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Abstract. In this paper we consider a chosen-plaintext variant of the
linear attack on DES introduced by Matsui. By choosing plaintexts in a
clever way one can reduce the number of plaintexts required in a succes-
sful linear attack. This reduces the amount of plaintexts to find key bits
to a factor of more than four compared to Matsui’s attack. To estimate
the probabilities of success in the attack we did extensive experiments
on DES reduced to 8 and 12 rounds. We believe that the results in this
paper contain the fastest attack on the DES reported so far in the open
literature. As an example, one attack needs about 242 chosen texts, finds
12 bits of key information and succeeds with a probability of about 86%.
An additional 12 key bits can be found by similar methods. For compa-
rison, Matsui’s attack on the DES needs about 244 known texts, finds 13
bits of the key and succeeds with a probability of 78%. Of independent
interest is a new approach searching for “pseudo-keys”, which are secret
key bits added an unknown but fixed value. These bits can be used to
find the secret key bits at a later stage in the analysis.

1 Introduction

The DES is one of the most important cryptosystems that has been around in the
open literature. Although it has seen the end of its days, this is mainly because of
the short keys in the algorithm and not because any damaging intrinsic properties
have been detected. In fact, today, about 25 years after the development of the
DES, the most realistic attack is still an exhaustive search for the key. Several
attacks have been developed which can find a DES-key faster than this, but all
attacks reported require a huge amount of known or chosen plaintext-ciphertext
pairs.

In 1992 Matsui introduced the linear cryptanalytic attack by applying it to
FEAL [6] and one year later to the DES [3]. His attack on the DES using 244

known texts, finds 13 bits of the key and succeeds with a probability of 78%.
An additional 13 key bits can be found by a similar method. Subsequently, the
remaining 30 bits can be found by exhaustive search. In [4] Matsui also considers
“key-ranking”, where one considers the attack successful if the correct key is
amongst the q most likely keys. Clearly, with key-ranking the success rates will
be higher or the text requirements decrease for the same success probability.
If we assume that the number of key bits found by the attack is k, one does
an exhaustive search for the remaining 56 − k bits for each of the q candidates
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of the first k bits. Thus, key-ranking can be used to decrease the number of
texts needed but wil increase the computational effort in the final key search.
Matsui implemented this attack in January 1994 and successfully recovered one
DES-key after the encryption of 243 plaintext blocks.

In this paper, if not stated otherwise, all the reported success rates are mea-
sured as the number of times the correct value of the key is the most likely
candidate suggested by the attack. Clearly, with key-ranking the success rates
will be higher.

In the year following Matsui’s publications, several reports were publicised
which modify and improve on his results e.g., [1,2,7,8]. However until now these
approaches have led to only small improvements for attacks on the DES. One
exception is the chosen-plaintext differential-linear attack which led to a big
reduction in the number of texts needed, however the attack as reported is
applicable to only up to 8 rounds of the DES.

In this paper another chosen-plaintext variant of the linear attack on the DES
is studied. It is shown that in this scenario it is possible to reduce the number
of required texts (the main obstacle in the attack) to a factor of more than four
less than that required by Matsui’s attack. We use what we believe is a new
idea in cryptanalytic attacks, namely in a first-phase of the attack we search for
“pseudo-keys”, which are the secret keys added some unknown, but fixed value.
In a later stage these pseudo-key bits can be used to reduce an exhaustive key
search.

In § 2 we introduce the most important concepts and results of the linear
attack on the DES. In § 3 we outline three possible chosen-plaintext variants.
All but the second variant can be used to attack the DES up to 16 rounds. The
second one is limited to attack DES up to 12 rounds.

2 Linear Cryptanalysis on DES

In linear cryptanalysis one tries to find probabilistic linear relations between the
plaintext P , the ciphertext C, and the key K. The easiest way to obtain this is
to look for one-round linear relations and use these iteratively to obtain relations
over more rounds. First we consider one-round relations. In the following let Ci

denote the ciphertext after i rounds of encryption. Then a linear expression in
the ith round has the following form.

(Ci · α)⊕ (Ci+1 · β) = (Ki · γ), (1)

where α, β and γ are bit-masks and ‘·’ is a bit-wise dot product operator. The
masks are used to select the bits of a word used in the linear relation. The bit
masks (α, β) are often called one-round linear characteristics. Since the key Ki is
a constant, one looks at the probability pi that the left side of (1) equals 0 or 1.
We denote by the bias, the quantity |pi− 1

2 |. For the DES one can easily calculate
all linear relations for the S-boxes, combine these and get all possible linear
relations for one round of the cipher. Subsequently, one can combine the one-
round relations to get linear relations for several rounds under the assumption of
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independent rounds. To calculate the probabilities one usually uses the Piling-up
Lemma:

Lemma 1. Let Zi, 1 ≤ i ≤ n be independent random variables in {0, 1}. If
Zi = 0 with probability pi we have

Pr(Z1 ⊕ Z2 ⊕ . . .⊕ Zn = 0) =
1
2

+ 2n−1
n∏

i=1

(pi − 1
2
) (2)

For most ciphers the one-round linear relations involved in a multi-round
relation are not independent. For the DES the relations are dependent, but our
experiments, as well as Matsui’s experiments [3,4], show that Piling-up Lemma
gives a good approximation for the DES.

For the DES, Matsui has provided evidence [5] that the best linear characte-
ristics over 14 rounds or more are obtained by iterating 4-round characteristics.

Four-round iterative characteristics. The four-round characteristic used in
Matsui’s attack on the DES is shown in Fig. 1. Let Xi denote the input to the
F-function in the ith round. For convenience we shall write F (Xi) instead of
F (Xi, Ki). The masks A, D and B are chosen to maximise the probabilities of
following linear relations.

F (X1) ·A = X1 ·D with prob. p1,

F (X3) ·B = X3 ·D with prob. p3, and
F (X2) ·D = X2 · (A⊕B) with prob. p2.

Then it follows from the Piling-Up Lemma and by easy calculations that the
relation (X0 ·A)⊕ (X4 ·B) = 0 holds with probability

PL =
1
2
− 4(p1 − 1

2
)(p2 − 1

2
)(p3 − 1

2
).

This 4-round characteristic can be iterated to a 14-round characteristic, which
in a short, space-consuming notation is

2: - - -
3: A← D
4: D← A⊕B
5: B ← D
6: - - -
7: B ← D
8: D← A⊕B
9: A← D

10: - - -
11: A← D
12: D← A⊕B
13: B ← D
14: - - -
15: B ← D
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Fig. 1. 4-round linear characteristic of DES.

Here ‘n:’ denotes that the expression occurs in round no. n and ‘- - -’ means
that no approximation is made in the round. Notice that A and B are inter-
changed for every 4-round iteration. This leads to the equation for 16-round
DES:

(PL ·A)⊕ (F (PR, K∗
1 ) ·A)⊕ (CL ·D)⊕ (F (CR, K∗

16) ·D)⊕ (CR ·B) = 0 (3)

The probability for this equation is

P 15
L =

1
2

+ 214−1
15∏

i=2

(pi − 1
2
) (4)

where

pi = 1, i ∈ {2, 6, 10, 14},
pi = 42/64, i ∈ {3, 9, 11},
pi = 30/64, i ∈ {4, 8, 12},
pi = 12/64, i ∈ {5, 7, 13, 15}

For the correct guesses of K∗
1 and K∗

16 the equation (3) will have probability P 15
L .

For other keys, the equation will look random. In the attack one keeps a counter



266 L.R. Knudsen and J.E. Mathiassen

Table 1. Complexities of Matsui’s linear attack on 8-round DES and full DES, where
13 key bits are found.

8-round DES 16-round DES
Plaintexts 218 219 220 243 244 245

Success rate 49.4% 93.2% 100% 32.5% 77.7% 99.4%

for each value of the secret key (K
′
1, K

′
16) which keeps track of the number of

times the left side of the equation is 0. With N (P, C)-pairs, the key (K
′
1, K

′
16)

with counter value T farthest from N
2 is taken as the correct value of the key.

The sum of the key bits involved in the approximation can also be found [3].
The probability of success can be calculated by a normal approximation of the
binomial distribution. Under the assumptions that |PL − 1

2 | is small, it can be
shown that if one chooses N = (PL − 1

2 )−2, one gets a probability of 97.72%
that the value T of the counter for the correct value of key is more than N/2
when PL > 1

2 and less otherwise. However, there will be noise from the wrong
keys also which have to be considered. It has been conjectured and confirmed
by computer experiments that the left side of (3) will look random when wrong
values of the keys are used [3]. It was also estimated by experiments that the
complexity Np for the attack on DES is

Np ≈ c|pL − 1
2
|−2

where c ≤ 8. To confirm the theory we implemented tests on DES reduced to 8
rounds. The equation (3) for 8 rounds is the same as for 16 rounds except for
the index of the key in the last round. For 8 rounds Np = c × 0.95 × 216. Our
experimental results for 8-rounds DES can be found in Table 1.

This attack finds 13 bits of the key. It is possible to find a total of 26 key
bits by using the same linear characteristic on the decryption operation. In this
case the probabilities in Table 1 must be squared.

The complexity of the attack on the DES can be estimated from the comple-
xity of the attack on 8-round DES. If one lets the complexity for the attack on
8-round DES be Np8, the expected complexity Np16 for 16-round DES can be
calculated such that the success probabilities are approximately the same. The
formula is [4]

Np8 = Np16|PL16 − 1/2|2/|PL8 − 1/2|2.
With Np16 = 245 one gets

Np8 = 245 × |1.19× 2−21|2/|1.95× 2−9|2 = 1.49× 219.

Thus, the success probability of the attack on 8-round DES with N = 1.5× 219

will be the same as the attack on 16-round DES with N = 245. The estimates
of the complexity of the linear attack by Matsui, where 13 key bits are found,
can be found in Table 1.
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Table 2. Complexities of the first chosen-plaintext variant of the linear attack on
8-round and 12-round DES finding 7 key bits.

8-round DES 12-round DES
Plaintexts 218 219 220 228 229 230

Success rate 68% 99% 100% 46% 72% 94%

3 Chosen-Plaintext Attacks

In this section we consider chosen-plaintext variants of the linear attack on the
DES. The time complexity of the reported attacks is always less than the data
complexity, that is, the number of needed texts, and is therefore ignored in the
following.

3.1 First Attack

A first chosen-plaintext extension is an attack where one does not search for the
key in the first round, merely for six bits of the key in the last round, but the
bias for the equation remains the same. Since the noise of 63 wrong keys is less
than of 4095 wrong keys, the attack is expected to be of lower complexity than
that of Matsui. The trick is that we fix the six input bits to the active S-box in
the first round. Then any output mask of that function is a constant 0 or 1 with
bias 1

2 . One then considers the following equation:

(PL ·A)⊕ (CL ·D)⊕ (F (CR, K∗
n) ·D)⊕ (CR ·B) = 0 (5)

For all guesses of the key Kn one counts the number of times the left side of
the equation equals zero. Hopefully for the correct value one gets a counter with
a value that differs from the mean value N

2 more than for all other counters.
With a sufficient number of texts (N) this will work. Also, one can determine
a seventh key bit from the bias of the equation, when searching for the rest of
the key bits. The estimated number of plaintexts required, Np, is less, although
only slightly less, than for Matsui’s attack. The complexities of the attack on
8-round and 12-round DES are given in Table 2.

3.2 Second Attack

In addition to fixing the six bits of the input to the active S-box (no. 5) in the
first round, one can try to do the same for a possible active S-box in the second
round. For the 14-round characteristic used by Matsui there is no active S-box in
the second round. However, if one takes the first 13 rounds of this characteristic
and uses these in the rounds 3 to 15 one gets a single active S-box in both the
first and second rounds. The we get the following picture.
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3: - - -
4: A← D
5: D← A⊕B
6: B ← D
7: - - -
8: B ← D
9: D← A⊕B

10: A← D
11: - - -
12: A← D
13: D← A⊕B
14: B ← D
15: - - -

Now we can fix the inputs to all S-boxes in the first round which output bits
are input to the active S-box in the second round. To achieve this we need to fix
the inputs to six S-boxes in the first round, totally 28 bits, and to fix six bits of
the left half of the plaintext. Thus one needs to fix 34 bits of all plaintexts which
is illustrated in Figure 2. This also means that an attacker only has 30 bits to
his disposal in an attack. However, it also means that there is one round less to
approximate and one would expect higher success rates.

Fig. 2. The first two rounds in the linear characteristic. The bits in the striped blocks
vary under the control of the attack. The bits in the white blocks are fixed.

The equation to solve in the key search is the following.

(PR ·A)⊕ (CL ·B)⊕ (F (CR, K∗
n) ·B) = 0 (6)

In this case we are able to find only six bits in the last-round key Kn, plus one
key-bit from the sign of the counter T minus N

2 . The probability calculation for
the attack on 16-round DES is

PL =
1
2

+ 213−1
15∏

i=3

(pi − 1
2
). (7)
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Table 3. Complexities of the second chosen-plaintext variant of the linear attack on
8-round DES, where we found 7 key bits.

Plaintexts 216 217 218

Success rate 78% 98% 100%
Success rate 2 90% 100% 100%

The number of chosen plaintexts needed is Np = c|PL − 1
2 |−2. This is a factor

of ( 8
5 )2 ≈ 2.6 less than in the previous attack. By interchanging the rounds in

the characteristic one can also solve for the equation

(PR ·B)⊕ (CL ·A)⊕ (F (CR, K∗
16) ·A) = 0, (8)

where we just flip the characteristic. Note that the involved active S-boxes and
key bits are the same as for the first characteristic. This increases the success
rate because for the correct key Kn we have the same sign of the bias in the two
expressions. Our test results on 8-round DES of the success rate where we use
one equation is shown in the first line of Table 3 and the second line is the case
where we use both equations (6) and (8).

3.3 Third Attack

One problem with the previous variant is that there is a limit of 230 possible
texts to be used in an attack, and the attack will not be applicable to 16-round
DES. In the following it is shown how more texts can be made available. This
variant attack is based on two methods that we will introduce.
Pseudo-keys: In the first method we fix the same 28 bits in the right halves of
the plaintexts as before. This gives a constant output for the six desirable bits
which is output from the first round function and which affect the input to the
active S-box in the second round. Let us denote these six bits by y1. But where
before we fixed also the six bits of the left halves of the plaintext that affect
the active S-box in the second round we will now allow these to change. If we
denote by K2 the key affecting the active S-box in the second round, we define
a “pseudo key” K

′
2 = K2 ⊕ y1. This allows us to search for and find six bits of

K
′
2 in addition to the six bits of Kn. At this point we are able to generate 236

different plaintexts with the desired property. We then try to solve the following
equation:

(PR ·A)⊕ (F (PL, K
′∗
2 ) ·B)⊕ (CL ·B)⊕ (F (CR, K∗

n) ·B) = 0 (9)

When the attack terminates, the correct key K2 can be determined from K
′
2 by

simply adding y1 = F (PR, K1) when searching exhaustively for the remaining
key bits of the key K and thereby K1. There is also some overlap between the
key bits of K1 and the six bits of K2. This must be taken into consideration
when searching for the key.
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Additional plaintexts: Here we show how to be able to control an additional
six bits of the plaintexts. These must be bits in the right halves of the plaintexts,
since all bits in the left halves are assumed to be under control of the attack
already. However, this creates two problems. First, if we are going to vary some
of the input bits to an S-box in round one, we also change the output bits of
the round function, which were assumed to be fixed above. Second, changing
the input bits to one S-box might affect the neighboring S-boxes, as these have
overlapping, common input bits. However, the S-boxes 5 and 7 are not assumed
to have a fixed input in the above attacks. (This allowed us to control and vary
the middle two input bits to both S-boxes in the above attack.) Thus, if we vary
the six bits input to S-box 6 in the first round, the second problem is overcome.
Totally this gives the attack control over 242 plaintexts. The first problem can
be overcome by searching also for the affected six key bits entering S-box 6 in
the first round. Note that when we vary the inputs to this S-box one of the bits
of y1 will vary. For each guess of the key to S-box 6 in the first round, we take
this one bit into account when searching for K ′

2. Fig. 3 illustrates which bits are
fixed in the attack and which bits are not. The equation for this attack is

Fig. 3. The first two rounds in the third attack. The inputs to the S-boxes 1,2,3,4, and
8 in the first round are fixed.

(PR ·A)⊕ (CL ·B) = (F (PL, F (PR, K∗
1 )⊕K∗

2 ) ·A)⊕ (F (CR, K∗
n) ·B) (10)

which has the same bias as (6). For the correct values of the three keys K∗
1 , K∗

2
and K∗

n observe that the equation will have probability PL (of (7)). For wrong
values the equation will look random. There are three bits in Kn and one in K2
which overlap with key bits in K1. Potentially the attack could find 15 key bits.

However, after implementing this attack we found that it is difficult to de-
termine the correct value of two bits of the key K1. The reason for this is than
on the average in 50% of the cases, if the one bit of F (PR, K∗

1 ) that is input to
S-box 5 in the second round is wrong, the masked output from S-box 5 in round
2 will still be correct. This has the effect that determining the two bits of K1
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Table 4. Complexities of the third chosen-plaintext variant of the linear attack on
8-round and 12-round DES. Here we found 12 key bits.

8-round DES 12-round DES
Plaintexts 216 217 228 229

Success rate 51% 94% 28% 76%

Table 5. Complexities of the known-plaintext and chosen-plaintext linear attacks on
the DES. Matsui finds 13 key bits and we find 12 key bits.

Matsui’s attack Our attack
Plaintexts 243 244 245 240 241 242

Success rate 32% 78% 99% 6% 32% 86%

which do not overlap with bits in K2 and K16 requires much effort. Because of
this it is equally difficult to determine the third least significant bit in K2. The
attack finds eleven key bits much faster than all fourteen key bits. The attack
can also find a 12th key bit in the similar way as in the previous attack. Simply
look at the sign of the bias |PL − 1

2 | and compare with the bias of the key gues-
sed. We implemented 100 tests with randomly chosen keys for 8-round DES and
50 similar tests for 12-round DES. The results can be found in Table 4. Thus,
this variant of the attack has a poorer performance than in the previous attack,
the advantage is that more plaintexts are available and a potential attack on
16-round DES is emerging.

We may estimate the success rate for 16-round DES as follows. One can
calculate the expected number of plaintexts for 8-round DES, Np8, and for 16-
round DES, Np16, which will have the same success rate. The ratio is the same
as for Matsui’s attack, because in these two attacks the bias differ with the same
factor for both 8 and 16 rounds. E.g., we have that the success rate for 16-round
DES using 242 texts is the same as for the attack on 8-round DES with

Np8 = 242 × |1.91× 2−21|2/|1.56× 2−8|2 = 1.49× 216

texts. Similar, one gets from the attack on 12-round DES that with

Np12 = 242 × |1.91× 2−21|2/|1.21× 2−14|2 = 1.25× 229

texts the success rate is the same as for the attack on 16-round DES with 242

texts. From the experiments on 8-round and 12-round DES one gets the com-
plexities of the chosen-plaintext linear attack on the DES of Table 5.

In total the attack finds 12 bits of key information. By repeating the attack
on the decryption operation of DES an additional 12 bits of key information can
be found. Subsequently, it is easy to find the remaining 32 bits by an exhaustive
search. Using key-ranking the reported rates of success will be even higher. As
an example, in the tests of Table 4 on 8-round DES using 216 texts, the correct
key appeared as one of the 8 highest ranked keys in 90 of the 100 tests, and
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using 217 texts, the correct key was ranked 2,2,2,3,3, and 4 in the tests where it
was not the first.

4 Conclusion

In this paper we presented what we believe is the fastest attack reported on the
DES. The attack requires 242 chosen plaintexts and finds 12 bits of the secret
key with a probability of success of 86%. This should be compared to Matsui’s
attack, which finds one more key bit using a factor of four more plaintexts.
Subsequently, in our attack, the remaining 44 bits of a DES key can be found by
an exhaustive search or alternatively, an additional 12 key bits can be found by
repeating the attack on the decryption routine. A new approach in our attacks
is the search for “pseudo-key bits”, which are secret key bits added with some
unknown but fixed value. In a subsequent key search these pseudo-keys can be
used to find real key bits. This approach might be applicable to similar attacks
on other ciphers.

References

1. B.S. Kaliski and M.J.B. Robshaw. Linear cryptanalysis using multiple approxima-
tions. In Y. Desmedt, editor, Advances in Cryptology: CRYPTO’94, LNCS 839,
pages 26–39. Springer Verlag, 1994.

2. L.R. Knudsen and M.P.J. Robshaw. Non-linear approximations in linear cryptana-
lysis. In U. Maurer, editor, Advances in Cryptology: EUROCRYPT’96, LNCS 1070,
pages 224–236. Springer Verlag, 1996.

3. M. Matsui. Linear cryptanalysis method for DES cipher. In T. Helleseth, editor,
Advances in Cryptology - EUROCRYPT’93, LNCS 765, pages 386–397. Springer
Verlag, 1993.

4. M. Matsui. The first experimental cryptanalysis of the Data Encryption Standard.
In Y.G. Desmedt, editor, Advances in Cryptology - CRYPTO’94, LNCS 839, pages
1–11. Springer Verlag, 1994.

5. M. Matsui. On correlation between the order of S-boxes and the strength of DES.
In A. De Santis, editor, Advances in Cryptology - EUROCRYPT’94, LNCS 950.
Springer Verlag, 1995.

6. M. Matsui and A. Yamagishi. A new method for known plaintext attack of FEAL
cipher. In R. Rueppel, editor, Advances in Cryptology - EUROCRYPT’92, LNCS
658, pages 81–91. Springer Verlag, 1992.

7. T. Shimoyama and T. Kaneko. Quadratic relation of s-box and its application to the
linear attack of full round DES. In H. Krawczyk, editor, Advances in Cryptology:
CRYPTO’98, LNCS 1462, pages 200–211. Springer Verlag, 1998.

8. S. Vaudenay. An experiment on DES - statistical cryptanalysis. In Proceedings of
the 3rd ACM Conferences on Computer Security, New Delhi, India, pages 139–147.
ACM Press, 1995.


	Introduction
	Linear Cryptanalysis on DES
	Chosen-Plaintext Attacks
	First Attack
	Second Attack
	Third Attack

	Conclusion

