The Software-Oriented Stream Cipher SSC2

Muxiang Zhang', Christopher Carroll', and Agnes Chan?

! GTE Laboratories Inc., 40 Sylvan Road LAOMS59, Waltham, MA 02451
{mzhang, ccarroll}@gte.com
2 College of Computer Science, Northeastern University, Boston, MA 02115
ahchan@ccs.neu.edu

Abstract. SSC2 is a fast software stream cipher designed for wireless
handsets with limited computational capabilities. It supports various pri-
vate key sizes from 4 bytes to 16 bytes. All operations in SSC2 are word-
oriented, no complex operations such as multiplication, division, and ex-
ponentiation are involved. SSC2 has a very compact structure that makes
it easy to implement on 8-,16-, and 32-bit processors. Theoretical analy-
sis demonstrates that the keystream sequences generated by SSC2 have
long period, large linear complexity, and good statistical distribution.

1 Introduction

For several reasons, encryption algorithms have been constrained in cellular and
personal communications. First, the lack of computing power in mobile stations
limits the use of computationally intensive encryption algorithms such as public
key cryptography. Second, due to the high bit error rate of wireless channels,
encryption algorithms which produce error propagation deteriorate the quality
of data transmission, and hence are not well suited to applications where high
bit error rates are common place. Third, the shortage of bandwidth at uplink
channels (from mobile station to base station) makes encryption algorithms at
low encryption (or decryption) rates unacceptable, and random delays in encryp-
tion or decryption algorithms are not desirable either. To handle these issues,
the European Group Special Mobile (GSM) adopted a hardware implemented
stream cipher known as alleged A5 [13]. This stream cipher has two main vari-
ants: the stronger A5/1 version and the weaker A5/2 version. Recent analysis
by Biryukov and Shamir [16] has shown that the A5/1 version can be broken
in less than one second on a single PC. Other than this weakness, the hardware
implementation of the alleged A5 also incurs additional cost. In addition, the
cost of modifying the encryption algorithm in every handset would be exorbitant
when such a need is called for. For this reason, a software implemented stream
cipher which is fast and secure would be preferable.

To this end, we designed SSC2, a software-oriented stream cipher which is
easy to implement on 8-, 16-, and 32-bit processors. SSC2 belongs to the stream
cipher family of combination generators. It combines a filtered linear feedback
shift register (LFSR) and a lagged-Fibonacci generator. All operations involved
in SSC2 are word-oriented, where a word consists of 4 bytes. The word sequence

B. Schneier (Ed.): FSE 2000, LNCS 1978, pp. 31-H8] 2001.
© Springer-Verlag Berlin Heidelberg 2001

32 M. Zhang, C. Carroll, and A. Chan

generated by SSC2 is added modulo-2 to the words of data frames in the manner
of a Vernam cipher. SSC2 supports various private key sizes from 4 bytes to 16
bytes. It has a key scheduling scheme that stretches a private key to a master
key of 21 words. The master key is loaded as the initial states of the LFSR
and the lagged-Fibonacci generator. To cope with the synchronization problem,
SSC2 also supplies an efficient frame key generation scheme that generates an
individual key for each data frame. Theoretical analysis indicates that the key-
stream sequences generated by SSC2 have long period, large linear complexity,
and good statistical distribution.

2 Specification of SSC2

The keystream generator of SSC2, as depicted in Figure 1, consists of a filter
generator and a lagged-Fibonacci generator. In the filter generator, the LFSR
is a word-oriented linear feedback shift register. The word-oriented LFSR has 4
stages with each stage containing a word. It generates a new word and shifts out
an old word at every clock. The nonlinear filter compresses the 4-word content
of the LFSR to a word. The lagged-Fibonacci generator has 17 stages and is
also word-oriented. The word shifted out by the lagged-Fibonacci generator is
left-rotated 16 bits and then added to another word selected from the 17 stages.
The sum is XOR-ed with the word produced by the filter generator.

T

16-bit
ROTATION

128 32
F{01) —= {01} >>28 MULTIPLEXER
[

Fig. 1. The keystream generator of SSC2

2.1 The Word-Oriented Linear Feedback Shift Register

For software implementation, there are two major problems for LFSR-based
keystream generators. First, the speed of a software implemented LFSR, is much
slower than that of a hardware implemented one. To update the state of a LFSR,
a byte-oriented or word-oriented processor needs to spend many clock cycles

The Software-Oriented Stream Cipher SSC2 33

to perform the bit-shifting and bit-extraction operations. Second, LFSR-based
keystream generators usually produce one bit at every clock, which again makes
the software implementation inefficient. To make the software implementation
efficient, we designed a word-oriented LFSR in SSC2 by exploiting the fact that
each word of a linear feedback shift register sequence can be represented as a
linear transformation of the previous words of the sequence.

Fig. 2. The LFSR with characteristic polynomial p(z) = z(2'*" + 2% 4 1)

The LFSR used in SSC2, as depicted in Figure 4.2, has the characteristic
polynomial
pla) = (' +a%% 4 1),
where the factor x!27 + 2% + 1 of p(x) is a primitive polynomial over GF(2).
After discarding sg, the LFSR sequence, s1, So, . . ., is periodic and has the least

period 2127 — 1. The state S,, = (85,1127, Snt126, - - - » Sn) at time n can be divided
into 4 blocks with each block being a word, that is,

Sy = ($n+3a Tn4+2, Tn+1, xn)

After running the LFSR 32 times, the LFSR has the state

Snt+32 = (Tptd, Trgs, Tnt2, Tnii)-

It can be shown that

xn+4 = xn+2 EB (8n+32; 07 07 LU 70) EB (07 3n+317 Sn+307 ey Sn+1)‘ (1)

Let < denote the zero-fill left-shift operation. By x <, it means that the word
x is shifted left j bits and a zero is filled to the right-most bit every time when
x is shifted left 1 bit. Similarly, let > denote the zero-fill right-shift operation.
With these notations, we can rewrite equation (1) as follows

Tptq = Tpt2 B Tpt1 K31 BTy >1, (2)

which describes the operation of the word-oriented LFSR in Figure 1. It is in-
teresting to note that the feedback connections of the word-oriented LFSR are
not sparse even though the bit-oriented LFSR described by p(x) has very sparse
feedback connections.

In the bit-oriented LFSR described by Figure 2, the stage 0 is not involved
in the computation of the feedback and hence is redundant. It is left there just

34 M. Zhang, C. Carroll, and A. Chan

to make the length of the LFSR to be a multiple of 32. For this reason, the
content of stage 0 will be excluded from the state of the LFSR. Let S/, denote
the bit-oriented LFSR state consisting of the contents of stage 1 through stage
127, namely,

!
S}, = (841275 504126 - - - Sntl)-

Correspondingly, let S;’ denote the state of the word-oriented LFSR, where S!/
is made up of the contents of stage 1 through stage 127 of the word-oriented
LFSR at time n. Thus,

Proposition 1. Assume that the initial state S§ of the word-oriented LESR
described by (2) is not zero. Then the state sequence S{, S, ... is periodic and
has the least period 2'2” — 1. Furthermore, for any 0 < i < j < 21271, 5/ #£ Sy

Proof. Since 227 +2%3 +1 is a primitive polynomial oner GF(2), and S}, = S{ #
0, the state sequence S{, S7, ... of the bit-oriented LFSR is periodic and has the

least period 2'27 — 1. Thus, by (3), Sl grar_q = S§2(n+2127—1) = S/, Hence, the
sequence S§, Sy, ... is periodic and has a period of 2!27 — 1. The least period

of the sequence should be a divisor of 2'27 — 1. On the other hand, 2?7 — 1 is
a prime number (divided by 1 and itself). So the least period of S{/,SY,... is
2127 1.

Next, assume that S} = S} for i and j with 0 <4 < j < 2127 _ 1. Then
S39; = S35, which implies that 32(j — i) is a multiple of 2'*7 — 1. Since 2'*" — 1
is prime to 32, j — i is a multiple of 2'27 — 1, which contradicts the assumption.

2.2 The Nonlinear Filter

The nonlinear filter is a memoryless function, that is, its output at time n only
depends on the content of the word-oriented LFSR at time n. Let (243, Znio,
Znt1,Tn) denote the content of the word-oriented LFSR at time n. The output
at time n, denoted by z/,, is described by the following pseudo-code:

Nonlinear-Function F(Z,,43, Tnt2, Tntl, Tn)

1 A<+ 2,43+ (7, V1) mod 232

2 ¢4 carry

3 cyclic shift A left 16 bits

4 if (¢=0) then

5 A+ A+ 2,49 mod 232

6 else

7 A A+ (pya® (2, V1)) mod 232
8 ¢ < carry

9

return A + (2,41 ® Tp12) + ¢ mod 232

The Software-Oriented Stream Cipher SSC2 35

Let ¢; and ¢y denote the first (line 2) and second (line 8) carry bits in the
pseudo-code. For a 32-bit integer A, let (A),4 denote the result of cyclicly shifting
A left 16 bits. Then the function F' has the following compact form:

2 = (Tngs 4+ (@0 V1)) 16+ Tngo @ c1 (2 V1) + Zpy1 S Tpyo + c2 mod 232 (4)

where V denotes bitwise “OR” operation. The priority of @ is assumed to be
higher than that of +. Note that the least significant bit of x,, is always masked
by 1 in order to get rid of the effect of stage 0 of the LFSR in Figure 2.

2.3 The Lagged-Fibonacci Generator

Lagged-Fibonacci generators, also called additive generators, have been widely
used as random number generators in Monte Carlo simulation [4,6]. Mathe-
matically, a lagged Fibonacci generator can be characterized by the following
recursion:

Yn = Yn—s + Yn—r mod M, n>r. (5)

The generator is defined by the modulus M, the register length r, and the lag s,
where r > s. When M is prime, periods as large as M" — 1 can be achieved for
the generated sequences. However it is more common to use lagged-Fibonacci
generators with M = 2™ m > 1. These generators with power-of-two moduli are
much easier to implement than prime moduli. The following lemma was proved
by Brent [1].

Lemma 1. Assume that M = 2™ m > 1,r > 2, and the polynomial "+ x° + 1
is primitive over GF(2). Then the sequence yo,y1,... of the lagged-Fibonacci
generator described by (5) has the least period 2m~1(2" — 1) if yo,y1, .. ,¥r_1
are not all even.

In SSC2, the lagged-Fibonacci generator with s = 5, r = 17, and M = 232
was adopted. We implemented this generator with a 17-stage circular buffer,
B, and two pointers, s, and, r. Initially B[17], B[16],...,B[1] are loaded with
Yo, Y1,-- -, Y16, and s and r are set to 5 and 17, respectively. At every clock, a
new word is produced by taking the sum of B[r] and B[s] mod23?, the word Br|
is then replaced by the new word, and the pointers s and r are decreased by
1. In this way, the buffer B produces the lagged-Fibonacci sequence. We use a
multiplexer to generate the output sequence 2!/, n > 0 The output word 2! is
computed from the replaced word y, and another word selected from the buffer
B. The selection is based on the most significant 4 bits of the newly produced
word Yn417. The output word at time n, denoted by 2/, is given by

21 = (Yn)16 + B[1 + ((Yn+17 >28) + Spt1 mod 16)] mod 22, (6)

where s, 1 denotes the value of s at time n+ 1. The pseudo-code for 2!/ is listed
as follows:

36 M. Zhang, C. Carroll, and A. Chan

A + BJr]

D « BJ[s] + B[r] mod 232

B[r] «+ D

r—r—1

s<s—1

if (r=0) then r + 17

if (s=0) then s+ 17

cyclicly shift A left 16 bits

output A + B[l + (s + D 25 mod16)] mod 232

N O ULk W N WD~

Proposition 2. Assume that the initial state yq, y1, ..., y16 of the lagged-Fibo-
nacci generator are not all even. Then the sequence z” = z{], 27, ... is periodic
and its least period is a divisor of 17(217 — 1)23L.

Proof. Let r, and s, denote the values of r and s at time n. It is easy to verify
that
r, = 17 — (n mod 17),

and

sp = 17— (n + 12 mod 17).
Hence, the two sequences ¥ = rg,rq,... and s = sg, S, ... are periodic and have
the period 17. Since yo,y1, - - -, Y16 are not all even, by Lemma 5.1, the lagged-
Fibonacci sequence § = yo,¥1,- - - is periodic and has the period (2!7 — 1)23L.

Let T3 denote the period of . For any 1 < ¢ < 17, at time n = 177y — i, the
pointer r has value r, = 17— (n mod 17) = 4, thus, the content of BJ[¢] is replaced
bY Y17 = Y177, —i+17 = Y17—i- Hence, at time n = 17Ty — 17, the word in B[17]
is replaced by yo, at time n = 17T — 16, the word in B[16] is replaced by y1,
..., at time n = 17T} — 1, the word in B[1] is replaced by y16. Therefore, at time
17T}, the content of B is the same as its content at time n = 0. Similarly, it can
be proved that the content of B at time n 4 177} is the same as its content at
time n. By (6), 2,/ can be expressed by

2 = (Yn)16 + B[+ ((Yn+17 > 28) + sp41 mod 16)].
Let ,, denote the index in B in the above equation, namely,
in =14 ((Yynt17 > 28) + sp41 mod 16).
Then

iny177; = 14 ((Unt171y417 > 28) + Spq177, 41 mod 16 = iy,).

Consequently,

" . 32 "
Zny171; = (Ynt1773)16 + Blinta7r;] mod 2°% = 27,

which implies that the period of Z” divides 17T}.

The Software-Oriented Stream Cipher SSC2 37
3 Cryptographic Properties of SSC2

Period, linear complexity, and statistical distribution are three fundamental mea-
sures of security for keystream generators. Unfortunately, these measures are dif-
ficult to analyze for most of the proposed keystream generators. In this section,
an assessment of the strength of SSC2 will be carried out with respect to these
measures.

In the following, we will use Z = zg, z1, . . . to denote the keystream sequence
generated by SSC2. It is the sum of the two sequences 2’ = z{), 21, . . . of the filter
generator, and 2" = z{/, z{, ... of the lagged-Fibonacci generator.

Theorem 1. Assume that the initial state S of the word-oriented LE'SR is not
zero, and the the initial state yg,y1,...,¥y16 of the lagged-Fibonacci generator
are not all even. Then the least period of the keystream sequence generated by
SSC2 is greater than or equal to 2128 — 2.

Proof. Let T5,T:, and T~ denote the least periods of 2, 2, and 2", respectively.
By Proposition 1 and Proposition 2, T = 2'27 — 1, and T3~ is a factor of
17(217 — 1)23%. Since 2'27 — 1 and 17(2'7 — 1)231, are relatively prime, T and
T are also relatively prime. Hence T; = T5/Ts. Therefore T; > 2T = 2128 —2,

Let A(Z") and A(2") denote the linear complexity of 2’ and 2”. According to
[11], the linear complexity of Z = 2’ @ 2" is bounded by

ACG) + A(Z") — 2ged(Ty, Ton) < A(Z) < A(Z") + A(Z"). (7)

Thus, if we have lower bounds on the linear complexity of either z’ or z”, we
can achieve lower bounds on the linear complexity of Z. In the following, we will
analyze the linear complexity of 2’.

We can treat the sequence Z’ = z{, z{, ... in three different forms. First, it is
a sequence of words with 2, = (231 ,,, 230> - - - » 20,,); S€cond, it is a sequence of
bits; and third, it can be considered as a collection of 32 component sequences,
Zi=20:%1,---,0 <i <31 For any 0 <4 <31, 2, can be described by

Zz/',n = fi(5,1/27,na 5,1/26,na R Slll,n)a n > 0, (8)

where (5757 ,,, 5796 15 - - - » 1.5,) 18 the state of the word-oriented LFSR at time n,
and f; is the i-th component of the nonlinear filter F'. Assume that the nonlinear
order, ord(f;), of f; is ¢;. From Key’s analysis [5], the linear complexity of Z/ is
bounded by

AGl) < Ly, = é (1§7> .)

The upper bound Ly, is usually satisfied with equality. But, there are also few
exceptions that the actual linear complexity is deviated from the expected value
given by the upper bound. Rueppel [12] proved that, for a LFSR with primitive

38 M. Zhang, C. Carroll, and A. Chan

connection polynomial of prime degree L, the fraction of Boolean functions of
nonlinear order ¢ that produce sequences of linear complexity Ly is

Py~ exp(—Lg/(L-2L)) > e VL, (10)

For the filter generator of SSC2, we have P; > e~ 127. Hence, the linear comple-
xity of Z] is virtually certain to be Ly,.To determine the nonlinear order of f;,
we will study the nonlinear order of integer addition.

Let = (x31, 30, ---,%0) and y = (Y31, Y30, - - -, Yo) denote the binary repre-
sentation of two 32-bit integers, where xg and yg are the least significant bits of x
and . The sum, z+y mod 232, defines a new 32-bit integer z = (231,230, « -+, 20)-
The binary digits z;,0 <+ < 31, are recursively computed by

zi = x; DY; O -1, (11)

ci =xiy B (x; B yi)ci—, (12)

where ¢;_1 denotes the carry bit, and ¢_; = 0. The 31st carry bit c3; is also
called the carry bit of z 4+ y. In (13) and (14), z; and ¢; are Boolean functions of
x; and y;, 0 < ¢ < 31. In the following, we will use ord(z;) and ord(c;) to denote
the nonlinear order of the Boolean functions represented by z; and c;.

Lemma 2. Assume that z = (31, 230,.-.,20), ¥ = (Y31, Y30, - - - Yo) are two 32-
bit integers, and xzg = 1. Let z = (231, 230, . - - , 20) denote the sum of z + y, and
¢ = (31,30, .., o) denote the carry bits produced by the summation. Then

ord(c;) =i+ 1,0 < i < 31. Furthermore, ord((x; ®y;)cs1) = 32, 1 < i < 31, and
OT’d(Cl5631) = 33.

Proof. By (14), ¢o = yo, and ¢1 = z1y1 ® (21 ® y1)yo- So ord(cy) = 1 and
ord(c1) = 2. Assume that ord(c;) = i+1,4 > 2. Since x;41 and y;+1 do not appear
in the Boolean function represented by ¢;, ord(z;11yi+1) < ord((Tit1 D Yit1)¢:)
for i > 2,

ord(ciy1) = ord(ir1yiv1 ® (Tiy1 © Yiy1)ci)
= ord((zi+1 © Yit+1)ci)
—it2

By induction, ord(c;) = i+ 1,0 < ¢ < 31. Using similar techniques, it can be
proved that ord((z; ® y;)cs1) = 32 and ord(ci5c31) = 33.

Lemma 3. Let z = F'(z3, 2,1, z0) denote the nonlinear function described by
(4), where z = (231, 230, - - -, 20), and ®; = (%431, %430, ---,%i0),0 < i < 3. For
any 0 < i <31, let z; = fi(x3, 22,21, 20), then ord(f;) > 64 + 1.

Proof. Recall that F is a mapping of GF(2)'?® to GF(2)3? given by
z= (3 + (xoV 1))16 + 22 B cr(zo V 1) + 21 ® 22 + c2 mod 2%,

where ¢; and co are the carry bits produced by the first two additions.

The Software-Oriented Stream Cipher SSC2 39

Let Z1 = (#1,31,21,30,- - -, #1,0) denote the sum of x3 and xo V 1. The carry
bits produced by the summation is denoted by c; 31,¢1,30,...,¢1,0- It is clear
that ¢1 = ¢1,31. By Lemma 2, ord(c1) = 32, and ord(z1;) = ord(ci,-1) = 1,1 <
1 < 31.

Let Z7 = (2131,%1,305-»21,0) denote (Z1)16, that is, 21 ; = 211644, for
0<i<15 and 2}, = 21,16, for 16 < i < 31. Let Zy = (22,31, 22,30, - - - ; 22,0)
denote the sum of Z] and z2 & c1(zo V 1), and ¢231,¢2,30, - - -, C2,0 denote the
carry bits produced by the summation with ¢z _1 = ¢1. By (13) and (14),

A
Zo; =21, Dx2; © 120, D 2,1 (13)

Ca,i = 21 (T2, @ c120,4) D (21, © T2 @ €120,4)C2,i-1, (14)

where ¢ _1 = 0 and 9 = 1. Rewriting (16), we have
Coi = (Zil D coi—1)T2,; D Zi)iclxoﬂ @ (Zil D 120,i)C2,i—1-
Since z5,; does not appear in zi,iclxoﬂv &) (z’“ @ c120,5)C2,i—1, We have
ord(ca;) > ord((ziﬁi B Coi1)T2)- (15)
The carry bit cp,9 has the following expression,

C20 = 23,0(3?2,0 S5 C1$0,0)
= 21,16(22,0 B c1,31)

= (23,16 ® 0,16 D €1,15)T2,0 D (23,16 ® Z0,16)C1,31 D €1,15C1,31

By Lemma 2, ord((zs,16 ® Zo,16)c1,31) = 32, and ord(c1 15¢1,31) = 33. The order
of (z3,16 ® 0,16 B €1,15)T2,0 is equal to 17. So the order of ¢z ¢ equals 33. On the
other hand, ord(z1,;) <i,0 <14 < 31. Hence, ord(ca) > ord(z; 1) = ord(z1,17).
By (17), ord(ce,1) > ord(caore,1) > 33. By induction, it can be proved that
ord(cg,;) > 33,0 <4 < 31. Thus ord(cz;) > ord(cz,;—1) + 1. Hence ord(cz 31) >
64.

Let Z3 = (23,31, 23,30, - - - » 23,0) denote the sum of Z +x1 @ x2 + 2. The carry
bits produced by the summation is denoted by c3.31,¢3,30, - - -, ¢3,0. It is obvious
that ¢ = ¢2.31, and z = Z3. By (13) and (14), we have the following expressions
for z; and c3;,

2 = 22 Dx1,; D T2,; D31 (16

)
3, = 22,i(T1,; B x2,;) B (22, D1, D T2,3)C3,i—1, (17)

where c3_1 = c¢a2,31- By (15), ord(z20) = ord(c1) = 32. Thus, ord(z) =
ord(cs,—1) > 64. Rewriting (19), we have the following expression for cs ;,

3= (22, D C34—-1)%1; D 20,,%2,; B (22, D T2,;)C3,i—1. (18)
Substituting (20) into (18),

2i = 22, D1, DOT2,; D (22,,-1PC3,i—2)T1,i—1D22,i-1T2,—1D(22,,—1BT2,i—1)C3,i—2.
(19)

40 M. Zhang, C. Carroll, and A. Chan

Since x1 ;1 only appears in (22 ;-1 @ ¢3,,—2)%1,—1, it is clear that
ord(z;) > ord(z2,—1 P c3,i—2) + 1. (20)
By (20), z2,; ® c34—1 is described by

29, P31 = 22, B (22,i—1 B C3,i—2)T1,i—1 P 22,-122,—1 D (22,i—1 D T2,i—1)C3,i—2.

(21)
Since z1,,—1 appears only in the second term (z9;_1 @ ¢3—2)%1,i—1, ord(z2,; @
6371‘_1) > O’/‘d(ZQ,i—l ® Cg,i_z) + 1. Let di = O’I"d(ZQJ' S5 03,,‘_1), 0 <1< 31. Then
d; > d;_1 + 1. On the other hand,

dop = Ord(ZQ)O (&) 03’,1)
= O/rd(ZQ’O @ 02’31)
> 64.

Hence, d; > 64 + i, 1 < i < 31. By (22), ord(z;) > 64 + i, which proves the
lemma.

Theorem 2. Let Z = 2y, 21, ... denote the word sequence generated by SSC2.
For any n > 0, let 2z, = (231,n;230,m,--->%0,n)- Let S be the initial state of
the word-oriented LFSR and yg,y1,--.,y16 be the initial state of the lagged-
Fibonacci generator. Assume that S{ is not zero and yo, y1, ..., Y16 are not all
even. Then, with a probability greater than e =%
%021 -+ -,0 <4 < 31, have linear complexity

64-+1
127
A(3) >) — 2 > 2126
@23 ()

Jj=1

the binary sequences z; =

Proof. Similar to the decomposition of Z = zg, 21, ..., we can decompose the
word sequence 2’ = z{,, 2}, ... generated by the filter generator into 32 component
sequences, Zj = 2} g, 2} 1,...,0 < i < 31 Slmllarly, let 2 = 2y, 2/1,...,0<i <
31 denote the cornponent sequences of 2" =z{,2,.. generated by the lagged-
Fibonacci generator. Then Z, =z @ 2. Let Ty, 7TZ/, and T~u denote the least

period of Z;, !, and Z/. By Proposmon 1, the word sequence 2=z, 2, ..
has the least period 2127 — 1. Hence, the component sequence Z/ has a period
of (2127 — 1). By Proposition 2, it is easy to verify that the sequence Z/ has a
period of 17(2'7 — 1)23. Therefore, ged(Ts, ;) = 1. By (7), we have

Az) = A(Z) -

By Lemma 3, with a probability no less than e_#, the linear complexity of Z;
is at least Lgyqy;, which proves the theorem.

Theorem 2 implies that the linear complexity of the component sequences
Zi,0 < i < 31, is exponential to the length of the LFSR and is therefore, resilient
to the Berlekamp-Massey attack.

The Software-Oriented Stream Cipher SSC2 41

We next study the question concerning how close a SSC2 sequence resembles
a truly random sequence. Mathematically, a truly random sequence can be mo-
deled as a sequence of independent and uniformly distributed random variables.
To measure the randomness of the keystream sequences generated by SSC2, let’s
consider the distribution of every 32-bit word in a period.

Proposition 3. Let X3, X5, X1, and X be independent and uniformly random
variables over GF(2)3% and Z = F(X3, X2, X1, Xo) be the output of the filter
generator in SSC2. Then Z is uniformly distributed over GF(2)32.

Proof. Let Z' = (X3 + (Xo V 1))16 + Xo @ c1(Xo V 1) + co mod 232. Then
Z = X; ® X2 + Z' mod 232. By the chain rule [2], we can express the joint
entropy H(Z,Z', X1 ® X5) as

H(Z,Z',X1® X)) =H(Z'Y+ H(Z|Z")+ H(X, ® X2|Z,7")
= H(Z') + H(X: ® Xo|Z') + H(Z| X, & X2, Z').
Since X7 @ Xo is uniquely determined by Z and Z', H(X; & X»5|Z,Z’) = 0.
Similarly, H(Z| X1 & X2,Z’) = 0. Hence, H(Z|Z') = H(X1 ® X2|Z").

Since X; does not appear in the expression represented by Z’, X1 and Z’ are
statistically independent. For any a,b € GF(2)32,

pXi®Xp=4a,2" =)

p(X1® Xo =al|z—p) =

p(Z"' =0)
_ DYcear(p PX1 @ Xy = alzi=p x,=c)p(Z" = b, X2 = ¢)
p(Z' =)
~ Ycear@p P(X1 = a®clz—b x,=c)P(Z" = b, X5 =)
p(Z' =) '

Since X; and (Z’, X5) are independent, p(X1 = ¢ ® a|z/—p x,=c) = 2732, Thus,

2732 ZCEGF(2)32 p(Z/ = b, X2 = C) o 2732

Xi1® Xy =alg—p) =
p(1D A2 a|Z—b) p(Z/:b)

Hence, H(Z|Z') = H(X; ® X2|Z') = 32. Therefore, H(Z) > H(Z|Z') = 32,
which implies that H(Z) = 32, or equivalently, Z is uniformly distributed over
GF(2)*.

Recall that the state sequence S{,S7,... of the word-oriented LFSR has
the least period 2'27 — 1 and all states are distinct in the period if the initial
state S is non-zero. Hence every non-zero state appears exactly once in the
least period. For this reason, we model the state S/ as a uniformly distributed
random variable over GF(2)1%7. Proposition 3 indicates that we can model the
filter generator sequence as a sequence of uniformly distributed random variables
when the initial state of the filter generator is non-zero.

42 M. Zhang, C. Carroll, and A. Chan

Theorem 3. Let S{ and Yy = (yo,y1,- .., y16) be the initial states of the LFSR
and the lagged-Fibonacci generator respectively. Assume that S and Y are
random variables, and S{ # 0. Let Z,, denote the word generated by SSC2 at
time n. Then

32— I(S{;Yo) < H(Z,) < 32,

where I(S{; Yy) denotes the mutual information between S and Yy, given by
1(Sy3Yo) = H(Sy) — H(Sy o).

Proof. Since Z, is a random variable over GF(2)32, it is obvious that H(Z,,) <

32. Let Z], and Z]! denote the respective output of the filter generator and the

lagged-Fibonacci generator at time n. Then Z,, = Z/ + Z! mod 232. Moreover,

H(Z,|Z!') = H(Z!|Z!). According to the data processing inequality [2],
1(Z},;2,) < 1(Zy;Yo) < 1(S0; Yo).

n? n?
Since S{ # 0, H(Z!,) ~ 32. Consequently,

H(Zy) > H(Zn|Z;))
= H(Z,|2,)
= H(Z,) - 1(Z,; Z;)
Z 32 — I(S(/)/, Y())

By Theorem 3, we can conclude that the keystream sequence of SSC2 is a
sequence of uniformly distributed random variables if the initial states of the
word-oriented LFSR is non-zero and statistically independent of the initial state
of the lagged-Fibonacci generator. However, the problem of determining whether
the keystream sequence of SSC2 is a sequence of independent random variables
or not remains open.

4 Correlation Analysis of SSC2

SSC2 is a very complex mathematical system in which several different types
of operations, such as exclusive-or, integer addition, shift, and multiplexing, are
applied to data iteratively. If we analyze the keystream generator in Figure 1
as a whole, it would be difficult to get information about the internal states
of the word-oriented LFSR and the lagged-Fibonacci generator. However, if the
keystream sequence leaks information about the filter generator sequence or
the lagged-Fibonacci sequence, this information might be exploited to attack
the filter generator or the lagged-Fibonacci generator separately. This kind of
attack is called divide-and-conquer correlation attack which has been successfully
applied to over a dozen keystream generators [3,8,10,11,14,15]. For the moment,
let’s assume that the key of SSC2 consists of the initial states S and Yy of the
word-oriented LFSR and the lagged-Fibonacci generator respectively.

The Software-Oriented Stream Cipher SSC2 43

Theorem 4. Assume that the initial states S and Y of the filter generator
and the lagged-Fibonacci generator of SSC2 are random variables, S{ # 0. Then
the outputs Z], and Z!/ of the filter generator and the lagged-Fibonacci generator
at time n are also random variables. Let Z,, denote the output of SSC2 at time
n. Then

1(Zn;Yo) < 32— H(Z,) + I(SY; Yo),
I(Z,;8y) < 32— H(Z,) + 1(5y; Yo).

Proof. By the chain rule [2], the joint entropy H(Z!,Yy, Z,) can be represented
as follows:

H(Z,, Yy, Zn) = H(Yo) + H(Z,|Yo) + H(Z,| Z, Yo)
= H(Yo) + H(Z,|Yo) + H(Zy|Z},, Yo).

Since Z!, can be uniquely determined by Z,, and Yy, H(Z!|Z,,Yy) = 0. Similarly,
H(Z,\Z],Y,) = 0. Thus, H(Z,|Yo) = H(Z},|Yo). Therefore,

1(Z,;Yy) = H(Z,) — H(Z,|Yo)
— H(Z,) - H(Z,|Y)
= H(Z,) - H(Z}) + I(Z; o)

According to the data processing inequality [2], I(Z);Yo) < I(S{;Yo). Hence, it
follows that
I(Zn;Yo) < H(Zn) — H(Z,,) + 1(S5; Yo).

On the other hand, H(Z,) < 32,

1(Zn;Yo) < 32— H(Z,,) + 1(S0: Yo).
Similarly, it can be proved that

1(Z,: SY) < 32 H(ZJ) + 1(S§: Vo).

According to the empirical test in [7], we assume that the sequence § =
Y0, Y1, - - - of the lagged-Fibonacci generator is a sequence of pairwise independent
and uniformly distributed random variables. By (6), Z” = (yn)16 + v, mod 232,
where y/, is uniformly selected from Y41, Ynt2, - Unt17- I Y # Yny17, it is
obvious that Z! is uniformly distributed. If y/, = yp117, then Z! = (y,)16 +
Yn + Yn+12 mod 232 which is also uniformly distributed since Yn+12 and y, are
independent. Thus, for any n > 0, Z,, is not correlated to either S{ or Yy if S/
and Yj are statistically independent. So we can not get any information about S{/
or Yy from each Z,,. However, this does not mean that we can not get information
about S§ and Yp from a segment Zy, Z1, ..., Zy, of the keystream sequence. The
question is how to get information about S and Yy from a segment of the
keystream sequence, which remains open.

44 M. Zhang, C. Carroll, and A. Chan

5 Scalability of SSC2

The security level of SSC2 can be enhanced by increasing the length of the
lagged-Fibonacci generator. Let § = yo,y1, ... be the word sequence generated
by a lagged-Fibonacci generator of length L. As described in Section 2.3, we can
implement the lagged-Fibonacci generator with a buffer B of length L and two
pointers r and s. Let h = |log L|. The output word z,/ of the lagged-Fibonacci
generator can be described by

2! = yp + B[l 4 (Ynsr > (32 — b)) + 5,1 mod 2)] mod 232 (22)

where s, ;1 is the value of the pointer s at time n 4+ 1. We define the number
Lh = L|log L] as the effective key length of the keystream generator as described
by Figure 1, where the lagged-Fibonacci generator has length L. The effective
key length gives us a rough estimation of the strength of the keystream generator.
We believe that the actual strength might be much larger than that described by
the effective length. Corresponding to private keys of 128 bits, lagged-Fibonacci
generators with length between 17 and 33 are recommended.

6 Key Scheduling Scheme

SSC2 supports private keys of various sizes, from 4 bytes to 16 bytes. To stretch
a private key less than or equal to 4 words to 21 words, a key scheduling scheme
is required. By Theorem 3 and Theorem 4, the initial states of the word-oriented
LFSR and the lagged-Fibonacci generator should be independent. With a hash
function such as SHA-1[9], it is not difficult to generate such 21 words. When
a good hash function is not available, we designed the following scheme which
generates 21 words (called the master key) from the private key K.

Master-Key-Generation K, qster(K)

1 load K into the LFSR S, repeat K when necessary
2 for i<+ 0to 127 do

3 run the linear feedback shift register once
4 S[1] «= S[1] + F(S) mod 232

5 1 1+1

6 fori<1tol7do

7 run the linear feedback shift register once
8 B[i] <+ S[4]

9 14 1+1

10 A+ S[1]

11 for i<+ 1to 34 do

12 run the linear feedback shift register once
13 run the lagged Fibonacci generator once
14 index <~ 1+ A > 28

15 A + Blindex]

16 Blindez] < A & S[1]

The Software-Oriented Stream Cipher SSC2 45

17 S[1] < A+ S[1] mod 232
18 141+1

19 B[17] «+ B[17] Vv 1

20 return S and B

In the above pseudo-code, the LFSR is denoted by S, which is an array of
4 words. Every time when the LFSR runs, the word in S[4] moves out, the
array shifts right one word, and the newly computed word moves in S[1]. The
lagged-Fibonacci generator is denoted by B as usual. The master key generation
experiences b stages. In stage 1, the private key is loaded into the LFSR. In stage
2 (line 2 - line 5) , the private key is processed. We run the LFSR (actually the
filter generator) 128 times in order that approximately half of the bits in S will
be 1 even if there is only one 1 in K. In stage 3 (line 6 - line 9), 17 words are
generated for the lagged-Fibonacci generator. In stage 4 (line 10 - line 18) , the
LFSR and the lagged-Fibonacci generator interact with each other for 34 times.
A major goal for the interaction is to make it difficult to gain information about
the state of the LFSR from the state of the lagged-Fibonacci generator and vice
versa. For this purpose, an index register A is introduced, which has S[1] as
the initial value. At the end of each run of the LFSR and the lagged-Fibonacci
generator run, a pointer index is computed according to the most significant 4
bits of A, and then A is updated by the word Blindez]. Following the update of A,
B[indez] is updated by A®S[1] and S[1] is updated by A+S[1] mod 232. Through
the register A, the states of the LFSR and the lagged-Fibonacci generator are
not only related to each other but are also related to their previous states. For
example, assume that the state of the LFSR is known at the end of stage 4. To
obtain the previous state of the LFSR, we have to know the content of A, which
is derived from the previous state of the lagged-Fibonacci generator. In stage 5,
the least significant bit of B[17] is set to 1 in order to ensure that not all of the
17 words of B are even. At the end of the computation, the states of the LFSR
and the lagged-Fibonacci generator are output as the master key.

In addition to the master key generation, SSC2 supplies an optional service
of generating a key for every frame. The key for a frame is used to re-load the
LFSR and the lagged-Fibonacci generator when the frame is encrypted. The
purpose of frame-key generation is to cope with the synchronization problem.
In wireless communications, there is a high probability that packets may be lost
due to noise, or synchronization between the mobile station and the base station
may be lost due to signal reflection, or a call might be handed off to a different
base station as the mobile station roams. When frames are encrypted with their
individual keys, the loss of a frame will not affect the decryption of subsequent
frames.

Assume that each frame is labeled by a 32-bit frame number that is not
encrypted. Let K,, denote the frame key of the n-th frame. The frame key gene-
ration should satisfy two fundamental requirements: (1) it is fast; and (2) it is
difficult to gain information about K; from K; when ¢ # j. Taking into conside-
ration of the two requirements, we design a scheme that generates K,, from the
master key K, qster and the frame number n. To generate different keys for dif-

46 M. Zhang, C. Carroll, and A. Chan

ferent frames, we divide the 32-bit frame number into 8 consecutive blocks and
have each block involve in the frame key generation. Let ng,nq,...,n7 denote
the 8 blocks of n, where ng is the least significant 4 bits of n and n; is the most
significant 4 bits of n. The frame key generation is illustrated by the following
pseudo-code:

Frame-Key-Generation K, (Kqster)

1 load K,,4ster into S and B

2 for j+ 0to3do

3 for i <+ 0 to 7 do

4 S[1] = S[1] + B[1 + (i + n; mod 16)] mod 232

5 S[2] + S[2] + B[l + (8 4+ i + n; mod 16)] mod 232
6 run the linear feedback shift register once

7 B[17 — (i + 8j mod 16)] < S[1] ® B[17 — (i 4+ 8j mod 16)]
8 14 1+1

9 Jj+J+1

10 B[17] «+ B[17]Vv 1

11 return S and B

The frame key generation consists of two loops. Corresponding to each n;,0 <
i < 7, the inner-loop (line 4 - line 8) selects two words from the buffer B to update
the contents of S[1] and S[2]. Then the LFSR in executed and the output word
is used to update one word of B. The outer-loop executes the inner-loop 4 times.
Assume that n and n/ are two different frame numbers. After the first run of
the inner-loop, some words in S and B will be different for n and n’. Subsequent
runs are used to produce more distinct words in S and B.

Table 1. Throughput of SSC2

Machine |Size|Clock rate|Memory (ON] Compiler| Throughput
(MHz) |(Mbyte) (Mbits/s)
Sun SPARC2| 32 40 30 Sun OS | gece -03 22
Sun Ultra 1 | 32 143 126 |Sun Solaris| gcc -O3 143
PC 16 233 96 Linux gee -03 118

7 Performance

We have run SSC2 on various platforms. Table 4.1 illustrates the experimental
results derived from running the ANSI C code listed in Appendix 1. Key setup
times are not included in Table 1. On a 16-bit processor (233MHz cpu), the time
for the master key generation is approximately equal to the encryption time
for one CDMA frame (384 bits in 20 ms duration), and the time for the frame
key generation is about one-twentieth of the encryption time for one CDMA

The Software-Oriented Stream Cipher SSC2 47

frame. Suppose that the CDMA phones have the 16-bit processor and the average
conversion takes 3 minutes. Then the total time for frame key generations is
about 2 ms. Hence, the overhead introduced by key setup is nearly negligible.

8 Conclusion

SSC2 is a fast software stream cipher portable on 8-, 16-, and 32-bit processors.
All operations in SSC2 are word-oriented, no complex operations such as mul-
tiplication, division, and exponentiation are involved. SSC2 has a very compact
structure, it can be easily remembered. SSC2 does not use any look-up tables
and does not need any pre-computations. Its software implementation requires
very small memory usage. SSC2 supports variable private key sizes, it has an
efficient key scheduling scheme and an optional frame key scheduling scheme. Its
keystream sequence has large period, large linear complexity and small correla-
tion to the component sequences. SSC2 is one of the few software stream ciphers
whose major cryptographic properties have been established.

Acknowledgments. The authors would like to thank Dr. Daniel Bleichenba-
cher of Bell Laboratories for pointing out a weakness in the early design of SSC2.
The first author also likes to thank Dr. Burton Kaliski Jr. of RSA Laboragtories
for his encouragement and valuable suggestions.

References

1. R. P. Brent,“On the periods of generalized Fibonacci recurrences”, Mathematics
of Computation, vol. 63, pp. 389-401, 1994.

2. T. M. Cover and Y. A. Thomas, Elements of Information Theory, John Wiley,
1991.

3. R. Forre, “A fast correlation attack on nonlinearly feedforward filtered shift register
sequences”, Advances in Cryptology-Proceedings of EUROCRYPT’89 (LNCS 434),
586-595, 1990.

4. F. James, “A review of pseudo-random number generators”, Computer Physics
Commumnications, vol. 60, pp. 329-344, 1990.

5. E. L. Key, “An analysis of the structure and complexity of nonlinear binary se-
quence generators”, IEEE Transactions on Infor. Theory, vol. 22, Nov. 1976.

6. D. E. Knuth, The Art of Computer programming. Volume 2: Seminumerical Algo-
rithms, 3rd Edition, Addison-Wesley, 1997.

7. G. Marsaglia, “A current view of random number generators”, Computer Science
and Statistics: Proc. 16th Symposium on the Interface, Elsvier Science Publishers
B. V. (North-Holland), 1985.

8. W. Meier and O. Staffelbach, “Fast correlation attacks on stream ciphers”, Journal
of Cryptology, vol. 1, no. 3, 159-176, 1989.

9. FIPS 180, “Secure hash standard”, Federal Information Processing Standard Pu-
blication 180, April, 1995.

10. M.J.B. Robshow, “Stream ciphers”, Technical Report TR-~701 (version 2.0), RSA
Laboratories, 1995.

48 M. Zhang, C. Carroll, and A. Chan

11. R. Rueppel, “Stream Ciphers” in Contemporary Cryptology: The Science of Infor-
mation Integrity, G.J. Simmons, ed., IEEE Press, 1992, pp. 65-134.

12. R. Rueppel, Analysis and Design of Stream Ciphers, Springer-Verlag, Berlin, 1986.

13. B. Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C,
John Wiley & Sons, New York, 2nd edition, 1996.

14. T. Siegenthaler, “Decrypting a class of stream ciphers using ciphertext only”, IEEE
Transactions on Computing, vol. 34, 1985, 81-85

15. T. Siegenthaler, “Cryptanalyst’s representation of nonlinearity filtered ml-
sequences”, Advances in Cryptology-Proceedings of Eurocrypt’85 (LNCS),
Springer-Verlag, 1986.

16. A. Biryukov and A. Shamir, “Real time cryptanalysis of the alleged A5/1 on a
PC”, in this Proceedinds.

Appendix 1

The following is the ANSI C code for the keystream generator of SSC2. The
code for key setup is not included.

unsigned long int R1, R2, R3, R4, B[18], output, templ, temp2;
int ¢, s=5, r=17;

templ = R2 " (R3<<31) " (R4>>1);

R4 = R3;
R3 = R2;
R2 = R1;
R1 = tempil;

templ = B[r];

temp2 = B[s] + templ;

Blr] = temp2;

if (-—-r ==0) r 17;

if (--s == 0) s 17;

output = ((temp1>>16) " (temp1<<16))+B[(((temp2>>28)+s) & 0xf)+1];

templ = (R4 | 0x1) + R1;
c = (templ < R1);
temp2 = (templ<<16) " (temp1>>16);

if (o) {
templ = (R2 " (R4 | 0x1)) + temp2;
} else {

templ = R2 + temp2; }
c = (templ < temp2);
output = (¢ + (R3 R2) + templ) " output;

	Introduction
	Specification of SSC2
	The Word-Oriented Linear Feedback Shift Register
	The Nonlinear Filter
	The Lagged-Fibonacci Generator

	Cryptographic Properties of SSC2
	Correlation Analysis of SSC2
	Scalability of SSC2
	Key Scheduling Scheme
	Performance
	Conclusion

