
A Sound Method for Switching
between Boolean and Arithmetic Masking

Louis Goubin

Schlumberger – CP8
68 route de Versailles, F-78431 Louveciennes, France

Louis.Goubin@louveciennes.tt.slb.com

Abstract. Since the announcement of the Differential Power Analysis
(DPA) by Paul Kocher and al., several countermeasures were proposed in
order to protect software implementations of cryptographic algorithms.
In an attempt to reduce the resulting memory and execution time over-
head, a general method was recently proposed, consisting in “masking”
all the intermediate data.
This masking strategy is possible if all the fundamental operations used
in a given algorithm can be rewritten with masked input data, giving
masked output data. This is easily seen to be the case in classical algo-
rithms such as DES or RSA.
However, for algorithms that combine boolean and arithmetic functions,
such as IDEA or several of the AES candidates, two different kinds of
masking have to be used. There is thus a need for a method to convert
back and forth between boolean masking and arithmetic masking.
A first solution to this problem was proposed by Thomas Messerges in
[15], but was unfortunately shown (see [6]) insufficient to prevent DPA.
In the present paper, we present two new practical algorithms for the
conversion, that are proven secure against DPA.
The first one (“BooleanToArithmetic”) uses a constant number of el-
ementary operations, namely 7, on the registers of the processor. The
number of elementary operations for the second one (“ArithmeticTo-
Boolean”), namely 5K + 5, is proportional to the size K (in bits) of the
processor registers.

Key words: Physical attacks, Differential Power Analysis, Electric con-
sumption, AES, IDEA, Smartcards, Masking Techniques.

1 Introduction

Paul Kocher and al. introduced in 1998 ([12]) and published in 1999 ([13]) the
concept of Differential Power Analysis attack, also known as DPA. The initial
focus was on symmetrical cryptosystems such as DES (see [12,16]) and the AES
candidates (see [1,3,7]), but public key cryptosystems have since been shown to
be also vulnerable to the DPA attacks (see [17,5,11]).

In [10,11], Goubin and Patarin proposed a generic countermeasure consist-
ing in splitting all the intermediate variables. A similar “duplication” method

Ç.K. Koç, D. Naccache, and C. Paar (Eds.): CHES 2001, LNCS 2162, pp. 3–15, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



4 L. Goubin

was suggested shortly after by Chari and al. in [3] and [4]. Although the au-
thors of [3] state that these general methods generally increase dramatically
the amount of memory needed, or the computation time, Goubin and Patarin
proved that realistic implementations could be reached with the “duplication”
method. However, it has been shown in [9] that even inner rounds can be aimed
by “Power-Analysis”-type attacks, so that the splitting should be performed on
all rounds of the algorithm. This makes the issue of the memory and time com-
putation overhead even more crucial, especially for embedded systems such as
smartcards.

In [15], Thomas Messerges investigated on DPA attacks applied on the AES
candidates. He developped a general countermeasure, consisting in masking all
the inputs and outputs of each elementary operation used by the microprocessor.
This generic technique allowed him to evaluate the impact of these countermea-
sures on the five AES algorithms.

However, for algorithms that combine boolean and arithmetic functions, two
different kinds of masking have to be used. There is thus a need for a method to
convert back and forth between boolean masking and arithmetic masking. This
is typically the case for IDEA [14] and for three AES candidates: MARS [2],
RC6 [18] and Twofish [19].

T. Messerges proposed in [15] an algorithm in order to perform this conver-
sion between a “⊕ mask” and a “+ mask”. Unfortunately, Coron and Goubin
described in [6] a specific attack, showing that the “BooleanToArithmetic” al-
gorithm proposed by T. Messerges is not sufficient to prevent Differential Power
Analysis. In a similar way, his “ArithmeticToBoolean” algorithm is not secure
either.

In the present paper, we present two new “BooleanToArithmetic” and “Arith-
meticToBoolean” algorithms, proven secure against DPA attacks. Each of these
algorithms uses only very simple operations: “XOR”, “AND”, subtractions and
“logical shift left”. Our “BooleanToArithmetic” algorithm uses a constant num-
ber (namely 7) of such elementary operations, whereas the number of elemen-
tary operations involved in our “ArithmeticToBoolean” algorithm is proportional
(namely equal to 5K + 5) to the size (i.e. the number K of bits) of the processor
registers.

2 Background

2.1 The “Differential Power Analysis” Attack

The “Differential Power Analysis” (DPA) is an attack that allows to obtain
information about the secret key (contained in a smartcard for example), by
performing a statistical analysis of the electric consumption records measured
for a large number of computations with the same key.

This attack does not require any knowledge about the individual electric
consumption of each instruction, nor about the position in time of each of these
instructions. It applies exactly the same way as soon as the attacker knows the



A Sound Method for Switching between Boolean and Arithmetic Masking 5

outputs of the algorithm and the corresponding consumption curves. It only
relies on the following fundamental hypothesis:

Fundamental hypothesis: There exists an intermediate variable, that ap-
pears during the computation of the algorithm, such that knowing a few key bits
(in practice less than 32 bits) allows us to decide whether two inputs (respectively
two outputs) give or not the same value for this variable.

2.2 The Masking Method

In the present paper, we focus on the “masking method”, initially suggested by
Goubin and Patarin in [10], and studied further in [11].

The basic principle consists in programming the algorithm so that the fun-
damental hypothesis above is not true any longer (i.e. an intermediate variable
never depends on the knowledge of an easily accessible subset of the secret key).
More precisely, using a secret sharing scheme, each intermediate variable that
appears in the cryptographic algorithm is splitted. Therefore, an attacker has to
analyze multiple point distributions, which makes his task grow exponentially
in the number of elements in the splitting.

2.3 The Conversion Problem

For algorithms that combine boolean and arithmetic functions, two different
kinds of masking have to be used:

Boolean masking : x′ = x ⊕ r
Arithmetic masking : A = x − r mod 2K

Here the variable x is masked with random r to give the masked value x′ (or
A). Our goal is to find an efficient algorithm for converting from boolean masking
to arithmetic masking and conversely, in which all intermediate variables are
decorrelated from the data to be masked, so that it is secure against DPA.

In all the present paper, we suppose that the processor has K-bit registers
(in practice, K is most of the time equal to 8, 16, 32 or 64). All the arithmetic
operations (such as the addition “+”, the subtraction “−”, or the doubling
“z �→ 2z”) are considered modulo 2K . For simplicity, the “mod2K” will often
be omitted in the sequel.

3 From Boolean to Arithmetic Masking

3.1 A Useful Algebraic Property

Let I = {0, 1, 2, . . . , 2K − 1}, with K ≥ 1 being an integer. Let x′ ∈ I. We
consider the function Φx′ : I → I, defined by:

Φx′(r) ≡ (x′ ⊕ r) − r mod 2K .

We identify each element of I with the sequence of coefficients in its binary
representation, so that I can be viewed as a vector space of dimension K over
GF(2), isomorphic to GF(2)K .



6 L. Goubin

Theorem 1

Φx′(r) = x′ ⊕
K−1⊕
i=1

[( i−1∧
j=1

(
2jx′)

)
∧ (

2ix′) ∧ (
2ir

)]
,

where x′ stands for the ones complement of x′, and ∧ stands for the boolean
“AND” operator.

See Appendix 1 for a proof of Theorem 1.

Corollary 1.1 The function Φx′ is affine over GF(2).

This result is an easy consequence of Theorem 1.

3.2 The “BooleanToArithmetic” Algorithm

Since Φx′ is affine over GF(2), the function Ψx′ = Φx′ ⊕ Φx′(0) is linear over
GF(2). Therefore, for any value γ,

Ψx′(r) = Ψx′(γ ⊕ (r ⊕ γ)) = Ψx′(γ) ⊕ Ψx′(r ⊕ γ).

Corollary 1.2 For any value γ, if we denote A = (x′ ⊕ r) − r, we also have

A = [(x′ ⊕ γ) − γ] ⊕ x′ ⊕ [(x′ ⊕ (r ⊕ γ)) − (r ⊕ γ)].

A = (x′ ⊕ r) − r can thus be obtained from the following algorithm:

Algorithm 1. BooleanToArithmetic
Require: (x′, r) such that x = x′ ⊕ r
Ensure: (A, r) such that x = A + r
Initialize Γ to a random value γ
T ⇐ x′ ⊕ Γ
T ⇐ T − Γ
T ⇐ T ⊕ x′

Γ ⇐ Γ ⊕ r
A ⇐ x′ ⊕ Γ
A ⇐ A − Γ
A ⇐ A ⊕ T

The “BooleanToArithmetic” algorithm uses 2 auxiliary variables (T and Γ ),
1 random generation and 7 elementary operations (more precisely: 5 “XOR” and
2 subtractions).



A Sound Method for Switching between Boolean and Arithmetic Masking 7

3.3 Proof of Security against DPA

From the description of the “BooleanToArithmetic” algorithm, we easily obtain
the list of all the intermediate values V0, ..., V6 that appear during the compu-
tation of A = (x′ ⊕ r) − r:




V0 = γ
V1 = γ ⊕ r
V2 = x′ ⊕ γ
V3 = (x′ ⊕ γ) − γ
V4 = [(x′ ⊕ γ) − γ] ⊕ x′

V5 = x′ ⊕ γ ⊕ r
V6 = (x′ ⊕ γ ⊕ r) − (γ ⊕ r)

If we suppose that γ is randomly chosen with a uniform distribution on
I = {0, 1}K , it is easy to see that:

– the values V0, V1, V2 and V5 are uniformly distributed on I.
– the distributions of V3, V4 and V6 depend on x′ but not on r.

4 From Arithmetic to Boolean Masking

4.1 A Useful Recursion Formula

Theorem 2 If we denote x′ = (A + r) ⊕ r, we also have x′ = A ⊕ uK−1, where
uK−1 is obtained from the following recursion formula:{

u0 = 0
∀k ≥ 0, uk+1 = 2[uk ∧ (A ⊕ r) ⊕ (A ∧ r)].

See Appendix 2 for a proof of Theorem 2.

4.2 The “ArithmeticToBoolean” Algorithm

Let γ be any value. The change of variable tk = 2γ ⊕ uk leads to the following
consequence of Theorem 2.

Corollary 2.1 For any value γ, if we denote x′ = (A + r) ⊕ r, we also have
x′ = A⊕2γ⊕tK−1, where tK−1 is obtained from the following recursion formula:{

t0 = 2γ
∀k ≥ 0, tk+1 = 2[tk ∧ (A ⊕ r) ⊕ ω],

in which ω = γ ⊕ (2γ) ∧ (A ⊕ r) ⊕ A ∧ r.

As a consequence, x′ = (A + r) ⊕ r can be obtained from the “Arithmetic-
ToBoolean” algorithm below.

This method requires 3 auxiliary variables (T , Ω and Γ ), 1 random generation
and (5K + 5) elementary operations (more precisely: (2K + 4) “XOR”, (2K + 1)
“AND” and K “logical shift left”).



8 L. Goubin

Algorithm 2. ArithmeticToBoolean
Require: (A, r) such that x = A + r
Ensure: (x′, r) such that x = x′ ⊕ r
Initialize Γ to a random value γ
T ⇐ 2Γ
x′ ⇐ Γ ⊕ r
Ω ⇐ Γ ∧ x′

x′ ⇐ T ⊕ A
Γ ⇐ Γ ⊕ x′

Γ ⇐ Γ ∧ r
Ω ⇐ Ω ⊕ Γ
Γ ⇐ T ∧ A
Ω ⇐ Ω ⊕ Γ
for k = 1 to K − 1 do

Γ ⇐ T ∧ r
Γ ⇐ Γ ⊕ Ω
T ⇐ T ∧ A
Γ ⇐ Γ ⊕ T
T ⇐ 2Γ

end for
x′ ⇐ x′ ⊕ T

4.3 Proof of Security against DPA

From the description of the “BooleanToArithmetic” algorithm, we easily obtain
the list of all the intermediate values W0, ..., W5K+4 that appear during the
computation of x′ = (A + r) ⊕ r:




W0 = γ
W1 = 2γ
W2 = γ ⊕ r
W3 = γ ⊕ γ ∧ r
W4 = 2γ ⊕ A
W5 = γ ⊕ 2γ ⊕ A
W6 = (γ ⊕ 2γ ⊕ A) ∧ r
W7 = γ ⊕ (2γ) ∧ r ⊕ A ∧ r
W8 = (2γ) ∧ A
W9 = γ ⊕ (2γ) ∧ (A ⊕ r) ⊕ A ∧ r = ω

for k = 1 to K − 1 :




W5k+5 = (2γ ⊕ uk−1) ∧ r
W5k+6 = γ ⊕ (2γ) ∧ A ⊕ uk−1 ∧ r ⊕ A ∧ r
W5k+7 = (2γ ⊕ uk−1) ∧ A
W5k+8 = γ ⊕ uk−1 ∧ (A ⊕ r) ⊕ A ∧ r
W5k+9 = 2γ ⊕ uk

If we suppose that γ is randomly chosen with a uniform distribution on
I = {0, 1}K , it is easy to see that:



A Sound Method for Switching between Boolean and Arithmetic Masking 9

– the values W0, W2 and W5k+8 (1 ≤ k ≤ K − 1) are uniformly distributed on
I.

– the values W1 and W5k+9 are uniformly distributed on the subset {0, 1}K−1×
{0} of I.

– the distributions of W3 and W5k+5 (1 ≤ k ≤ K − 1) depend on r but not on
A.

– the distributions of W4, W8 and W5k+7 (1 ≤ k ≤ K − 1) depend on A but
not on r.

To study the distribution of the remaining values (W5, W6, W7, W9 and
W5k+6), we will make use of the following result:

Theorem 3 For any δ ∈ I, the following function is bijective:

Θδ :
{

I → I
γ �→ γ ⊕ (2γ) ∧ δ.

See Appendix 3 for a proof of Theorem 3. As a result:

– the values W5 = Θ−1(γ)⊕A, W7 = Θr(γ)⊕A∧r, W9 = ΘA⊕r(γ)⊕A∧r and
W5k+6 = Θr(γ)⊕uk−1 ∧ r⊕A∧ r (1 ≤ k ≤ K −1) are uniformly distributed
on I.

– the distribution of W6 = (Θ−1(γ) ⊕ A) ∧ r depends on r but not on A.

5 Conclusion

In this paper, we solved the following open problem (stated in [6]): “find an
efficient algorithm for converting from boolean masking to arithmetic masking
and conversely, in which all intermediate variables are decorrelated from the data
to be masked, so that it is secure against DPA”.

The construction of our “BooleanToArithmetic” and “ArithmeticToBoolean”
algorithms also led us to prove some results of independent interest. In particular
we proved that r �→ (a ⊕ r) − r mod 2K is an affine function, which seems to be
a new result.

Finally, a direction for further research would be to find an improved version
of the “ArithmeticToBoolean” algorithm, in which the number of elementary
operations is less than 5K + 5, or (even better) a constant independent of the
size K of the registers.

Acknowledgement

I would like to thank Jean-Sébastien Coron for interesting discussions and sug-
gestions.



10 L. Goubin

References

1. Eli Biham and Adi Shamir, “Power Analysis of the Key Scheduling of the AES
Candidates”, in Proceedings of the Second Advanced Encryption Standard (AES)
Candidate Conference,
http://csrc.nist.gov/encryption/aes/round1/Conf2/aes2conf.htm, March 1999.

2. Carolynn Burwick, Don Coppersmith, Edward D’Avignon, Rosario Gennaro, Shai
Halevi, Charanjit Jutla, Stephen M. Matyas, Luke O’Connor, Mohammad Peyra-
vian, David Safford and Nevenko Zunic, “MARS - A Candidate Cipher for AES”,
NIST AES Proposal, June 1998. Available at:
http://www.research.ibm.com/security/mars.pdf

3. Suresh Chari, Charantjit S. Jutla, Josyula R. Rao and Pankaj Rohatgi, “A Caution-
ary Note Regarding Evaluation of AES Candidates on Smart-Cards”, in Proceed-
ings of the Second Advanced Encryption Standard (AES) Candidate Conference,
http://csrc.nist.gov/encryption/aes/round1/Conf2/aes2conf.htm, March 1999.

4. Suresh Chari, Charantjit S. Jutla, Josyula R. Rao and Pankaj Rohatgi, “Towards
Sound Approaches to Counteract Power-Analysis Attacks”, in Proceedings of Ad-
vances in Cryptology – CRYPTO’99, Springer-Verlag, 1999, pp. 398-412.

5. Jean-Sébastien Coron, “Resistance Against Differential Power Analysis for Elliptic
Curve Cryptosystems”, in Proceedings of Workshop on Cryptographic Hardware
and Embedded Systems, Springer-Verlag, August 1999, pp. 292-302.

6. Jean-Sébastien Coron and Louis Goubin, “On Boolean and Arithmetic Masking
against Differential Power Analysis”, in Proceedings of Workshop on Cryptographic
Hardware and Embedded Systems, Springer-Verlag, August 2000.

7. John Daemen and Vincent Rijmen, “Resistance Against Implementation Attacks:
A Comparative Study of the AES Proposals”, in Proceedings of the Second Ad-
vanced Encryption Standard (AES) Candidate Conference,
http://csrc.nist.gov/encryption/aes/round1/Conf2/aes2conf.htm, March 1999.

8. John Daemen, Michael Peters and Gilles Van Assche, “Bitslice Ciphers and Power
Analysis Attacks”, in Proceedings of Fast Software Encryption Workshop 2000,
Springer-Verlag, April 2000.

9. Paul N. Fahn and Peter K. Pearson, “IPA: A New Class of Power Attacks”, in
Proceedings of Workshop on Cryptographic Hardware and Embedded Systems,
Springer-Verlag, August 1999, pp. 173-186.

10. Louis Goubin and J. Patarin, “Procédé de sécurisation d’un ensemble électronique
de cryptographie à clé secrète contre les attaques par analyse physique”, European
Patent, Schlumberger, February 4th, 1999, Publication Number: 2789535.

11. Louis Goubin and Jacques Patarin, “DES and Differential Power Analysis – The
Duplication Method”, in Proceedings of Workshop on Cryptographic Hardware
and Embedded Systems, Springer-Verlag, August 1999, pp. 158-172.

12. Paul Kocher, Joshua Jaffe and Benjamin Jun, “Introduction to Differential Power
Analysis and Related Attacks”, http://www.cryptography.com/dpa/technical,
1998.

13. Paul Kocher, Joshua Jaffe and Benjamin Jun, “Differential Power Analysis”, in
Proceedings of Advances in Cryptology – CRYPTO’99, Springer-Verlag, 1999, pp.
388-397.

14. Xuejia Lai and James Massey, “A Proposal for a New Block Encryption Standard”,
in Advances in Cryptology - EUROCRYPT ’90 Proceedings, Springer-Verlag, 1991,
pp. 389-404.



A Sound Method for Switching between Boolean and Arithmetic Masking 11

15. Thomas S. Messerges, “Securing the AES Finalists Against Power Analysis At-
tacks”, in Proceedings of Fast Software Encryption Workshop 2000 , Springer-
Verlag, April 2000.

16. Thomas S. Messerges, Ezzy A. Dabbish and Robert H. Sloan, “Investigations of
Power Analysis Attacks on Smartcards”, in Proceedings of USENIX Workshop on
Smartcard Technology , May 1999, pp. 151-161.

17. Thomas S. Messerges, Ezzy A. Dabbish and Robert H. Sloan, “Power Analysis
Attacks of Modular Exponentiation in Smartcards”, in Proceedings of Workshop on
Cryptographic Hardware and Embedded Systems, Springer-Verlag, August 1999,
pp. 144-157.

18. Ronald L. Rivest, Matthew J.B. Robshaw, Ray Sidney and Yiqun L. Yin, “The
RC6 Block Cipher”, v1.1, August 20, 1998. Available at:
ftp://ftp.rsasecurity.com/pub/rsalabs/aes/rc6v11.pdf

19. Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall and Niels
Ferguson, “Twofish: A 128-Bit Block Cipher”, June 15, 1998, AES submission
available at: http://www.counterpane.com/twofish.pdf

Annex 1: Proof of Theorem 1

To prove theorem 1, we prove the following more precise result:

Lemma 1 For any integer k ≥ 1:

Φa(r) ≡
{

a ⊕
k−1⊕
i=1

[( i−1∧
j=1

(
2j ā)

)
∧ (

2ia
) ∧ (

2ir
)]}

−
[( k−1∧

j=1

(
2j ā)

)
∧ (

2ka
) ∧ (

2kr
)]

mod 2K ,

where ā stands for the ones complement of a, and ∧ stands for the boolean
“AND” operator.

Theorem 1 easily follows from Lemma 1, by considering the particular value
k = K (and taking a = x′).

To prove Lemma 1, we will use the following elementary result.

Lemma 2 For any integers u and v:

u − v ≡ (u ⊕ v) − 2(ū ∧ v) mod 2K .

Proof of Lemma 2 (sketch): u ⊕ v gives almost the same result as u − v, except
that carries have been forgotten. For a given index, a carry appears if and only
if a ‘1’ bit (from v) is subtracted from a ‘0’ bit (from u), which corresponds to a
‘1’ bit in ū∧v = 1. Since the carry is then subtracted in the next index, ū∧v has
to be shifted left, which is the same as to be doubled, before being subtracted
from u ⊕ v.



12 L. Goubin

Proof of Lemma 1: We proceed by induction on k.
– We first apply Lemma 2 with u = a ⊕ r and v = r:

Φa(r) ≡ (a ⊕ r) − r ≡ a − 2(a ⊕ r ∧ r) mod 2K .

Since a ⊕ r = a ⊕ r̄, we have:

Φa(r) ≡ a − 2((a ⊕ r̄) ∧ r) ≡ a − 2(a ∧ r) mod 2K ,

which proves the case k = 1 of Lemma 1 (conventionally, the empty product
0∧

j=1
equals the identity element of the ∧ operator).

– Let us suppose that the result of Lemma 1 is true for k:

Φa(r) ≡
{

a ⊕
k−1⊕
i=1

[( i−1∧
j=1

(
2j ā)

)
∧ (

2ia
) ∧ (

2ir
)]}

−
[( k−1∧

j=1

(
2j ā)

)
∧ (

2ka
) ∧ (

2kr
)]

mod 2K

and let us show that it is also true for k + 1.
Let

u = a ⊕
k−1⊕
i=1

[( i−1∧
j=1

(
2j ā)

)
∧ (

2ia
) ∧ (

2ir
)]

and

v =
( k−1∧

j=1

(
2j ā)

)
∧ (

2ka
) ∧ (

2kr
)
.

We first obtain:

u ⊕ v = a ⊕
k⊕

i=1

[( i−1∧
j=1

(
2j ā)

)
∧ (

2ia
) ∧ (

2ir
)]

.

Moreover,

ū = a ⊕
k−1⊕
i=1

[( i−1∧
j=1

(
2j ā)

)
∧ (

2ia
) ∧ (

2ir
)]

= ā ⊕
k−1⊕
i=1

[( i−1∧
j=1

(
2j ā)

)
∧ (

2ia
) ∧ (

2ir
)]

,

so that:

ū ∧ v =
{

ā ⊕
k−1⊕
i=1

[( i−1∧
j=1

(
2j ā)

)
∧ (

2ia
) ∧ (

2ir
)]}



A Sound Method for Switching between Boolean and Arithmetic Masking 13

∧
( k−1∧

j=1

(
2j ā)

)
∧ (

2ka
) ∧ (

2kr
)
.

Therefore

ū ∧ v =
( k−1∧

j=0

(
2j ā)

)
∧ (

2ka
) ∧ (

2kr
)

because to each index i, 1 ≤ i ≤ k − 1 in u corresponds an index j, 1 ≤ j ≤
k − 1 in v (namely j = i), such that:

(
2ia

) ∧ (
2j ā

)
= 0.

Therefore, applying Lemma 2:

Φa(r) ≡
{

a ⊕
k⊕

i=1

[( i−1∧
j=1

(
2j ā)

)
∧ (

2ia
) ∧ (

2ir
)]}

−
[( k∧

j=1

(
2j ā)

)
∧ (

2k+1a
) ∧ (

2k+1r
)]

mod 2K .

Annex 2: Proof of Theorem 2

We begin by the following elementary result:

Lemma 3 For any z and δ, the following identity holds:

z + δ ≡ z̄ − δ mod 2K .

Proof of Lemma 3: It is easy to see that, for any λ,

λ + λ̄ + 1 ≡ 0 mod 2K .

Applying this identity successively with λ = z̄ − δ and λ = z, we obtain:

z̄ − δ ≡ −(z̄ − δ) − 1 ≡ −((−z − 1) − δ) − 1 = z + δ mod 2K .

Proof of Theorem 2: We first apply Lemma 3 with z = A and δ = r:

A + r = Ā − r

Moreover,

Ā = A ⊕ (−1) = ((A ⊕ r) ⊕ (−1)) ⊕ r = A ⊕ r ⊕ r.

Hence
A + r = (A ⊕ r ⊕ r) − r = ΦA⊕r(r).



14 L. Goubin

From Theorem 1 (with A ⊕ r instead of x′), we know that:

ΦA⊕r(r) = A ⊕ r ⊕
K−1⊕
i=1

[( i−1∧
j=1

(
2j(A ⊕ r)

)
∧ (

2i(A ⊕ r)
) ∧ (

2ir
)]

,

so that

A + r = A ⊕ r ⊕
K−1⊕
i=1

[( i−1∧
j=1

(
2j(A ⊕ r)

)
∧ (

2iA)
) ∧ (

2ir
)]

.

Let us denote, for any integer k ≥ 0,

uk =
k⊕

i=1

[( i−1∧
j=1

(
2j(A ⊕ r)

)
∧ (

2iA)
) ∧ (

2ir
)]

.

From the definition of uk, we have u0 = 0 and A + r = A ⊕ r ⊕ uK−1. Moreover
for all k ≥ 0,

uk+1 =
k+1⊕
i=1

[( i−1∧
j=1

(
2j(A ⊕ r)

)
∧ (

2iA)
) ∧ (

2ir
)]

= 2(A ∧ r) ⊕
k+1⊕
i=2

[( i−1∧
j=1

(
2j(A ⊕ r)

)
∧ (

2iA)
) ∧ (

2ir
)]

,

so that, if we denote i′ = i − 1 and j′ = j − 1:

uk+1 = 2(A ∧ r) ⊕
k⊕

i′=1

[( i′−1∧
j′=0

(
2j′+1(A ⊕ r)

)
∧ (

2i′+1A)
) ∧ (

2i′+1r
)]

= 2
{

(A ∧ r) ⊕
k⊕

i′=1

[( i′−1∧
j′=0

(
2j′

(A ⊕ r)
)

∧ (
2i′

A)
) ∧ (

2i′
r
)]}

= 2
{

(A ∧ r) ⊕ (A ⊕ r) ∧
k⊕

i′=1

[( i′−1∧
j′=1

(
2j′

(A ⊕ r)
)

∧ (
2i′

A)
) ∧ (

2i′
r
)]}

= 2[(A ∧ r) ⊕ (A ⊕ r) ∧ uk].

Annex 3: Proof of Theorem 3

Let δ be any value in I. We begin by proving that Θδ is surjective.
Let y ∈ I. If we denote:

γ =
K−1⊕
i=0

[( i∧
j=1

(
2j−1δ)

)
∧ (

2iy
)]



A Sound Method for Switching between Boolean and Arithmetic Masking 15

(conventionally, the empty product
0∧

j=1
equals the identity element of the ∧

operator), we have:

γ ⊕ (2γ) ∧ δ = γ ⊕
K−1⊕
i=0

[( i∧
j=0

(
2jδ)

)
∧ (

2i+1y
)]

,

so that, if we denote i′ = i + 1 and j′ = j + 1:

γ ⊕ (2γ) ∧ δ = γ ⊕
K⊕

i′=1

[( i′∧
j′=1

(
2j′−1δ)

)
∧ (

2i′
y
)]

.

From the definition of γ, it is easy to see that:

K⊕
i′=1

[( i′∧
j′=1

(
2j′−1δ)

)
∧ (

2i′
y
)]

= γ ⊕ y

Therefore:
γ ⊕ (2γ) ∧ δ = y.

We have proven that, for any y ∈ I, a value γ ∈ I exists such that Θδ(γ) = y.
As a consequence, Θδ is surjective. Since it maps I onto itself, we deduce that
Θδ is bijective.


	1 Introduction
	2 Background
	2.1 The "Differential Power Analysis" Attack
	2.2 The Masking Method
	2.3 The Conversion Problem

	3 From Boolean to Arithmetic Masking
	3.1 A Useful Algebraic Property
	3.2 The "BooleanToArithmetic" Algorithm
	3.3 Proof of Security against DPA

	4 From Arithmetic to Boolean Masking
	4.1 A Useful Recursion Formula
	4.2 The "ArithmeticToBoolean" Algorithm
	4.3 Proof of Security against DPA

	5 Conclusion
	Acknowledgement
	References
	Annex 1: Proof of Theorem 1
	Annex 2: Proof of Theorem 2
	Annex 3: Proof of Theorem 3

