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Abstract. At Crypto 93, Shamir proposed a family of signature schemes 
using algebraic bases. Coppersmith, Stern and Vaudenay presented an 
attack on one variant of the cryptosystem. Their attack does not recover 
the secret key. For one of the variants proposed by Shamir we show how 
to recover the secret key. Our attack is based on algebraic methods which 
are also applicable to many other instances of polynomial equations in 
the presence of some trapdoor condition. 

1 Introduction 

In 1984, Ong, Schnorr and Shamir [OSS84] proposed a very efficient signature 
protocol based on a quadratic equation in two variables modulo a number of 
unknown factorization. The scheme was broken by Pollard [PS87], who developed 
an efficient algorithm to solve these congruences. His algorithm was a great 
breakthrough in determining the computational complexity of modular quadratic 
congruences. 

Recently, there have been two attempts [Na93], [Sh93b] to repair the weak- 
nesses of the OSS-protocol by inserting additional non-linear structures into the 
framework of polynomial equations. The low computational requirements of the 
resulting schemes were especially attractive for devices with restricted computa- 
tional power. In order to demonstrate the strength of his scheme, Shaniir [Sh93a] 
developed a formal theory concerning the difficulty of polynomial factorization 
modulo a composite number. From all the members of a very general family, 
Shamir recommended two variants of his signature scheme: a symmetric one 
and an asymmetric one. 

The symmetric variant could be broken by Coppersmith, Stern and Vaude- 
nay [CSV93]. They showed how to forge a signature, but the secret key is not 
revealed. However, the main starting point of their attack very strongly relies 
on the specific symmetry of the underlying algebraic basis’. It has been an open 
problem whether other members of the family are also vulnerable or not. 

In this paper we present an attack on the asymmetric basis. Our results 
are quite unexpected. The asymmetric basis is not only weak in the sense that 

* Supported by DFG-Gradniertenkolleg “Mathematische Optimierung*. This work 
was done while the author was at the University of Frankfurt. 
An algebraic basis is a set of polynomials with some additional properties (see 
[Sh93b]). 
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signatures can be forged. Moreover, it is even possible to recover the secret key 
within a very short time. 

Our attack is based on a detailed analysis of the asymmetric basis polynomi- 
als. This characterization makes it possible to apply some ideas of [CSV93] even 
in the absence of symmetry: Algebraic conditions are transformed into polyno- 
mial equations. We then present a method that makes it even possible to  solve 
the specific polynomial equations explicitly. From the solutions of the equations 
it is only a small step to recover the secret key. 

Our attack does not only completely break Shamir’s signature scheme. The 
presented methods also form general guidelines to attack polynomial equations in 
the presence of some trapdoor information. The connection of our methods with 
the above mentioned attacks on previous signature schemes provides powerful 
cryptanalytic tools. We hope that applications of these tools lead to further 
developments in the area of polynomial equations and in cryptographic research. 

2 The signature scheme using algebraic bases 

Let k 2 3 and n be the product of two large secret primes p and q. All computa- 
tions will be done in Zn1 the ring of numbers modulo n. The set of polynomials 
{Ed:, u1u2, u p 3 , .  . . , uk-luk} is called the asymmetric basis ([Sh93b]). 

Two secret invertible matrices A, L? E Z;lk are used to mix up the polynomi- 
als. The matrix A transforms the original variables ul, . . . , uk into new variables 
911 - * * i Y k :  

k 

ui = x a i j g , ,  15 i 5 k. (1) 
j=1 

The matrix B defines k quadratic forms vl(u1,.  . ., uk), . . . , vk(u1,. . . , ub) which 
we linear combinations of the basis elements: 

k 

Z ) i ( U l r .  . . , U k )  := bilu; + XbijUj-lUj,  1 5 i 5 k. (2) 
j = 2  

Applying the variable transformation (1) to the polynomials of ( 2 )  yields k ho- 
mogenous quadratic forms v:(yl , . .  . , Y k ) ,  1 5 i 5 k. The public key consists of 
the quadratic forms wi(y1,. . . ,yk), 1 5 i 5 k - 1. wL(y1,. . . , Y k )  is not published 
in order to prevent unique signatures. 

A message m is represented by k - 1 hash values h I (m) , . . . , h k  - 1 (m). Due to 
the basis property, each assignment of values (from a,) to the basis elements y:, 
y1 y2 , . . . , yk- 1 yk implies unique assignments to all homogeneous polynomials of 
degree 2 in y1, . . . yk. Such an assignment to  y:, y1y2, . . . , Yk-lYk forms a valid 
signature for m if 

vi(y1,. . . ,yk) = hi(?), 1 5 i 5 k - 1. 

For a shorter notation, we write V i  instead of vi(u1,. . I Uk)  and v: instead of 
v : ( y l ~ * . * , Y k ) .  
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3 The attack 

We address the algebraic problem of finding matrices A', B' E Z;lk, which pro- 
duce a given public key. The description of the attack refers to a prime modulus. 
We will justify at the end, why the methods also work in case of a composite 
modulus. 

Throughout the attack, we wall not consider degenerated cases which appear 
with probability of order 0(2- ' (") ) ,  where I(n) i s  the bitlengih of the modprlua. 

To make the signature scheme vulnerable by algebraic methods, the following 
definitions are helpful (see e.g. [Ja74]). With every homogeneous quadratic form 
q(z1,. . . zk) E ZSn[zlI. . . , X 6 I l  we associate a k x k-matrix Q (Q is called the 
matrix of q) :  

Q ~ J  := { 3 . coefficient of x j x i  in q ,  j # 1 . 
coefficient of zjsl in q ,  j = I 

Q is a symmetric matrix which satisfies 

q(Z1, * - 1 zk) = (21, - , zk) Q ($1 * * , zk)T. 

The rank of a homogeneous quadratic form is defined as the rank of the as- 
sociated matrix. It can easily be checked that the rank of a quadratic form is 
invariant with respect to invertible linear variable transformations. For a matrix 
Q, the determinant of a j x j-submatrix is called a minor of order j .  The row 
domain of a matrix is the vector space spanned by the row vectors of the matrix. 

3.1 Exploiting the trapdoor 

A matrix, that is associated to a linear combination of the basis elements, has 
only very few nonzero entries. This fact will turn out to be the main weakness 
of the scheme. A precise classification of the linear combinations with low rank 
is given in the following lemma. The classification can be exploited in order 
to establish conditions about the rank of quadratic forms. A rigorous proof for 
lemma 1 can be found in the appendix. 

Lemmal. Let k 2 4. A linear combination of the basis elements u:, uluz, . . ., 
Uk-lUk 2s a quadratic form of rank not greater than 2 if and only if it is of the 
f o m  

aluIu2 + plUZu3 (type 
aZuZU3 + P2U3U.4 O Y P  $11 

(3) 



139 

Linear combinations of the polynomials u1, . . . , V k -  are linear combinations 
of the basis elements u:, U ~ Z L Z ,  . . ., U k - l U k .  The characterization from lemma 1 
can be used to fix k - 1 important coefficient tuples in these linear combinations. 

Lemma3. The following system of k - 1 equations with unknowns Pi,  6i, 
63,jr. . . , € & - I $ ,  i E (1, . . . , k - I}, has u unique solution: 

k - 1  

a l u l U 2  + PluZu3 = 211 + 61vZ + z € j , l U j ,  
j =3 

Proof. It is sufficient to  show: For each i E (1,. . ., k - 1) there exists exactly 
one pair (aj,pi) E & and exactly one (k - 2)-tUpk. ( 6 , € 3 , .  . ., t k - 1 )  E zk-2, 
such that the quadratic form of type i from (3) is equal to  u1 + 6 u 2  + C j V j .  

Consider the linear space V of the linear combinations U ~ U : + C ~ = ~  a j  U j - l U j  

for arbitrary aj E Zn, 1 5 i 5 k. The vector space V is of dimension k. The 
linear combinations of type i for arbitrary air E Z,, form a two-dimensional 
subspace U, of V.  

The quadratic forms v1 + 6ua + C ~ ~ ~ E ~ V ~  with arbitrary coefficients 
6, €3,. . . , e k - 1  E & form an affine subspace T of dimension not greater than 
k - 2 of V .  The quadratic forms u1, . . . , v k - 1  are linearly independent, because 
the matrix B from (2) is invertible. Therefore dim T = k - 2. In the non- 

0 

k 

degenerated case, l.Ji n T is of dimension zero. 

Consider now the algebraic condition 

k - 1  

u1 + 6 u 2  + c j u j  has a'rank not greater than 2. (4) 
j =3 

A matrix is of rank not greater than 2 if and only if all minors of order 3 vanish. 
If the quadratic forms u, = U i ( u 1 , .  . . , U k ) ,  1 5 i 5 k - 1, were known, then 
condition (4) could be expressed as the vanishing of several determinants with 
unknowns 6, €3, . . . , C k - 1 .  

Of course, the polynomials ui = ui('u1,. . . , u t ) ,  1 <_ 1: 5 k. - 1, are not part 
of the public key. However, due to the invariance of the rank with respect to 
invertible linear variable transformations the condition (4) is equivalent to  

k - 1  

ui + 6v', + e j u [ i  has a rank not greater than 2. (5) 
j =3 

Condition ( 5 )  can be transformed into a system of polynomial equations: For the 
matrix of the quadratic form in (5), each minor of order 3 vanishes. The minors 
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are polynomials in 6, €3, . . . , f k - 1 .  It is possible to use algebraic standard tech- 
niques like resultants and the Gaussian elimination algorithm (see e.g. [Mi93]) 
in order to obtain 
1.  polynomial expressions for €3, . . . , f k - 1  in terms of 6. 
2. a polynomial P(6) of degree k with simple zeros 6 1 , .  . . , 6 k - 2  and a double 
zero 6 k - 1 ,  where 61 , . .  . , 6 t -1  are defined as in lemma 2. 
For further details of the technical elimination process, see [The95]. 

Remark. The essential reason why 6k-1 must be a double zero of the computed 
polynomial P(S) is the following: In the matrix associated with the quadratic 
form of type k - 1 from (3) each submatrix of order 3 consists of at  least one 
row and one column in which only zeros appear. Therefore, if €3,. . . , E k - 1  are 
expressed as polynomials in 6, then 6k-1  is a double zero of all the minors of 
order 3. The variable transformation (1)  preserves the double zero. 

The explicit value for 6 k - 1  can be obtained by computing the greatest common 
divisor of P and PI. 

3.2 Characterization of the variable transformation 

The condition (5) does not distinguish between the k - 1 different values for 
61 , . . . , 6 k - 1 .  We will now establish algebraic conditions between different values 
61, . . . , 6 k - 1 . 3  We will explicitly state these conditions for the cases k = 5 and 
(later on) for k = 4. With regard to the security and the computational require- 
ments of the scheme, these seem to  be the most interesting cases. The conditions 
can be established analogously for all Ic 2 6. 

Our aim is to find the matrix A’ of the variable transformation. If the variable 
transformation A’ is known, the matrix B’ of the linear combinations can be 
easily computed. We reduce the problem of finding the variable transformation 
to  the problem of finding the coefficients 61 , .  . . , 6 k - 1 .  

As €3,. . . , € k - 1  can be expressed in terms of 5 ,  the matrix associated with 

can be computed in terms of 6. Let yi be the row domain of this matrix at 6i, 
1 5 i 5 k - 1, where 61,. . . , & - I  are defined as in lemma 2. is a subspace 
of the vector space Z:. In the following, & denotes the coefficient vector of the 
linear function that links in (1) the variable u, . to the variables y 1 , .  . . , Y k l  i.e. 
ui := (ail,. . . , aik), 1 5 i 5 k. Each coefficient vector ii, is an element of the 
vector space Zn. 

The linear spaces Y1 , . . . , Y k - 1  will be characterized by the linear combina- 
tions of lemma 2. The vectors Q 1 ,  . . . , W k  or equivalently the matrix A will be 
expressed by the linear spaces YI , . . . , Y k - 1 .  

- 
k 

Some of the following ideas are due to D.Coppersmith [Co94]. 
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The following fact can easily be checked. Let f, g be linear functions in 
p1, . . . , yk, and let C be the symmetric k x k-matrix associated with the quadratic 
form f g. The row domain of C is spanned by the coefficient vectors which are 
canonically associated with the linear functions f and g. 

Lemma 3. For k = 5 the l inear svbspaces Y1, . . . , Y4 sattsfy 

Y1 = s p a n @ ,  a121 + PlR3)r 

Y2 = span(%, a z i i 2  + ,82g4), 
Y3 = span(%, a3a3 + h % ) ,  
Y4 = span(Ti1, a4al + ,84a2)r 

where Span” denotes  the set  of l inear combinations with respect to  the vector  
space 22,. k 

Proof. The quadratic formof type 1 is C Y ~ U ~ U ~ + P ~ U ~ U ~  = u2(a lu l+P1~3) .  yi is 
the matrix that is associated with this quadratic form after applying the variable 
transformation (1). The statement follows from the fact above. Y2, . . . , Y4 can 
be treated analogously. 0 

Lemma4. T h e  coefieient  vectors 51 , .  . . ,a5 satisfy 

iil E y4 n (yl + y2) 
7i2 E y1 n (y2 + y3) n y4 
z3 E y2 n (y1 + y4) 

(dimension Z), 
(dimension I ) ,  
(dimension I ) ,  

i i4 E Y3 n (Y2 + Y1) n (Y2 + Y4) (dimension I), 
(dimension 4). I45 E Y2 + Y3 - 

Proof The first statement follows from 

Y4 n (Y1+ Y2) = span(a1, a 4 & +  p4g2) 
n span(~i2,al’iil + P 1 ~ 3 , ~ 3 , c x 2 ~ 2  + P ~ L I )  

= span(E1, i i2)  n span(~11, Z2,  TI^, ?i4) 

= span(El,E2), 

the other statements can be verified analogously. 0 

3.3 Computing the variable transforniatioii 

So far, we do not know the explicit values for 61,62,63. Therefore, it is not 
obvious, whether it is possible to  distinguish algebraically between all the sub- 
spaces Y1, Y2, Y3. We will show that the spaces Y1, Y2, Y3 or equivalently the 
values 61,62,63 are determined uniquely by linear relations. Consequently the 
values 61,&, 63 are accessible to  an algebraic computation. The linear functions 
u1, .  . . ,E4 are uniquely determined up to  a multiplicative constant. The con- 
stants can be chosen arbitrarily, because they can be compensated by the second 

- 
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private transformation. The condition for E5 does not characterize E5 uniquely. 
Due to the explicit computation of 6 4 ,  we already distinguished Y4 from the set 

How to distinguish Y1 from the set {Y2,Y3}: 

It can be easily verified with lemma 3 and 4 that YZ n Y4 = { 0 } ,  Y3 n Y4 = (0). 
From (6) it follows that ZZ E Y1 n Y4 # (0). Therefore, the row domain Y1 can 
be distinguished from the set (Y2, Y3). 

How to distinguish Y2 from Y3: 
From the observations Y3 n (YI + Y4) = { 0 } ,  ?i3 E Y2 n ( Yl + Y4) # { 0)  , the linear 
spaces Yz and Y3 can be distinguished. 

As the intersections for 3 2 ,  8 3 ,  8 4  in ( 6 )  are of dimension 1, these coefficient 
vectors are uniquely determined up to  a multiplicative constant. 

How to determine 8 1  uniquely: 
The intersection Y4 n (Yl + Yz) is of dimension 2. From (6) it follows that i Z i  
and are elements of this intersection, i.e. Y4 n (Y1 + Yz) = span(Tii,q). The 
division of the quadratic form u2(alul+  a u 3 )  by the linear form u2 yields the 
linear form a1u1 + &u3. We observe that 8 1  satisfies the condition 

u1 E span(%, al&+ P l E 3 ) ,  

{yl,YZ,y3}. 

- 

whereas a linear combination a . El + b . 8 2  with b # 0 does not satisfy the 
condition. This condition serves to distinguish among the space span(q ,  G). 
Consequently, El is uniquely determined. 

How to determine 8 5 :  
For 8; = uZ3 + bG5 E span(E3,85) and a variable uk linked to the variables 
y1,. . . , y5 via the coefficient vector V5, it follows 

a1 u: + a2 . 211212 + a3 . u2u3 + a4 . u3u4 + a5 
= a1 . + a z .  ulu2 + a 3 .  u 2 U 3  + (a4 + aa5)  u3u4 + bas .u4u5, 

i.e. every linear combination of u!,  . . . ,144215 is a linear combination of u:, . . ., 
~3214, 1444 and vice versa. Therefore, a5 is not determined uniquely. However, 
it can be replaced by an element 8; in span(&, ?is) without changing the space 
of the linear combinations. Such an element can be obtained by dividing the 
quadratic form u4 . (a3213 + /33u5) by 244. 

The process of distinguishing the subspaces Y1, Y2, Y3 and the coefficient vec- 
tors Z1, . . . , E5 can be effectively done with algebraic standard methods, espe- 
cially determinants and resultants. Of course, the realization of the algebraic 
condition will lead to high degree polynomials in the variables 61 ,62 ,63 .  For 
technical and practical reasons the polynomials have to be reduced. Fortunately, 
due to  the polynomial equation P(6)  = 0 of degree Ti, all polynomials can be 
reduced to  degree 4 in each variable. When the double zero 64 has been com- 
puted, the polynomial Q ( b )  := P(6)/(6 - 6 4 ) 2  is of degree 3 and serves to  reduce 



143 

each polynomial to degree 4 in each variable. In fact,, as 61 ,  . . . , 64  are pairwise 
different, the polynomials can even be reduced much better. 

The ability to distinguish between the subspaces Y1, Yz, Y3 means that we can 
also compute explicit values for 61 ,62 ,63 .  These values can be used to evaluate 
the polynomial expressions for U1, . , . , Ti4, Ti;. The matrix A' that is formed by 
the row9 T i l ,  . . . , 'is4, ?ik can replace the variable transformation from (1). The 
missing fifth polynomial can be replaced by the quadratic form 

By inverting the matrix A', the polynomials 4 ,  . . . , v i ,  85 become polynomials 
in terms of u1, . . . ,145. These polynomials are linear combinations of the basis 
elements and define a matrix B' according to (2). The pair of matrices (A', B') 
generates the given public key. Therefore we have found the secret key. 

3.4 The case = 4 

We will now explain the modifications to the case k = 5 that are necessary 
to obtain an attack for Ic = 4. Most of the considerations are identical. It re- 
mains to show that all the spaces of YI , Yz, Y3 or equivalently &,&, 63 can be 
distinguished. 

When k = 4, the quadratic forms of a rank not greater than 2 are of the form 

aluluZ -k PluZu3 (type I), 
aZuZu3 + PZu3u4 (type 2), 

or a34 + P3U1162 (type 3 ) .  

With respect to the sum 
v1 + 6u2 + E 3 V 3 ,  

the condition of type i defines b;, 1 5 i 5 3. We obtain a polynomial P(6) 
of degree 4. The double zero 63 can be extracted by computing the greatest 
common divisor of P and P'. The following two lemmas can be verified like in 
the case k = 5 

Lemma 5. For k = 4 the l inear subspaces Y1, Y z ,  Y3 sat isfy  

Y1 = span(%, alul + P l Z 3 ) ,  

YZ = span(%, a z i i z  + PZZ4), 

Y3 = span(Ti1, z ~ 3 i i l  + P3Tiz). 

Lemma6. For Ic = 4 the coeficaent vectors l i 1 ,  . . . ,Ti4 satisfy 

?51 E Y3 n (Yl + Yz) (dimension 2), 
a2 E y1 n Y, (dim.ension l ) ,  
E3 E YZ n (Yl + Y3) (dimension. I ) ,  
a4 E Y2 + Y3 (dimension 4).  
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63 and therefore Y3 is already known. Y 1  and Yz can be distinguished because 

u 2  and ?i3 are characterized by one-dimensional spaces. ?i1 can be distin- 
guished from iiz in the same way as for k = 5. i i4  can be replaced by the element 
E> = ~ 2 2 % ~  + p2iiq. We further proceed like in the case k = 5. 

of ?iz E Yl n Y3 # {o}, Yz n y3 = (0). - 

3.5 Composite moduli 

If n is a composite modulus of the form p .  q ,  there are k2 = 25 zeros of the 
polynomial P(6) modulo n. Both modulo p and modulo q ,  6 k - 1  is a double 
zero. The sequence 61, . . . is unique modulo p ,  and it is unique modulo q. 
Although there are (k - 1)2 different zeros of the polynomial modulo n,  only one 
sequence 6 1 ,  . . . , 6 k -  1 satisfies the uniqueness modulo p and modulo q. Therefore 
the Chinese remainder theorem guarantees that all computations work in the 
case of a composite modulus. 

3.6 Experimental results 

We implemented the attack for moderate key sizes of 50 bits using the package 
MATHEMATICA. The implementation breaks a given public key within 15 minutes 
on a HP workstation 735/50, although we did not aim at optimizing the program. 
For a larger modulus, the number of main steps in the attack does not increase. 
Of course, the cost of the elementary operations like polynomial addition and 
multiplication increase with the length of the modulus. 

The recommended bit length for the modulus in [Sh93b] is 512. We estimate 
that an implementation for this key size runs in at  most a few hours. Further 
details of an implemeritation as well as an example of the computation can be 
found in [The95]. 

4 Symmetric basis versus asymmetric basis 

There are some remarkable differences between the attack on the symmetric basis 
( u 1 u 2 , .  . . , u k - l ~ l k ,  u k u l }  in [CSV93] and our attack on the asymmetric basis. 
These differences lead to  a better insight into the attacks. In the symmetric case, 
there are several equivalent sequences for the coefficients 6 1 ,  , . . , d k .  Therefore 
these coefficients cannot be computed. The sequence 6 1 ,  . . . , 6 k - 1  is unique in the 
asymmetric case. Lemma4 and 6 provide the necessary conditions to distinguish 
among the coefficients 61,. . . , S k - l .  All coefficients can be computed, and it is 
possible to  discover the secret key. 

Considering a composite modulus in the symmetric case, each (unknown) 
sequence of the coefficients modulo p can be combined with each (unknown) se- 
quence of the coefficients modulo Q. This is the essential reason why the compu- 
tation of the secret key is at least as hard as factoring the modulus (see [Sh93b]). 
For the asymmetric basis, the sequence of the coefficients is unique even modulo 
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n. Our attack therefore shows that the asymmetric basis does not fit into the 
framework of difficult algebraic instances that was developed in [Sh93a]. 

From a practical point of view, we can mention the following results: Due to 
the ability to  compute 51, . . . , & - I ,  the attack on the asymmetric basis can get 
rid of the time-consuming large polynomials. Therefore i t  takes much less time 
to  attack the asymmetric basis than to attack the symmetric basis. 

5 Open questions 

The intention of [CSV93] and of our work was to  break some specific proposed 
cryptosystems. For further research in the cryptographic applications of poly- 
nomials, it would be of interest to  characterize the power of these cryptanalytic 
methods from a more general point of view. In a cryptosystem that is resistant 
against the presented cryptanalytic methods, the trapdoor condition should not 
influence the rank of quadratic forms. Otherwise, this influence is a promising 
starting point for an attack. 
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Appendix: Proof of Lemma 1 

Proof. Let 

k 

alu; + c ai ui-1u;, a1,. . . ,a ,  E Z” (7) 
i = 2  

be a linear combination of the basis elements and Q the associated matrix. The 
matrix Q is (for better clearness zero-entries are omitted) 

1 
Q = i j  

“t” Obviously, a linear combination (7) of type t E { 1 ,  . , . , k - 1) is of rank 
not greater than 2. 
‘‘=” We assume, that the linear combination (7) is not of the form (3). 
Case I :  a1 = 0. It follows 

1 Q = 2  

For j := min{i E (2, .  . .,k} : a; # 0) and 1 := max{i E (2, .  . .,k} : a; # 0}, we 
have 1 - j 2 2. The 3 x 3-submatrix 

of Q has determinant -(4)3aj2a~ # 0. Therefore rank Q 23. 
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Case 2: a1 # 0. For j := min{i E {3 , .  . . , k} : a; # 0) the upper left j x j- 
submatrix of Q is 

The 3 x 3-submatrix 

2a1 x 0 
0, i f j > 3  a ( ; aj)  with E := { ~ 2 ,  if j = 3 

has determinant -(4)2alaj” # 0. It follows rank Q 2 3. 0 
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