + Si) to- 
gether are considered as the f irst half-round, and RC5 contains 2r+l half-rounds 
in total. The input block is (LO,  &) and the output block is (L2,.+1, Rzr+i). For 
ease of use, we have changed S[i ]  to Si. 

For a binary vector x of length w ,  we label the bit positions from tche most 
significant bit to the least significant bit as w - 1, . . . , 1 , 0 .  We use Z[S] I; denote 
the sth bit of x and x[s..t] (s 2 t )  to denote the sth through tth bits of 2. We 
use lg(w) to denote 10g2(w). Note that x mod w = xpg(w) - 1..0] ;tie the bits of 
x which are used to determine a rotation count. We use x[s,t, . . , -11 to cho te  
xis] @ .[t] @ . . . @ .[.I. 

‘ I  

3 Differential cryptanalysis of RC5 

3.1 

In this subsection, we first describe a general idea for attacking RC5 by ana- 
lyzing the structure of the cipher. We then introduce the form of the chosen 

Structure of the differential attack 
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plaintext/ciphertext pairs that are used in our differential attack and outline 
the high-level structure of the attack, 

We first observe that RC5 has an iterative structure. Such a structure allows 
us to reduce the problem of computing the entire S table to the problem of 
computing the last entry Szr+1. We now consider the last half-round of RC5 
which involves Lzr , hr, &,-+I,  and Szr+1. Suppose an algorithm B can compute 
L2r[b] for some b E (0,. . . w - 1) given plaintext/ciphertext pairs. Since R2r+1 
and RZr(= Lz,+l) are known, bit L2,[b] gives information about some bit of 
SZr+l depending on the rotation amount Rzr mod w. (For instance, given Lzr[O], 
we can compute S2r+l[0] if Rzr mod w = 0.) For s = 0,. . . , w - 1, the following 
pseudocode computes Sz,+,[s] using B when Szr+l[s - 1..0] has been obtained. 

Select a plaintext/ciphertext pair (Lo, R O ) / ( ~ + I ,  Rzr+l) 
such that (a + Lz,+l) mod w = s 

Use algorithm B to calculate LZr[b] 
If s > l  

2[51 = L2r[bl CB L2r+l[b] 
z[s - 1..O] = Rzy+l[s - 1..O] - S Z ~ + ~ [ S  - 1..O] 

S Z ~ + ~ [ S . . O ]  = Rzr+l[s..O] - z[s..O] 
Therefore, we reduce the problem of computing S table to computing some bit 
of Lzr. We remark that the basic idea described so far will be used in both our 
differential and linear cryptanalysis. 

We will use the following type of the plaintext/ciphertext pairs for computing 
Si in our differential attack. Let e ,  denote the w-bit binary vector which is 1 
in bit s and 0 everywhere else. A good pair  for  S, consists of two plaintexts 
P = (Lo,Ro),P* = ( L f , , R i )  and their ciphertexts C = (Lil&),C* = ( L f , R f )  
satisfying the following conditions: 

(0, ew-l) if i mod 3 = 0, 

(e,,,-I, e,,,-I) if i mod 3 = 2, 
P' = PCB P* = (e,-1,0) if i mod 3 = 1, (1) 

(2) C' = C 
{ 

C* = ( e t ,  e, CB eu), t 2 Ig(w), u > v .  

Note that when computing Si, we can verify if the conditions hold since 
& + I ,  . . . , S2r+l are already known. We will show later that with high probability, 
a good pair for Si allows us to recover Li-1 mod w, which yields Li-l[b] for 
0 5 b 5 lg(w) - 1. Based on the discussions above, a good pair for Sj is useful 
for predicting Si[s] if 

3, 0 5 b 5 lg(w) - 1, s.t. ( b  + Li) mod w = s. 
The structure of our differential attack is given in the following pseudocode. 

At a high level, we compute the expanded key table S entry by entry' in reverse 
order and compute each entry Si from the least significant bit to  the most 
significant bit. 

The first three entries SO, S1, and Sz cannot be computed in the uniform way as 
described in the pseudocode. Nevertheless, they can be easily computed by a simple 
algorithm when Ss, . . , , Szr+l are known. 
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For i = 2r + 1 down to 3
Obtain a set G,- of good pairs for Si
For s — 0 to w — 1

Select a pair in G,- that is useful for predicting Si[s]
Compute Si[s]

3.2 Characteristics of RC5

In this subsection, we first describe some characteristics for a half-round of RC5.
Then we show how to join them together to form characteristics that are useful
to compute the expanded key table 5".

A characteristic for a half-round is denoted by Q = (ftp, QT)> where Qp =
(£(-_ii-Rj_i) and Op — {L'i,R'i)- Generally speaking, if a pair of inputs to a
half-round have different rotation amounts, then the pair of outputs from the
half-round will differ in many bits. Consequently, we will focus on characteristics
for which the pair of inputs have the same rotation amounts. In most of our
characteristics, each half of Qp and Qf ls either zero or e, where ̂  > lg(u>),
implying that the rotation amounts are the same.

We will calculate the probability associated-with a half-round characteristic
by averaging over both the pair of inputs and round key 5,- for simplicity; there
may be keys for which the probability is higher and others for which it is lower.
However, assuming the key expansion of RC5 is good, each round key will be
essentially independent, and hence the overall probability of a characteristic for
(2r + 1) half-rounds will be closed to what we would expect for nearly all keys.
Our implementation results (see §3.4) also confirm this.

The following table lists five half-round characteristics that will be used in
our attack. When analyzing the probabilities, we use the fact that for random
inputs x and y such that x © y = e, and random key 5,-, the probability that
(x + Si) ®(y + Si) - t, is at least 1/2.

Q

Ql

Q2

Q*

QA

Q5

Q

(0,

(e»>
(e.
(0,

( e , ,

E.)

e»)

°)
e,)

et)

QT

(e,,e,)
(e.,0)
(0,et)
(e,,e()

(e t ,eu©eu)

conditions
s > lg(iy)
s > lg(w)

s,t >\g(w)
s,t >lg(w),t£ s

s = ±(u — v) mod
V

w P

P

P
P

> (

probability
>U/uO-(l/2)

P=l
>(l/w).(l/2)
> (l/w) • (1/2)

l /») - (1/2) • (1/2)

We note that for characteristics it3, i24, and Q&, there are many possible
output differences fix for each input difference Qp. In particular, there are
(w — lg(io)) choices of parameter t for Q3, (w — lg(tu) — 1) choices of parameter
t for i?4, and w choices of parameters (u, v) for O5 for each choice of Qp.

Two characteristics can be joined together if Q? from the first one and Qp
from the second have the same value. For example, Q3 with parameters («i,<i)
can be joined with Q1 with parameter s2 if ti = S2- Therefore, the possible ways
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to join the above five characteristics are Q1-Q2, Q2-Q3, Q^Q1, Q3-Q4, and O4-
Q5. In particular, Q = Q1-Q2-Q3 is a useful characteristic for three half-rounds
since it can be repeatedly joined with itself.

For the first half-round, there are three characteristics that hold with prob-
ability 1:

Q1 : Qp = QT = (0, e^-i), which may be joined with Q1,

Q2 : Rp = RT = (0,e,,,-]), which may be joined with R', and

Q3 : QP = QT = (ew-l,ew-l), which may be joined with f12,

In what follows, we construct characteristics for 2r + 1 half-rounds of RC5,
which we denote by /?2r+i- Characteristic Q2T+1 consists of a sequence of half-
round characteristics. Since there are many possible values for the parameters
of some of the half-round characteristics, there are many possible paths (i.e.,
intermediate differences (£(•,#(•) for 1 < i < 2r) from P' to C" for Qtr+\, all of
which have the same probability p. Let N denote the total number of possible
paths for f?2r+- • We define the probability associated with f?2r+i as prt3p+1 =
Np.

For different values of r, the following table lists the plaintext difference
P', the sequence of half-round characteristics in ^2r+i, and the probability2

associated with pn^+^,

2r + l| | P'

3m

3m+ 1

3m+ 2

(O.eu, 1)

(CB.-I .O)

(eio-ije^-i)

ti1' -Q-.—Q-Q^-Q*

Q3'-Q3-Q- -Q-Q*-Q5

Q2'-Q2-Q3-Q- -Q-QA-Q5

w-\g(w)-l f w—lg(w)\ 1
w \ (2tu)2 j w

^-lgH-i)^^^)"*

A right pair with respect to f?2r+i consists of two plaintexts P, P* and their
ciphertexts C, C* such that for all 0 < i < 1r + 1, the corresponding difference
(L'^Rf) has the proper form specified by sequence of the half-round character-
istics for J?2r+i- We remark that for i < 2r, characteristic fi,-, its associated
probability pni, and a right pair with respect to Q{ can be defined in a similar
way.

Recall the definition of a good pair for Si in §3.1. We see that a right pair
with respect to Qi is a good pair for Si. Hence, the expected number of chosen
withres pect to get a good pair for Si . He nce, the expected number of chosen
plaintext pairs to get a right pair with respect to J?,- which is at most -gr.

2 (1) The factor j in fis can be mostly eliminated by taking the carry effect into
account when analyzing output differences. Hence the factor does not appear in
pfisr+i in t n e table. (2) When 2r + 1 = 3m, the probability associated with the first
occurrence of the half-round characteristic O1 is ̂  instead of j£ since the parameter
s = w — 1.



177

3.3 Using a right pair to compute L'ar mod w

In this subsection, we show how to compute Z,2r mod w using a right pair with
respect to J?2r+i- Similarly, we can compute Li-i mod w using a right pair with
respect to 1?,-. Let £2A and I25 be the characteristics for the (2r)th and (2r + l)ih

half-rounds, respectively. Recall that the parameters in J24 are s and t and the
parameters in f25 are s,t,u, and v.

We consider the (2r)th half-round and obtain the following formula:

Lir mod w = i?2r-i mod w — (t — s) mod w.

Given the ciphertext difference (£2r+i>-^2r+i)> the values oft, «, and v are easily
obtained. So we need only compute s in order to get Lir mod iw. In the (2r+l) t h

half-round, the rotation amount L^r+i mod w (= i?2r mod w) is equal to either
(u — t) mod w or (t> — f) mod w. Since u, u, t, and I/2r+i are known, it is obvious
which case holds. In the first case s — (v — L2r+i) mod w and in the second case
s — (u — i/2r+i) mod w, and the value of L^r mod w follows.

3.4 Implementation of the differential attack

In this subsection, we estimate the expected number of chosen plaintext pairs
required to mount our differential attack, and then we present some experimental
results.

We first recall the structure of our attack described in §3.1. The expected
number of plaintext pairs required for computing Si is the product of (1) the
number of good pairs required for 5,- (i.e., \G{\) and (2) the expected number
of plaintext pairs to get a single good pair (< -fer). From the form of the good
pairs, we can see that the chosen plaintext pairs for computing 5,- can be reused
to compute Sj if j — i mod 3. Hence, the expected number of plaintext pairs
required for our attack is determined by

2r+lv-H. 1E
»=2r-1

(3)

We now consider how many good pairs are needed, and we focus our discus-
sions on RC5-32. We can show that |G,| = 2w good pairs are enough to guarantee
a high success rate for our attack when r < 11. For r = 12, 8w good pairs are
needed due to random noise. (A detailed discussion is included in the appendix.)
For RC5-32, the number of chosen plaintext pairs determined by Equation 3 are
listed for increasing r in the following table.

r|plaintext pairs||r|plaintext pairs||r|plaintext pairs|| r [plaintext pairs

1
2
3

27

216

4
5
6

2 2 1

2 2 5

2 3 1

7
8
9

036

239

245

1p
11
12

2 5 0

2 5 4

2 6 2
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We have implemented our full attack for w = 32,r 5 6 on a Sun4 workstit 
tion. The actual number of plaintexts used matched our theoretical calculation, 
and the success rate was very high. Each run took about 10 minutes for five 
rounds and about 12 hours for six rounds. Note that for each Si,  only 64 plain- 
text/ciphertext pairs were actually used for computing the key, and all other 
pairs were discarded right after they were generated. In addition, no exhaustive 
search is needed in our attack. Therefore, in our implementation, the time used 
for computing the S table was negligible (less than a second on the Sun4) after 
enough good pairs were generated. 

4 Linear cryptanalysis of RC5 
. .  

4.1 

In this subsection, we study linear approximations for a half-round of RC5. We 
decompose the equation R, = ( ( L i - l e  Ri-l)  Ri-1) + Si into the following 
three equations, each of which involves only a single primitive operation, and we 
consider possible linear approximations for each of the equations. We will say 
that a linear approximation is perfect if it holds with bias 1/2 (probability 1 or 

Linear approximations for a half-round 

X = Li-1 @ & - I ,  Y = X < &-I, & = Y + S i .  
0). 

I. x = Li-lCB R i - 1  

The equation has numerous perfect linear approximations. In particular, all 
approximations involving the same bits of X ,  Li-1, and a-1 are perfect. All 
other approximations have bias zero. 
11. Y = x 4K R i - 1  

The linear approximations for this equation can be divided into two types 
depending on whether bits of a-1 are involved. We first consider approximations 
in which no bits of a-1 are involved. Any such approximation involving just one 
bit of X and Y holds with probability 1/2+ 1/2w, since for one rotation amount, 
the bits are guaranteed to be equal and for the other w - 1 amounts, the bits are 
equal with probability 1/2. In general, for t = 0,. . . ,lg(w), an approximation 
involving 2t bits of X and 2t bits of Y (in proper positions) holds with probability 

We next consider approximations in which some bits of a-1 are involved. 
1/2 + 2t/w. 

Some of these approximations have a non-zero bias. For example, 

Y[O] = XI01 @ &-l[OI (4) 

holds with probability 1/2+1/2w, since when the rotation amount is 0, &-l[O] = 
0 and Y[O] = X[O], and when the amount is otherwise, the equation holds with 
probability 112. We remark that an approximation will have bias zero if any bit 
R i - l [ ~ ]  where s >, lg(w) is involved. 
111. = Y + si 

The best linear approximation for this equation is 
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which holds with probability 1. All other approximations are not perfect, and 
their biases are dependent on the key. For example, the bias of the approximation 
&[s] = Y[s]  + S,[s] ranges from 0 to 1/2 and is averaged at 1/4 for s 2 1. 

For the first half-round which uses only the + operation, both approximations 

L1[0] = Loto] @ S0[01 and R1[0] = Ro[O] @ &[O] 

hold with probability 1. We will denote them as C and D, respectively. 
IV. Joining the linear approximations 

Based on the above discussion, we can construct many possible linear ap- 
proximations for a half-round of RC5 by joining the approximations for the 
three operations. For example, by joining X[O] = Li-l[O] @ & - l [ O ] ,  approxi- 
mation (4), and approximation (5), we obtain the following approximation for a 
half-round: 

This holds with probability 1/2 + 1/2w. We will denote it as E. 
Since Li = &-I in a half-round of RC5, there are many trivial approxima- 

tions which involve the same bits of Li and f i - 1  and hold with probability 1. 
The following trivial approximation 

can be alternated with approximation E, and we will denote it as -. 

4.2 The linear cryptanalytic attack 

In this subsection, we show how to use half-round linear approximations C,  D ,  
E, and - to compute the expanded key table S. Based on our discussions in 
$3.1, we need only show how to compute the last entry S2r+l. Similarly as in 
our differential attack, obtaining information about bits of Lsr is also very useful 
for computing SZr+l in our linear attack. 

We first note that D-E-E- . . . E- is a linear approximation for 2r  half-rounds 
with the following form: 

Ro[O] @ LZP[Ol = Sl[O] S3[0] e3 . . . @ S Z P - 1  [O]. 

Since E appears exactly r - 1 times, by Matsui’s “piling-up” lemma [7], the 
above approximation holds with probability $ + &. Let T denote the value 
S1[0] @ S3[0] @ . * * e3 S2r-l[O]. Then T is fixed for a given expanded key table S, 
and the value of Ro[O] @ Lz,[O] is always biased toward T. 

in three steps: (1) com- 
pute Szr+l[O], (2) compute T given Sz,+l[O],‘and (3) for s = 1,. . . , w-1, compute 
Szr+l[s] given T and Sz,.+l[s - 1..0]. (For i 5 2r,  we can compute Si using sim- 
ilar techniques with the linear approximation D-E-E- . . . E- if i is even and the 
linear approximation CE-E-. . .E- if i is odd.) 

In our linear attack on RC5, we will compute 
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Step 1: Compute SZr+l[O].  We observe that for plaintext/ciphertext pairs 
mod w = 1, one of the following two approximations is perfect: such that 

&r[o] = L2r+l[O] @ &r+1[1] if S2p+1[O] = 0 
-hr[O] = Lzr+l[o] @ Rzr+l[l] @ &r+1[0] if s ~ r + l [ O ]  = 1 

(These can be seen by observing the effect of the carry out from the least sig- 
nificant bit of the addition.) Moreover, the first approximation has zero bias 
if S2r+l[O] = 1 and the second approximation has zero bias if S2r+1[0] = 0. 
To compute S2r+1[0], we obtain N known plaintext/ciphertext pairs such that 
L2r+l mod w = 1 and consider the two quantities 

&[O; @ (L2r+1[0] @ &r+1[1]) and &[O] @ (&r+1[0] @ &+1[1] @ &r+l[oI). 

Let U, be the number of plaintexts such that the first quantity is zero and Ui be 
the number of plaintexts such that the second quantity is zero. If IUo - N/21 2 
IU1 - N/21, we predict S2,+l[O] = 0; otherwise, we predict S2,+1[0] = 1. 

Step 2: Compute T given S2r+1[0]. We observe that for plaintext/ciphertext 
pairs such that L2,+1 mod w = 0, the approximation 

L~r[o] = & - + I  [O] @ R2r+l[O] @ S2r+l[O] 

holds with probability 1 and the right-hand side is known. To compute T, we 
obtain N known plaintext/ciphertext pairs such that Lzr+1 mod w = 0. Let U 
be the number of plaintexts such that 

&[O] @ (Lzr+l[O] CB R2r+l[O] @ Szr+1[0]) 

is zero. If U 3 N / 2 ,  we predict T = 0; otherwise, we predict T = 1. 
Step 3: For s = 1 , .  . . , w  - 1, compute S 2 r + l [ ~ ]  given T and Sar+l[s - 1..0]. 

For a given plaintext/ciphertext pair, let y = R2,+1 - and let carry(s )  
denote the carry out from y[s - 1..0] + S,,.+,[s - 1..0]. We observe that for 
plaintext/ciphertext pairs such that L2,.+1 mod w = s, the approximation 

Lzr [O] = L2r+1 [O] @ &r+l [s] @ S ~ r + l  [s] @ carry(s) 

holds with probability 1. To compute S2r+l [s] , we obtain N known plaintext/& 
phertext pairs such that L2,.+1 mod w = s. Let U be the number of plaintexts 
such that 

is zero. If U 2 N / 2 ,  we predict Sz,+l[s] = 0; otherwise, we predict S2r+ l [~]  = 1. 
The total number of known plaintexts expected is determined by the number 

of plaintexts expected for computing SZr+l since the plaintexts can be reused 
for each Si. Note that the bias of the 2r half-round approximation D-E-E-. . .E- 
is &. Standard techniques for the type of linear cryptanalysis in our attack 
require an amount of plaintexts approximately equal to the inverse square of the 
bias. Therefore, N = 4 ~ ~ ( ~ - ~ )  known plaintexts are required for computing each 
bit SZ~+~[S]  for s = 0 , 1 , .  . . , w - 1, which leads to w x 4w2('-l) known plaintexts 
for r-round RC5. For RC5-32, the number of plaintexts is 237 for r = 4, 247 for 
r = 5 ,  and 257 for r = 6. 

(&[O] @ T )  @ (hr+1[0] @ &+1[s] @ CQT/(S))  
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4.3 A conjecture on the bias of the best linear approximations 

We conjecture that for the proposed word sizes w = 16,32,64, the linear ap- 
proximation for 27- half-rounds used in our linear attack in $4.2 is the best linear 
approximation for RC5. If the conjecture is correct, we would then be able to 
conclude that standard linear cryptanalysis is only effective for RC5 with a very 
small number of rounds. 

We have strong evidence for the correctness of our conjecture. In particular, 
we show that E is a best half-round approximation that can be alternated with 
a trivial approximation. 

Lemmal. Let set M contain all half-round approximations in which neither 
bits of a-1 nor bits of Li are involved. Then E is a best approximation among 
all approximations an M .  

Proof. Let F be an arbitrary approximation in M .  Then F can be decomposed 
into three approximations, one for each operation. There may be many possible 
decompositions, and we consider the constraints on the three approximations for 
a given decomposition. The approximation for Y = X a-1 cannot involve 
R,-~[s] with s 2 lg(w) since F has bias zero otherwise. Hence, the approximation 
for X = Li-1 @ 4-1 cannot involve X [ s ]  with s 2 lg(w); otherwise, either F 
involves bits of Ri-1 or it has bias zero. Any approximation for Y = X ax Ri-1 

involving only X [ s ]  with s 5 lg(w) - 1 holds with bias at most 1/2w since 
there is only one rotation amount that can match the bit positions of X and Y .  
Therefore, F has bias at most 1/2w. Since E holds with bias 1/2w, it is a best 
approximation among all approximations in M .  0 

and + operations are incompatible when constructing 
linear approximations for a half-round of RC5. It is clear that the bias gets larger 
for << if more bits are involved in an approximation, and the bias gets smaller 
for + if more bits are involved. Hence, the mixed use of the two operations 
provides good security against linear crypt analysis. 

We remark that the 

5 Work in progress 

In this section, we summarize some of our research progress [3] in analyzing the 
security of RC5. In particular, we focus our analysis on the use of data-dependent 
rotations. 

We have studied how the use of data-dependent rotations helps prevent differ- 
ential cryptanalysis. More specifically, we have analyzed the number of possible 
output differences of a half-round when the pair of inputs have different rotation 
amounts. We have proved that, for instance, if O p  ( e s , e s )  for s < lg(w), then 
OT is uniformly distributed in a large set containing at least 2w/2 distinct values. 
(Recall that for s 2 lg(w), f 2 ~  only has one possible value (e#,O).) The results 
show that datadependent rotations spread out bit differences in a pair of inputs 
in a drastic way when the differences affect the rotation amounts. Clearly, the 
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more input bits that differ, the higher chance that one of them will affect the 
rotation amounts in the pair of outputs. So a good characteristic for RC5 should 
always keep the number of input bit differences in each half-round as small as 
possible. From this viewpoint, the characteristics used in our differential attack 
are the best possible since there is at most one bit difference in Li and at most 
one in R: (except in the last two half-rounds). 

The notion of a “Markov cipher” was introduced by Lai, Massey, and Mur- 
phy [4] as a criterion for an iterative cipher to be resistant to differential crypt- 
analysis. Loosely speaking, an iterative cipher is Markov if there is a way of 
defining differences such that the probability of an output difference of the round 
function depends on only the input difference and is independent of the values 
of the inputs. We have shown that RC5 is not a Markov cipher with respect to 
the difference measures @ and - . This fact , however, does not imply that RC5 
is vulnerable to differential attacks, since the essential property that makes a 
Markov cipher secure against differential attacks is that every output difference 
will be roughly equally likely after sufficiently many rounds. For RC5, the output 
difference of a half-round ranges over a large set of possible values if the input 
differences affect the rotation amounts, and the probability that this will happen 
goes to one as the number of rounds increases. Hence, even though it may not 
be the case that every output difference will occur after many rounds of RC5, 
the large number of possible output differences would make a differential attack 
impossible. 

We have also considered the impact of certain simple modifications to RC5 in 
an effort to appreciate which operations are essential for security. For instance, 
if all additions were change to exclusive-or, our differential attack would be 
more successful since the change .increases the probability of some half-round 
characteristics by a factor of two. 

6 Conclusions 

In this paper, we have studied the security of RC5 using standard techniques 
from differential and linear cryptanalysis. We conclude that the choice T = 12 
for RC5-32 proposed by Rivest provides good security against both types of at- 
tacks. As a next step, we will analyze RC5 based on more special techniques 
such as differential cryptanalysis with partial differentials and high-order differ- 
entials] linear cryptanalysis with multiple approximations [2], and differential- 
linear cryptanalysis [5]. 

The heavy use of dahdependent rotations is a distinguishing feature of RC5, 
which provides certain security against differential and linear cryptanalysis. We 
have also seen that, however, the rotation operation “helps” an attacker in the 
sense that information about a bit of Lzr can be spread by the rotation in the 
last half-round to  give information about every bit of the key &+I. This feature 
of RC5 may also be useful in other types of attacks on RC5. 

One of the design goals of RC5 was an exceptional simplicity] with the ob- 
jective of making analysis easier. In contrast with other block ciphers, all of our 



characteristics and linear approximations for RC5 were obtained analytically 
without any aid of computer experiments. The simple design of RC5 will help 
fully determine its security in a rather rapid way. 
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Appendix 

In this appendix, we consider the number of good pairs needed to guarantee a 
high success rate in our differential attack on RC5-32. We will focus on IGzr+l I, 
and the discussions also apply to  any other IGi(. 

There are two issues concerning lG~,+~l. The first issue is the signal/noise 
ratio. For a pair of randomly chosen plaintexts, the probability that the pair of 
ciphertexts have the difference C' defined in Equation 2 is 

. ( w - l g w )  . w ( w -  1)/2 
22w 

= 

Such a random noise is much smaller than pnar+l when r 5 11 and can be 
ignored in the analysis. 
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However, since a good pair has a fixed plaintext difference P' satisfying Equa- 
tion l, there is a non-negligible probability that it is not a right pair due to the 
special difference PI. To see how this can happen, we recall the characteristics for 
the last five half-rounds in a right pair. The number of non-zero bits in (Li ,  R,!) 
for i = 2r - 3 , .  . . ,2r + 1 are the following: 

A pair of plaintexts with difference P' may follow the correct intermediate dif- 
ferences until the (2r - 4)th half-round and then have the following number of 
non-zero bits in the last five half-rounds: 

( l 7  1)1(1>2)>(2,1), 1),(1>2). 

This happens for a fraction of the good pairs, and yields good pairs which are 
not right pairs. Implementation results and preliminary analytical results show 
that the fraction is no more than 10% for w = 32 and T 5 11. Therefore, if we 
generate enough good pairs, we can expect to get many right pairs. 

The second issue is how many right pairs are needed. In order to compute each 
S2,.+1[s], G2+l must contain a right pair that is useful for predicting S~~+I[S].  
In other words, Gzr+l must have the following property: 

For al l  s in (0 , .  . . , w - l}, there exists a right pair  i n  GZr+l 
and b in ( 0 , .  . . , lg(z0) - l}, such that 6 mod w = s. 

We know that a right pair recovers lg(w) bits of S~,.+I and assuming that the 
S table contains random values, the rotation amount L2+1 mod w is uniformly 
distributed in (0,. . . , w - l} for a random plaintext pair with the proper P'. 
Hence, if we generate 2w good pairs, then on average, each bit Szr+l[s] gets 
2w lg(w)/w = 21g(w) good pairs that are useful for predicting its value. With 
high probability, more than half of the good pairs are right pairs, so a majority 
vote will yield the correct value of S2rt1[s]. Therefore, 2w good pairs are enough 
to guarantee a high success rate when pnoise is relatively small. 

We remark that as r gets larger, pnaY+l will eventually become smaller than 
pnoise and more good pairs will be needed in our attack. For RC5-32, r = 12 is the 
starting point at which pnar+l becomes smaller than pnoise. Simple calculations 
show that 8w pairs are enough to guarantee a high success rate for r = 12. 
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