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Abstract. Power Analysis attacks on elliptic curve cryptosystems and
various countermeasures against them, have been first discussed by Coron
([6]). All proposed countermeasures are based on the randomization or
blinding of the inputparameters of the binary algorithm. We propose a
countermeasure that randomizes the binary algorithm itself. Our algo-
rithm needs approximately 9% more additions than the ordinary binary
algorithm, but makes power analysis attacks really difficult.
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1 Introduction

Elliptic curve cryptosystems (ECC) have attracted much attention since they
were first proposed in 1985 by Miller [24] and Koblitz [15]. The underlying dis-
crete logarithm problem seems to be much harder than in other groups. Today,
no subexponential-time algorithm is known for this problem in the case of non-
supersingular curves. This results in much shorter keylengths for ECC, which
makes those cryptosystems especially attractive for hardware implementations
for instance on smartcards. One must consider therefore not only mathematical
attacks on ECC, but also attacks that exploit weaknesses in the implementation.

In the last years, attacks have been published that use leaked side-channel-
information such as the power consumption or timing measurement. These meth-
ods are all passive, this means that an attacker just needs to monitor the crypto-
graphic device. The most popular method today, the differential power analysis
(DPA) was introduced 1998 by Cryptography Research. DPA exploits the in-
formation drawn from the leakage of power consumption. First, mostly applied
to symmetric cryptosystems, DPA was then applied successfully on public key
cryptosystems, see [6], [12] and [20]. Power analysis is a very strong attack. For
a successful attack on a straightforward DES implementation only a few hun-
dred measurements are needed. Also the technical effort is comparatively small.
One just needs a digital sampling oscilloscope with an appropriate sampling
rate for the power measurements, and a standard PC to process the obtained
measurement data. The processing of the data itself is also very easy and it is
not necessary to understand the concept of the attack to perform it successfully.
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To make a long story short, this attack can be mounted by not only experi-
enced cryptanalysts, but by everyone! This fact makes it even more necessary to
counteract this attack for both private and public key cryptosystems.

In this paper we deal exclusively with elliptic curve cryptosystems. The coun-
termeasures that were proposed in the before mentioned articles, rely on ran-
domizing or blinding the parameters (the elliptic curve point P and the secret
key k) of the binary algorithm. In our article we present a countermeasure based
on randomizing the binary algorithm itself. Our method does not only provide
security against power attacks, but also does not slow down the encryption algo-
rithm, or require the storage of additional elliptic curve parameters (for instance
the number of points on the curve) as other methods do.

The paper is organized as follows. Considering the binary algorithm, we re-
view the concept of power analysis in section 2. In section 3 we explain the
method of addition-subtraction chains as a speedup for the standard binary al-
gorithm. Finally we present our randomization method on the grounds of these
addition-subtraction chains.

2 Elliptic Curve Cryptosystems, the Binary Algorithm
and Power Attacks

Some public key cryptosystems require the computation of a modular exponen-
tiation (P = Mk mod p) or a scalar multiplication (P = kM). This is usually
done by the binary algorithm binalg(P,M, k) which is sketched (in its bottom-up
version) in the following figure:

binalg(P,M,k)
Q = M
if k0 = 1 then P = M else P = 0
for i = 1 to n − 1

Q = Q ∗ Q
if (ki == 1) then

P = P ∗ Q
return P

For validity and explanation see [14]. The ∗ denotes hereby an appropriate
operation, which can be the multiplication for instance, but also the addition.

2.1 ECC Basics

Elliptic curve cryptosystems make use of the binary algorithm for the compu-
tation of the scalar point multiplication. An elliptic curve over a field K, short
E(K), is defined as a nonsingular homogeneous cubic polynomial F (x0, x1, x2) ∈
K[x0, x1, x2], provided there is at least one rational point on E(K) [13]. The
set of rational points can be made into an abelian group in a natural way. If
P1, P2 ∈ E(K), then the line connecting both points intersects the elliptic curve
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in a third point P3. Further, one calls the third point of intersection of the line
connecting 0 (for example) and P3 with E(K), the sum of P1 and P2. For char
K �= 2, 3 every elliptic curve can be written as

x0x
2
2 = x31 − Ax20x1 − Bx30, A,B,∈ K. (1)

This curve has only one point at infinity, which is the identity element of the
group. With the transformation x = x1/x0 and y = x2/x0, x0 �= 0, one gets the
equation for an elliptic curve in affine coordinates :

y2 = x3 − Ax − B. (2)

The point at infinity is lying infinitely far off in the direction of the y axis. Thus
the inverse of a point P = (x, y) �= O is −P = (x,−y). Formulas for the point
addition and point duplication on an elliptic curve defined over a finite field can
be found for example in [5]. The following tables give a brief overview of the
different costs of the two operations. I denotes the inversion, M the multiplica-
tion and S the squaring in K. Conversion from projective to affine coordinates
is not taken into account. Also more efficient projective representations are not
included in the tables, see therefore again [5].

Characteristic K > 3
Operation Coordinates

affine projective
Point addition 1I+3M 16M
Point doubling 1I+4M 10M

Characteristic K = 2
Operation Coordinates

affine projective
Point addition 1I+2M+1S 15M+5S
Point doubling 1I+2M+1S 5M+5S

Remark 1. In a finite field of characteristic 2, the inverse of an elliptic curve
point P = (x, y) is given as −P = (x, x + y). Having that an addition of two
elements is calculated by bit by bit Xor, we get the inverse of an elliptic curve
point for free again.

2.2 Power Analysis

Power analysis attacks use the fact that the instantaneous power consumption
of a hardware device is related to the instantaneous computed instructions and
the manipulated data. An unskilled implementation of an elliptic curve point
duplication and an elliptic curve point addition, can therefore easily be used to
mount a simple power attack (or simple power analysis, short SPA). An adver-
sary just needs to monitor the devices power consumption and identify the parts
of the power trace that correspond to the additions and duplications. This gives
trivially the secret key. It is clear that in order to be SPA resistant, one must try
to prevent data depending branches, as sketched in algorithm binalg′(P,M, k).
Note, that the computational effort is much higher than in the standard binary
algorithm.
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binalg’(P,M,k)
P = 1, Q = M
for i = 0 to n − 1

P [0] = P
P [1] = P ∗ Q
Q = Q ∗ Q
P = P [ki]

return P

Differential power analysis uses more sophisticated, statistical techniques to
attack the secret key. One power analysis variant is to partition the measure-
ments in two (or more) different sets by some oracle (for instance the guess of a
secret key bit) and then look if these two sets are statistically different. This will
only be the case if the oracle was correct and thus reveal some parts of the key.
Since statistical difference is usually computed by the distance−of−mean−test,
which basically compares the means of two distributions, we will refer to this
method as the mean method in subsequent sections. The second method com-
putes the covariance between the measurements and the oracle. Also, only a
correct oracle can correlate to the measurements (we will refer to this as the
correlation method). We give some examples to clarify this description.

Example 1 (Single-Exponent, Multiple-DataAttack). The SEMDattack [20] com-
pares the power signal of an encryption operation using a known parameter
(public key) to a power signal using an unknown parameter (secret key). The
attacker can learn where the two signals differ and thus learn the unknown (se-
cret) parameter. Due to noise components, direct comparisons of power signals
are unreliable, thus DPA techniques are applied. One computes n random values
with the secret and the known parameter. The average signals are calculated and
subtracted as in the mean method . The portions of the DPA signal that depend
on the (random) data will be wiped out by the averaging and subtraction. The
portion of the DPA signal that is dependent on the parameter will average out
to two different values depending on the performed operation. The portions in
the DPA signal that are ≈ 0 are data dependent or the operations in the binary
algorithm agree. The other portions indicate that the operations in the binary
algorithm differ.

This attack also can be seen as an extension of a SPA attack, and therefore
be prevented by the modification sketched in binalg′(P,M, k). Note that this
variant does not make much assumptions on the cryptographic device. More
sophisticated versions, that make more assumptions can be found in [20].

Example 2 (Correlation Attack).When using algorithm binalg′ themean method
will be not successful because there is no difference in the sequence of instruc-
tions. But if one knows the representation of the computed points one can again
mount a successful attack (which has been shown in [6]). At step i, the pro-
cessed point depends only on the first bits k0 . . . ki−1 of the secret parameter
k. When P [i] is processed, power consumption is correlated to the bits of P [i].
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No correlation will be observed if the point is not computed. The value of the
least significant bit of k can be learned by calculating the correlation between
the power consumption and any specific bit of 2M . As one can see in algorithm
binalg’ the only key dependent operation in the for-loop is whether the value
of P [1] or P [0] is copied to P . If k0 = 0, the value of P [0] (which is 1 in this
case) remains in P and therefore a correlation between 2M and the power con-
sumption in the subsequent path of the for-loop must be observed, otherwise if
k0 = 1, the value of P [1] (which is M in this case) will be copied to P and no
correlation between 2M and the power consumption of the computation of P [1]
in the subsequent path in the for-loop will be observed. The other bits can be
recursively recovered in the same way.

Coron also shows in [6] how to extend the correlation method to any scalar
multiplication algorithm executed in constant time with a constant addition-
subtraction chain.

2.3 Countermeasures

Basically all proposed countermeasures suggest blinding or randomizing the se-
cret parameters. When computing P = kM one has the possibility to

– randomize (blind) k: One needs to know the number of points #E(K)
on the elliptic curve. Then one chooses a random number r and calculates
k′ = k+r∗#E(K). Obviously P = kM = k′M , because of #E(K)∗M = O.
For this approach one has to store an additional parameter of the elliptic
curve, on the cryptographic device, which is often not desirable. The second
disadvantage is that depending on the bitlength of r ∗ #E(K), the effective
keylength may increase.
– blind M : A point is blinded by adding a secret random point R for which

one knows S = kR. Scalar multiplication is done by calculating k(R + M)
and subtracting S to get P = kM . The points R and S can be stored inside
the cryptographic device and updated for each new execution as follows:
R = (−1)b2R and S = (−1)b2S, where b is a random bit. Note that there
must be stored two additional points inside the device, which is also often
not desirable.
– randomize M: Projective coordinates can be used to avoid the inversions

as well as for randomization. Because of the fact that

(X,Y, Z) = (λX, λY, λZ), ∀λ �= 0

one can choose for each new execution another random λ. As one can see,
this variant relies on the usage of projective coordinates instead of affine
coordinates.

All these countermeasures require to store additional parameters or to make
additional operations.
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3 Speeding Up the Binary Algorithm

As pointed out in section 2, an elliptic curve cryptosystem needs to efficiently
compute the scalar multiplicative of an elliptic curve point. The simplest efficient
method, the binary algorithm, is also the oldest. A good survey on (more recent)
methods is [10]. Most of these methods try to give an answer to the question,
how to find the shortest addition chain. An addition chain for an integer k is
a list of positive integers a1 = 1, a2, . . . , al = k, such that for each i > 1, there
is some j and m, with 1 ≤ j ≤ m < i and ai = aj + am. Thus, if one has an
addition chain with length l, one can compute k ∗ P with l additions. Finding
the best addition chain is impractical, but there are several methods for finding
near-optimal ones. With elliptic curves one has the possibility to use addition-
subtraction chains, because the computation of the inverse of a point has no cost.
Morain and Olivos discuss in [23] two algorithms that use addition-subtraction
chains. We describe their approach in the two subsequent sections.

3.1 First Algorithm

The idea comes from the observation that long chains of 1’s in the binary repre-
sentation of k are better treated by a subtraction. For instance if one calculates
15 ∗ P like

15 ∗ P = 16 ∗ P − P = 2(2(2(2P ))) − P,

one has to perform less operations than in the standard binary algorithm. So the
enhancement is to replace a block of at least two 1’s in the binary representation
of k, by a block of 0’s and a −1 : 1a 	→ 1 0a−1 − 1. Automaton 1 in Figure
1 represents this idea. Morain and Olivos state that the expected gain of this
version is about 8.33%.

3.2 Second Algorithm

The idea is to treat isolated 0’s inside a block of 1’s. Using the map of the first
algorithm it is

1a01b 	→ 10a−1 − 110b−1 − 1.

Since −2 + 1 = −1 we can write −11 as 0 − 1 and therefore

1a01b 	→ 10a − 10b−1 − 1.

In automaton 2, the state 110 takes this modification into account. In both
figures the input path is marked by a distinct arrow, and the output paths
are marked by an additional bar. Intermediate states are drawn as circles, and
transitions between these intermediate states are represented as arrows. The
initial conditions for the automatons are P = 0 and Q = M . An iterative
version of this algorithm can be found in [23]. The expected gain for this variant
is about 11.11%.
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11

0

0 1

10
0

0 11

1

110

P=P+Q

P=P+Q

P=P−Q
Q=4Q

P=P+Q
Q=4Q

P=P+Q
Q=4Q

Q=2Q Q=2Q

P=P−Q
Q=4Q

Fig. 2. Automaton 2

4 The New Countermeasure

In contrary to the previously described countermeasures which were introduced
by Coron in [6], we intend to randomize the binary algorithm itself. This can
be easily done by inserting a random decision in the two algorithms in section
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3.1 and 3.2. For example, if we are in state 1 we draw a random variable e. If
e = 0 we take the path of algorithm 1, else we proceed as in the standard binary
algorithm. The finite automaton in figure 3 shows the randomized algorithm
according to this idea.
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0

1

0 1

1

1

P

Q=2Q

P+Q

P=P+Q
P=P−Q

Q=2Q

e=0
Q=2Q
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11

Q=2Q
e=1

P=P+Q
Q=2Q

Q=2Q

0

Q=2Q

Q=2Q
P=P+Q
e=1

e=0

Fig. 3. Randomized Automaton 1

In order to make SPA attacks more difficult, we changed all multipliers so that
always only one double or one double and one add (or subtract) is necessary.
Note, that the bits of the binary representation don’t correspond directly to
doubles (resp. adds) anymore! For both, 1 and 0 in the binary representation,
there is one path in the algorithm where, for instance, the double operation is
performed. In the same manner we modified finite automaton 2 (see figure 4).
In both figures, the paths that are randomized are drawn dash-dotted for better
visibility. Again, in both figures the input path is marked by a distinct arrow,
and the output paths are marked by an additional bar. Intermediate states are
represented by circles, and transitions are represented as arrows between them.
The initial conditions are again P = 0 and Q = M . For the sake of completeness
we give an iterative algorithm implementing figure 4.

4.1 Analysis of the Randomized Algorithms

As noted before, the binary representation does not correspond directly to the
performed operations anymore. A second observation is that due to the fact,
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Fig. 4. Randomized Automaton 2

randomized_version_automaton2(k,M) {
state=0;P=0;Q=M;
while (k>0) {
if ((k&1) == 0) {
if (state == 11) P = P+Q;
state=0;Q = 2*Q;

}
if ((k&1) == 1) {
switch (state) {

case 1: e=rand();
if (e==1) P= P+Q;

else P = P-Q and state=3;
Q = 2*Q;

case 11: e = rand();Q = 2*Q;
if (e==0) P = P+Q and state=1;

case 0: P = P+Q;Q=2*Q;state=1;
}

}k >>=1;
}
if (state==11) {P = P+Q;}
return P;

}

Fig. 5. Iterative Version of the Randomized Automaton 2
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that −P (x, y) = P (x,−y) e.g. −P (x, y) = P (x, x + y)(the add and subtract
operations are basically the same), they aren’t distinguishable in the power trace.
The difference of add (subtract) and double depends on the underlying number
field, and the used coordinates. For instance, as listed in the table in section
2.1, in GF (2m) with affine coordinates, for both add and double operation, 1
inversion, 2 multiplications and 1 squaring is needed. We consider now some
possible scenarios for a power attack :

– SPA case : Suppose one has an implementation were the distinction between
double and add (subtract) is possible with a single measurement (this could
be the case when working with projective coordinates). It would be possible
to identify a block of 0’s at the beginning of the algorithm. Also, blocks of 0’s
result more likely in consecutive doubles than blocks of 1’s. Basically there
are more likely binary representation than others, and this could be used to
identify the correct key. But that this is not as easy as mounting an SPA
attack on the standard binary algorithm.
– DPA case : Let us assume now, that we don’t have such a dumb imple-

mentation, and therefore the difference between a double and an add (or a
subtract) operation is not visible with only one power measurement. Every
time the algorithm is performed, it takes due to the randomization a differ-
ent path. Therefore the sequence of doubles, adds, and subtracts is slightly
different. If the random numbers are close to uniform, this makes an attack
like the mean method infeasible. But also the correlation method does not
work anymore. Because of the randomization, the intermediate values that
are attacked, are computed at different times, or are sometimes not even
calculated. This washes out the DPA bias signal.

The performance of the randomized algorithms is close to the standard binary
algorithm. The following table shows the percentage of additional operations
(additions and subtractions) in comparison with the ordinary binary algorithm
for various key lengths (which were chosen according to the commonly suggested
field sizes). For this table we counted the number of additions and subtractions
(the number of doublings is for both variants approximately the same) for several
thousands of executions (for several values of k) of the algorithm given in figure 5.
The table shows that the additional number of operations is almost independent
of the keylength and is approximately 9%.

What can we say about the storage of additional parameters? The speedup
in the article of Morain and Olivos uses the bottom-up variant of the binary
algorithm, which requires the additional storage of one elliptic curve point. This
is obviously a disadvantage. On the other hand, the proposed standard IEEE
P1363a, includes this version of the binary algorithm. The other additional pa-
rameter which we have to store, is the random bit e.

5 Conclusion

We described an alternative approach for the development of countermeasures
against power attacks. Our countermeasure does not depend on any input pa-
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Table 1. Performance comparison

Bitlength Additional operations Variance
(mean value)

112 9% 3%
128 10% 5%
160 9% 3%
192 8% 3%
224 8% 3%
236 7% 3%
384 9% 2%
521 9% 2%

rameters of the binary algorithm, but on the algorithm itself. We’ve analyzed
its efficiency in preventing the mean and the correlation method, and its effi-
ciency in performance. Fact is, that our method prevents recent power analysis
attacks largely without the necessity to store large additional parameters or do
any precomputations. One can also combine this countermeasure with the other
suggested countermeasures to achieve a higher security level.
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