A Low-Complexity and High-Performance
Algorithm for the Fast Correlation Attack*

Miodrag J. Mihaljevié¢!, Marc P.C. Fossorier?, and Hideki Imai®

! Mathematical Institute, Serbian Academy of Science and Arts,
Kneza Mihaila 35, 11001 Belgrade, Yugoslavia
email: miodragm@turing.mi.sanu.ac.yu
2 Department of Electrical Engineering, University of Hawaii,
2540 Dole St., Holmes Hall 483, Honolulu, HI 96822, USA
email: marc@spectra.eng.hawaii.edu
3 University of Tokyo, Institute of Industrial Science,
7-22-1, Roppongi, Minato-ku, Tokyo 106-8558, Japan
email: imai@iis.u-tokyo.ac.jp

Abstract. An algorithm for cryptanalysis of certain keystream gene-
rators is proposed. The developed algorithm has the following two ad-
vantages over other reported ones: (i) it is more powerful and (ii) it
provides a high-speed software implementation, as well as a simple hard-
ware one, suitable for high parallel architectures. The novel algorithm is
a method for the fast correlation attack with significantly better perfor-
mance than other reported methods, assuming a lower complexity and
the same inputs. The algorithm is based on decoding procedures of the
corresponding binary block code with novel constructions of the parity-
checks, and the following two decoding approaches are employed: the
a posterior probability based threshold decoding and the belief propa-
gation based bit-flipping iterative decoding. These decoding procedures
offer good trade-offs between the required sample length, overall com-
plexity and performance. The novel algorithm is compared with recently
proposed improved fast correlation attacks based on convolutional codes
and turbo decoding. The underlying principles, performance and com-
plexity are compared, and the gain obtained with the novel approach is
pointed out.
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1 Introduction

An important method for attack or security examination of certain stream ci-
phers based on nonlinear combination keystream generators composed of several
linear feedback shift registers (LFSR’s) (see [11], for example) are: basic corre-
lation attack [I8], and particularly the fast correlation attacks considered in a
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number of papers, including [12], [20], [13], [14], [2], [3], [8], [9] and [6].
Developing or improving techniques for realization of the fast correlation attack
is a standard cryptologycal problem.

The basic ideas of all reported fast correlation attacks include the following
two main steps:
- Transform the cryptographic problem into a suitable decoding one;
- Apply (devise) an appropriate decoding algorithm.
There are two main approaches for realization of the fast correlation attack. The
first one is based on decoding techniques for block codes (introduced in [12] and
[19]), and the second one is based on decoding techniques for convolutional codes
(recently proposed in []] and [9]).
The main underlying ideas for the fast correlation attacks based on linear binary
block codes decoding is the iterative decoding principle introduced in [4]. For
example, all the fast correlation attacks reported in [12], [19], [13], [20], [14],
[2], and [3], could be considered as variants of iterative decoding based on sim-
ple bit-flipping (BF) [4] or iterative extensions of a posterior probability (APP)
decoding [I0]. Most of these methods (practically all except the method from
[13]) are restricted on the LFSR feedback polynomials of low weight. Due to the
established advantages of belief propagation (BP) based iterative decoding over
iterative APP (see [5], for example), the application of BP based iterative deco-
ding for realization of the fast correlation attack has been recently reported in
[6]. The main goal of [6] was to report the potential gain and its origins when BP
based iterative decoding is employed instead of APP based decoding, assuming
the same construction method of the parity-checks and the same overall struc-
ture of the algorithm for fast correlation attack. A comparison of the iterative
decoding approaches based on simple, APP and BP based decodings for the fast
correlation attack is reported in [15].
New methods for fast correlation attack based on the theory of convolutional
codes are given in [8]-[9]. They can be applied to arbitrary LFSR feedback po-
lynomials, in opposite to the previous methods, which mainly focus on feedback
polynomials of low weight. The proposed algorithm transforms a part of the
code C steaming from the LFSR sequence into a convolutional code, based on
finding suitable parity check equations for C. The approach considers a deco-
ding algorithm that includes memory, but still has a low decoding complexity.
With respect to the previous methods, this allows looser restrictions on the pa-
rity check equations that can be used, leading to many more equations. As the
final decoding method, the Viterbi algorithm with memory orders of 10-15 was
used. The results reported in [8] improve significantly the few previous results
for high weight feedback polynomials, and are in many cases comparable with
that corresponding to low weight feedback polynomials. Further developments
of the idea for fast correlation attack based on decoding of certain convolutional
codes are presented in [9] where new methods employing the techniques used for
constructing and decoding turbo codes are proposed. The most powerful techni-
que presented in [9] is based on the turbo decoding approach with M component
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convolutional codes and iterative APP decoding employing the BCJR algorithm
[1] (see also [1]).

Recent interests and the advances in developing algorithms for the fast cor-
relation attack have raised a natural question of further improvements of the
fast correlation attack, especially in the light of fast implementations.

The main goal of this paper is to propose an algorithm for the fast correlation
attack suitable for a high-speed software implementation, as well as for a simple
hardware one. Most existing algorithms can be considered as inappropriate ones
for this goal assuming an LFSR feedback polynomial of arbitrary weight. Accor-
dingly, our intention was to develop an algorithm which employs mod2 additions
and simple logical operations for processing, so that it is suitable for highly par-
allel architectures and high speed software or hardware implementations. Also,
our goal is to propose an algorithm which yields possibility for trade-offs between
length of the required sample, overall complexity and performance.

In this paper, a more powerful algorithm for the fast correlation attack with
significantly better performance (which does not depend on the LFSR feedback
polynomial), assuming the same inputs and lower complexity than other repor-
ted methods, is proposed. The proposed algorithm is based on a novel method
for constructing the parity-checks, motivated by the approach of [8] and [9], and
two decoding approaches of the corresponding binary block code, APP thres-
hold decoding [10] and iterative decoding employing BP-like BF (see [4]). The
construction of the parity-checks is based on searching for certain parity-check
equations and theirs linear combinations employing the finite-state machine mo-
del of an LFSR with primitive characteristic polynomial. The expected num-
bers of parity-checks per parity bit are derived, showing that a large number
of appropriate parity-checks can be constructed. An analysis of the algorithm
performance and complexity is presented. The novel algorithm is compared with
recently proposed improved fast correlation attacks based on convolutional codes
and turbo decoding. The underlying principles, performances and complexities
are compared, and the gains obtained with the novel approach are pointed out.
It is shown that assuming the same input, the novel algorithm yields better
performance and lower complexity than the best algorithm reported up-to-now.

The paper is organized as follows. Section 2 presents preliminaries. Section 3
points out the main underlying results for the construction of a novel algorithm
for the fast correlation attack. Complete specification of the proposed algorithm
is given in Section 4. Experimental analysis of the performance is presented in
Section 5, as well as a discussion of the complexity issue. Comparisons between
the recently reported improved fast correlation attacks, and the proposed algo-
rithm are given in Section 6. Finally, the results of this paper are summarized
in Section 7.

2 Decoding Concept for the Fast Correlation Attack

Recall that, the correlation means that the mod 2 sum of corresponding outputs
of the LFSR and the generator can be considered as a realization of a binary
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random variable which takes value 0 and 1 with the probabilities 1 — p and p,
respectively, p # 0.5.

The fast correlation attack on a particular LFSR, with primitive feedback po-
lynomial, in a nonlinear combining generator given the segment of the generator
output can be considered as follows:

— The n-bit segment of the output sequence from the length-k LSFR is a
codeword of an (n, k) punctured simplex code;

— The corresponding n-bit segment of the nonlinear combination generator
output is the corresponding noisy codeword obtained through a BSC with
crossover probability p;

— The problem of the LFSR initial state reconstruction, assuming known cha-
racteristic polynomial, is equivalent to the problem of decoding after trans-
mission over a BSC with crossover probability p.

The decoding approach employed in this paper is based on combination of a
restricted exhaustive search over a set of hypotheses and a one-step or an itera-
tive decoding technique. The exhaustive search is employed in order to provide
a possibility for construction of suitable parity-check equations relevant for high
performance of complete decoding. This approach could be considered as a par-
ticular combination of the minimum distance decoding and another decoding
technique.

Recall that a parity-check equation which involves a smaller number of bits
is more powerful than a higher weight one. Also note that performance associa-
ted with a set of the parity-checks depends on its cardinality as well as on the
parity-check weight distribution. Finally, the overall complexity of a decoding
procedure depends on the number and weights of the employed parity-checks.
Accordingly, from performance and complexity point of views, a favorable situa-
tion corresponds to the availability of a large number of low-weight parity-checks.

In the following, z,,, n = 1,2,..., N, denotes an LFSR output sequence which
is a codeword x of a binary (N, L) punctured simplex code C where N is co-
deword length and L is number of information bits. xg = [21,Za,...,21] is the
vector of information bits identical to the LFSR initial state; {z,} denotes the
degraded sequence {z,} after transmission over a BSC with crossover proba-
bility p. Accordingly, =z, = x, ®e, , n = 1,2,...,N , where the effect
of the BSC with error probability p is modeled by an N-dimensional binary
random variable E defined over {0,1}" with independent coordinates E,, such
that Pr(E, = 1) =p,n=1,2,..., N, and e, is a realization of E,. Applying
a codeword x = [z,])_; € C, to the input of the BSC, we obtain the random
variable Z = E @ x as a received codeword at its output. Let z = [2,]Y_; and
e = [e,]N_; denote particular values of the random vector variables Z and E,
respectively.
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3 Novel Appropriate Parity-Check Sets

This section points out novel sets of the parity-check equations relevant for con-
struction of an algorithm for the fast correlation attack which will be proposed
in the next section. Also, this section points out the expected cardinalities of
these sets.

3.1 Preliminaries

An LFSR can be considered as a linear finite state machine. Recall that a li-
near finite state machine is a realization or an implementation of certain linear
operator. Accordingly, a state of a length-L LFSR after ¢ clocks is given by the
following matrix-vector product over GF(2):
X, =A% , t=1,2,...,

where x; is an L dimensional binary vector representing the LFSR state after ¢
clocks, x is an L dimensional binary vector representing the initial LESR state
(in notation that it has index L at the top and index 1 at the bottom), and
A is the t-th power over GF(2) of the state transition L x L binary matrix A.
Assuming the LFSR characteristic polynomial f(u) =1+ ZiL:1 b;u’, the matrix
A is given by:

b1 b2 bg .. bL Al
100.. O A,

A=1{010. = |As]| (1)
0 .10 Ap

where each A;, i =1,2,..., L, represents a 1 x L binary matrix (a row-vector).

Powers of the matrix A determine algebraic replica of the LFSR initial state
bits, i.e. linear equations satisfied by the bits of the codewords from the dual
code. Accordingly, they directly specify the parity-checks.

Since our approach assumes an exhaustive search, over the first B information
bits, the parity checks are obtained:
- directly from the powers of the matrix A corresponding to an arbitrary subset
of the first B bits of the LFSR initial state and no more than three bits from
the remaining L — B bits of the initial state and the bit of the LFSR output
sequence;
- as the mod2 sum of any two parity checks determined from the powers of the
matrix A when this sum includes an arbitrary number of the first B bits of the
LFSR initial state, at most one bit from the remaining L — B bits of the initial
state, and the two bits of the LFSR output sequence.
- as the mod2 sum of any three parity checks determined by the powers of matrix
A when this sum includes an arbitrary number of the first B bits of the LFSR
initial state, no bit from the remaining L — B bits of the initial state, and the
three corresponding bits of the LFSR output sequence.

As pointed out in Section 2, a desirable situation is that corresponding to
as many low-weight parity-checks as possible. Following this fact and due to the
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comparison purposes with recently reported improved fast correlation attacks
[8] - [9], we focus our intention mainly to parity-checks of effective weight three
(i.e. without considering the first B bits), but also employ some of parity-checks
of effective weight four as well. Note finally that parity-checks of an arbitrary
weight could be considered as a development of certain reported results, for
example [13] and [16].

3.2 Methods for Construction and Specification of the Parity-Check
Sets

This section presents two methods for obtaining appropriate sets of parity-
checks. The developed methods are related to the information bits (Method
A) and to the parity bits (Method B) of the underlying punctured simplex code.

Method A: Parity-check sets related to the information bits of the underlying
punctured simplex codeword.

Note that
Tr4n =ATx0 , n=1,2,..,N—L | (2)

where AT is the first row of the n-th power of the state transition matrix A.
Accordingly, the basic parity-check equations (defined on the noisy sequence)
are given by:

CLan = 2L4n DATZg , n=1,2,...,. N —L | (3)

where zg = [21, 22, ..., 2]

Assuming that the first B information bits are known, appropriate parity-
check equations for the i-th information bit, i = B+1, B+2, ..., L can constructed
according to the following definition.

Definition 1. The set (2; of parity-check equations associated with information
bit-i is composed of:

— All parity-check equations corresponding to the vectors A} such that each
AT has arbitrary values in the first B coordinates, has value one at the i-th
coordinate, and has two ones in all other information bit coordinates;

— All parity-check equations obtained as the mod2 sum of two other basic
parity-check equations,

(zm B AT'2Z0) B (2, ® Alzg)

where m and n have arbitrary values providing that the vector sum AT* &
A" has arbitrary values in the first B coordinates, value one at the i-th
coordinate, and value zero in the all other coordinates.

Note that for given parameters N, L, and B, the sets §2;,i=B+1,B+2,..., L,
can be constructed in advance through a search procedure in a preprocessing
phase, and later used for any particular application with these given parameters.
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Method B: Parity-check sets related to the parity bits of the underlying pun-
ctured simplex codeword.

First, an appropriate form of the parity check matrix of a punctured simplex code
is pointed out. Then a method for constructing the parity checks is given and
the parity checks to be employed by the algorithm are specified by Definition 2.
Recall, that in Section 2, the fast correlation attack has been modeled by the
decoding of an (N, L) punctured simplex code used over a BSC. Accordingly,
the following statement points out an appropriate form of the code parity-check
matrix. This particular form has a one-to-one correspondence with the finite-
state machine model of an LFSR with primitive characteristic polynomial.

Proposition 1. The parity-check matrix H = [P? Iy_r ] of a punctured
simplex code (N, L) with corresponding polynomial f(u) =1+ Zle b;u’, where
the binary matrix P is the L x (N — L) matrix of parity checks, PT is its
transpose, and In_p, is the identity matrix of dimension (N — L) x (N — L), is
specified by the following:

P, AV
P, A(2)
P’ = : = ! 4
- - : 9 ( )
Py_L AWY=D)

where the m-th row of the matrix P”, is an L-dimensional row vector Agm)
equal to the first row of the m-th power, A™ of the matrix A given in (1).

The construction of the parity-checks is based on searching for certain linear
combinations of rows in an appropriate form of the parity-check matrix given
by Proposition 1. Accordingly, the preprocessing phase of the algorithm includes
the construction of the parity-checks according to the following algorithm which
generates a set of parity checks for each parity bit. Each parity check includes
certain B information bits, and no more than W + 1 other arbitrary check bits.

Note that W + 1 is used here instead three to illustrate that a straight-
forward generalization is possible where not only the parity-checks of effective
weight equal to three are considered.

Algorithm for the construction of the parity checks

— Input: The parity check matrix H = [PT Iy 1] .
— Processing Steps: For each parity bit, generate a set of parity check equations
employing the following procedure.
— Forn=L+1,L+2,...,N and each w, 1 < w < W, proceed as follows:
e Calculate the mod2-sum of the n-th row of the parity-check matrix
H = [P?,Ix_] and any possible w other rows.
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e If the values at positions i = B+ 1, B+ 2, ..., L, are all zeros, where
B < L, is a predetermined parameter, record the considered combi-
nation into the set (2.
— Output: The sets of parity check equations 2}, n=L+1,L+2,...,N.

Definition 2: The set {2 generated by the above algorithm is the set of all
considered parity-check equations related to the n-th parity bit of codewords in
the punctured (N, L) simplex code.

Note that each parity-check in (2} consists of « of the first B information
bits with 0 < a < B, none of the remaining last L — B information bits and at
most W + 1 of the N — L parity check bits, including bit-n.

3.3 Expected Cardinalities of the Parity-Check Sets

Lemma 1. In any set {2;, specified by the Definition 1, i = B+1,B+2,...,L, a
tight approximation about the expected number |£2| of the parity-checks is given
by the following;:

=z -n(* 777 (Y1) )

Note that Lemma 1 motivates the construction of {2; given in Definition 1. For
each type of check sums in (2;, that corresponding to minimum weight with non
negligible contribution to [£2| is chosen.

As an illustration, note that for N = 40000, L = 40 and B = 18,19, 20, 21, 22,
Lemma 1 yields that the expected cardinality, |{2] is equal to 192, 384, 768, 1534,
3066, respectively.

Lemma 2: In any set (2, specified by the Definition 2, n = L+1,L+2,..., N,
a tight approximation about the expected number |2*| of the parity-checks is
given by the following:

1| = 2—L+B§_:1<N—j—1> . (©)

As an illustration, note that for L = 40, and (N, B) = (1024,26), (4096,22),
(8192,20), and (16384,18), Lemma 2 yields that the expected cardinalities, |{2*|
are equal to 29.5, 31.4, 31.7, and 31.9, respectively.

Note that Lemmas 1 and 2 show that Definitions 1 and 2 yield large numbers of
the parity-checks relevant for an error-correction procedure.

Also, note that Lemmas 1 and 2 imply that the expected cardinalities of the
parity-check sets specified by Definitions 1 and 2 do not depend on the LFSR
characteristic polynomial, and particularly on its weight.
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4 Novel Algorithm for Fast Correlation Attack

The main underlying principles for construction of the novel fast correlation
attack include the following:

— General concepts of linear block codes decoding, and particularly:

— decoding of information bits only, employing an APP based threshold
decoding;

— iterative decoding of the parity bits employing a reduced complexity BP
based iterative decoding.

— A novel method for constructing parity checks of a punctured simplex code
based on linear finite state machine model of an LFSR (see [13]);

— The idea (implicitly given in [§]) of employing a partial (restricted) exhau-
stive search in order to enhance performance of the fast correlation attack.
The developed algorithm assumes exhaustive search over the first B infor-
mation bits in conjunction with appropriate decoding approaches.

According to these principles a novel algorithm for the fast correlation attack
(based on a linear block code decoding approach) is proposed. The algorithm
is based on the novel methods for constructing the appropriate parity-checks
presented in the Section 3, and its processing phase includes the following three
techniques: (i) hypothesis testing, (ii) decoding of a punctured simplex code and
(iii) correlation check. The algorithm employs two different decoding procedures
in order to provide desired trade-offs between necessary length of the sample,
i.e. the rate of underlying code, performance and overall complexity.

Algorithm for the Fast Correlation Attack

INPUT:

— values of the parameters N, L, B, and the threshold T

— the noisy received bits z1, 29, ..., ZN;

— for each information bit 4, i = B+ 1, B+ 2, ..., L, the set {2; of correspon-
ding parity-check equations (constructed in the preprocessing phase based
on Definition 1), and for each parity bit n,n = L+1,L+2,...,N*, N* < N,
the set (2,, of corresponding parity-check equations (constructed in the pre-
processing phase based on Definition 2).

PROCESSING STEPS:

1. setting the hypothesis
From the set of all possible 28 binary patterns, select a not previously consi-
dered pattern 21, Zo, ..., £ g, for the first B information bits. If no new pattern
is available, go to the Output (b).

2. decoding
Employ one of the following two decoding algorithms for estimating a can-
didate for the information bits (i.e. LFSR initial state):
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— One-Step Decoding Algorithm (OSDA) using parity-checks specified by
Definition 1;
— Tterative Decoding Algorithm (IDA) using parity-checks specified by De-
finition 2.
3. correlation check
Check if the current estimation of the information bits (obtained from the
decoding step) Xg = [&1, 42, ..., 2], is the true one, according to the follo-
wing:
For xq, Agenerate the corresponding sequence 21, Za, ..., T, and calculate
S=> _1Tn®2z, .
If S < T go to Output (a), otherwise go to Step 1.

OUTPUT:
(a) the considered vector X of information bits is the true one;
(b) the true vector of information bits is not found.

The threshold scalar T is used for checking a hypothesis over all the information
bits. For given N, L, B, p, the threshold T is calculated based on the method
presented in [18].

The specifications of the employed decoding algorithms OSDA and IDA are
given in the following.

4.1 One-Step Decoding Algorithm - OSDA

OSDA decodes the noisy received sequence [21, 23, ..., zy] for the (IV, L) truncated
simplex code employing an APP threshold decoding and the sets (2; of parity-
check equations, specified by Definition 1, i = B+ 1, B + 2, ..., L according to
the following.

— parity-checks calculation
For each information bit position i, ¢ = B 4+ 1, B + 2, ..., L, calculate the
parity-check values employing the parity check equations from the set (2;.
— error-correction
For each i, i = B+ 1,B 4+ 2,..., L do the following:
— if the number of satisfied parity-check equations for the considered infor-
mation bit is smaller than the threshold T} () set &; = z; ® 1, otherwise
set T; = z;.
The algorithm employs a vector threshold Ty = [T1(i)]L 5 41 which contains
values for the APP threshold decoding of certain information bits.
Elements of the threshold vector T are determined based on the posterior error
probabilities computed by using the parity-checks specified by Definition 1. We
assume that for each codeword bit, the parity-checks used are orthogonal on
that bit, meaning that except for that bit, every other involved unknown bit
appears in exactly one of the parity-checks. Finally, assuming as an appropriate
approximation, that all the parity-check equations involve exactly two unknown
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bits beside the considered one, for any i = B+1, B+2, ..., L, the threshold T} (%)
is equal to the smallest integer such that the following inequality holds:

P 1 + (1 _ 2p)2 |Qi‘_2T1(i)
1—p <1 - (1= 2p)2>

<1, (7)

where [£2;| denotes the number of parity-check equations related to the i-th
information bit [I0].

4.2 Tterative Decoding Algorithm - IDA

For a given N* < N, IDA decodes the received sequence [z1, 2, ..., 2y+] for
the (N*, L) punctured simplex code employing a BP based bit-flipping (BP-
BF) iterative decoding and the sets £2* of parity-check equations, specified by
Definition 2, n =L+ 1, L+ 2,..., N*.

BP-BF based iterative decoding (see [4], for example) includes the following
main difference in comparison with simple BF.

— For each bit n, and each combination of [§2%| — 1 parity-checks out of the
|£2%| parity checks associated with bit-n, make |£2%| estimate of the nth bit
value associated with these combinations.

Accordingly, we employ the following iterative BP-BF based decoding algorithm.

— Initialization: T,, = z, and Zym = 2n.
— [Iterative Processing
1. Step I
(a) For each n and for each m € 2, evaluate:
On (m) = Zn/ew(m) T [mOdQ]
(b) If all o,(m) = 0 go to Step 3 (a). If some maximum number of
iterations (e.g. 30) is exceeded go to Step 3 (b).
2. Step 2: For each n, do the following:
(a) It S o, (m) > [22]/2, then 2, = 2, ® 1.
(b) It S22\ 6 (/) > 1925\ m|/2, then Zpp = Zpm @ 1.
If no complementation was performed go to Step 3 (b); otherwise go to
Step 1.
3. Step 3:
(a) X = [2,] is the decoding result.
(b) Algorithm halts and a warning is declared that a valid decoding is
not reached.

5 Performance and Complexity

5.1 Performance

The performance of the novel algorithm is experimentally considered when the
LFSR characteristic polynomial is chosen as 1+u+u3 +u® +u®+u't +u? +ul"+
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Table 1. Performance of the novel algorithm - experimental analysis: Error-rate of the
LFSR initial state reconstruction, as a function of the correlation noise p when the
LFSR length is L = 40, the characteristic polynomial weight is 17, and the length of
the sequence available for processing is N = 40000 bits.

P Error rate of LFSR initial state reconstruction

OSDA OSDA OSDA OSDA OSDA IDA

B =18 B=19 B =20 B=21 B =22 |N*=4096, B =22
0.25 0.009 0.000 0.000 0.000 0.000 0.000
0.26 0.015 0.000 0.000 0.000 0.000 0.000
0.27 0.024 0.000 0.000 0.000 0.000 0.000
0.28 0.081 0.000 0.000 0.000 0.000 0.000
0.29 0.159 0.006 0.000 0.000 0.000 0.000
0.30 0.254 0.023 0.000 0.000 0.000 0.000
0.31 0.384 0.041 0.002 0.000 0.000 0.000
0.32 0.569 0.098 0.002 0.000 0.000 0.000
0.33 0.696 0.226 0.020 0.000 0.000 0.000
0.34 0.838 0.356 0.053 0.001 0.000 0.000
0.35 0.915 0.542 0.114 0.002 0.001 0.000
0.36 0.955 0.743 0.225 0.019 0.022 0.000
0.37 0.983 0.865 0.450 0.080 0.062 0.001
0.38 0.990 0.932 0.652 0.210 0.208 0.023
0.39 0.997 0.980 0.850 0.445 0.399 0.052
0.40 1.000 0.988 0.935 0.663 0.651 0.267

ul +u?t +u? +u? +u? +u3? a3 +u8 +ul0 and N = 40000 (i.e. assuming the
same example as was considered in [§]-[9]). Note that the proposed algorithm can
be applied for values of L significantly longer than L = 40, but this value was
employed in all numerical and experimental illustrations for comparison with
previously reported results.

Results of the performance analysis are presented in Table 1. This table dis-
plays the error-rate of the LFSR initial state reconstruction as a function of the
correlation noise p when the algorithm employs:

(i) OSDA with B = 18, 19, 20, 21, 22,
(ii) IDA with N* = 4096, B = 22, and at most 20 iterations.

Each error-rate given in the table is obtained by calculation over a correspon-
ding, randomly selected, set of 1000 samples. Recall that ”error-rate” indicates
the fraction of trials for which we obtain incorrect decoding (and accordingly
incorrect reconstruction of the secret key).
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5.2 Complexity

Recall that the overall complexity assumes time and space complexity requi-
rements. The complexity analysis yields that according to the structure of the
proposed algorithm:

- The algorithm requires a space for the input. Space requirements for the deco-
ding process are as follows: when OSDA is employed, decoding processing does
not require memory; IDA requires a memory proportional to the parameter N*;
- Time complexity is specified by the following corollaries.

Corollary 1. Assuming that OSDA is employed, that |£2| denotes the average
cardinality of the parity-check sets [£2;], that w denotes the average number of
bits in a parity-check, and that w denotes the weight of the LFSR characteristic
polynomial, the implementation complexity of the proposed algorithm is pro-
portional to 28[ (L — B)|2|w + (N — L)w ] mod2 additions.

Corollary 2. Assuming that IDA is employed, that |£2*| denotes the average
cardinality of the parity-check sets |(2,|, that w* denotes the average number
of bits in a parity-check, that I denotes the number of iterations, and that w
denotes the weight of the LFSR characteristic polynomial, the implementation
complexity of the proposed algorithm is proportional to 25[ I(N*—L)[£2*|(|£2*|—
1w* + (N — L)w ] mod2 additions.

Note also that from the structure of the proposed algorithms, it is readily seen
that the proposed algorithms are suitable for fast software implementation, as
well as for simple hardware implementation: the algorithms employ only simple
arithmetic operations (mod2 addition) and simple logical operations.

Also, since the decoding process is mainly memoryless, note that a reduction
of the time complexity specified by the previous corollaries can be obtained by
an appropriate time-memory complexity trade-off.

Finally note that in the presented experiments, the decoding step has em-
ployed the underlying codeword lengths N = 40000 and N* = 4096 for OSDA
and IDA| respectively. This is an illustration that OSDA and IDA yield a trade-
off between the length of the required sample (i.e. the code rate) and the decoding
complexity.

6 Comparison of the Novel Algorithm with Recently
Proposed Improved Fast Correlation Attacks

This section presents an arguably comparative analysis of the underlying princi-
ples, performance and complexity of recently proposed improved fast correlation
attacks [9] and the novel algorithm, assuming the same input.



A Low-Complexity and High-Performance Algorithm 209

6.1 Comparison of the Underlying Principles

Comparison of the underlying principles employed in [8]-[9] and in the novel al-
gorithm for the fast correlation attack can be summarized as follows.

— The approaches of [8]-[9] are based on decoding of convolutional codes and
turbo codes with convolutional codes as the component codes constructed
over the LFSR sequence. The novel approach is based on decoding punctured
simplex block codes corresponding to the LFSR sequence.

— The algorithms [8]-[9] and the novel algorithm employ different parity-checks.
The parity-checks employed in [9]-[8] are constructed by searching for these
parity checks which include the following bits: currently considered bit, bits
from a subset of B previous bits, and no more than two other bits.

The parity-checks employed in the novel algorithm are constructed by sear-
ching for these parity checks which include the following bits:

(1) currently considered information bit, bits from a subset of B first informa-
tion bits, and two other information bits with the corresponding parity-bit,
or two arbitrary parity bits only, or

(ii) currently considered parity bit, bits from a subset of B first information
bits, and no more than two other parity bits.

Note that these different approaches in the parity-check constructions imply
different number of parity-checks per bit, as well.

— The decoding techniques employed in [§]-[9] are Viterbi decoding, BCJR de-
codings, and MAP turbo decoding (see [7] and [I]). On the other hand the
novel algorithm employs the following two low-complexity decoding techni-
ques: (i) APP threshold decoding, and (ii) BP based BF iterative decoding.

— The fast correlation attacks from [§]-[9] implicitly include an exhaustive se-
arch over a set of dimension 27 through employment of the Viterbi or BCJR
decodings due to the trellis search. The novel algorithm employs an explicit
search over all 22 possible patterns corresponding to the first B information
bits.

— A decoding process based on the Viterbi or BCJR algorithm requires a me-
mory of dimension proportional to 22. On the other hand, OSDA does not
require memory, and IDA requires a memory proportional to the parameter
N*.

6.2 Comparison of the Performance and Complexity

For the performance comparison of the novel and turbo based fast correlation
attacks [9] the same inputs are employed and relevant parameters are selected so
that the novel algorithm always has significantly lower overall implementation
complexity than the algorithm [9].

According to [9], the time complexity of the turbo decoding is proportional
to 2BIM Jm real multiplications where I denotes the number of the iterations,
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Table 2. Comparison of the algorithms performance, assuming the same inputs, and
lower complexity of the novel algorithm in comparison to the turbo algorithm [9]: Limit
noise for which the algorithms yield, with probability close to 1, correct reconstruction
of the initial LFSR state, when the LFSR characteristic polynomial is 1 + u + u® +
W0+ utt w4 ut® w4+ u® 40+ 0?40+ 0 40?0, and
the available sample is 40000 bits.

ALGORITHM Limit Noise
turbo algorithm [9]: B =15, M = 2 0.27
novel algorithm with OSDA: B = 19 0.28
turbo algorithm [9]: B =15, M =4 0.29
novel algorithm with OSDA: B = 21 0.33
turbo algorithm [9]: B =15, M = 16 0.30
novel algorithm with OSDA: B = 22 0.34
novel algorithm with IDA: N* = 4096, B = 22 0.36

M the number of the component codes, J the number of processed bits, and m
the number of employed parity-checks per bit. The time complexity of the novel
algorithm is given in Corollaries 1 and 2.

Also note that the space complexity of the approach from [J] is proportional
to 28 due to employment of the BCJR algorithm. If OSDA is employed no space
complexity is required, and if IDA is employed it is usually significantly smaller
than 28 due to its linear rather than exponential nature.

An illustrative performance comparison is presented in the Table 2.

Note that, in each case, the complexity of the proposed algorithm could be con-
sidered as significantly lower than complexity of the turbo decoding [9] although
the proposed algorithm assumes search over a much larger set of hypotheses,
since: (i) [@] employs iterative processing with M component codes and (ii)
the dominant arithmetic operation in the proposed algorithm is mod2 addition
against real multiplication for the turbo based decoding of [9].

Finally, note that the actual time for performing the attack by the novel al-
gorithm strongly depends on the implementation constraints so that a straight-
forward comparison is not appropriate. Also, the approaches of [§]-[9] can be
modified to involve mod2 additions, but at the expense of performance degra-
dation.

7 Conclusions

A novel algorithm for the fast correlation attack has been proposed. The algo-
rithm is based on decoding procedures of the corresponding binary block code
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with novel constructions of the parity-checks, independent of the LFSR feedback
polynomial weight, and the following two decoding approaches are employed: an
APP based threshold decoding and a BP based BF iterative decoding . The con-
structions of the parity-checks are based on searching for certain parity-check
equations and their linear combinations employing the finite-state machine mo-
del of an LFSR with primitive characteristic polynomial. The expected numbers
of the parity-checks per parity bit have been derived, showing that a large num-
ber of appropriate parity-checks can be constructed.

The performance of the proposed algorithm has been analyzed experimentally
showing that the algorithm is a powerful one.

The overall implementation complexity has been specified. As dominant ope-
rations the algorithm employs mod2 additions and simple logical operations, so
that it is very suitable for high-speed software implementation as well as for
simple hardware implementation.

The algorithm offers good trade-offs between required sample length (i.e. rate
of the underlying code), overall complexity and performance. The one-step thres-
hold decoding approach yields high performance assuming long enough sample,
and the iterative decoding approach can reach the same performance using a
significantly shorter sample but at the expense of increased complexity.

The novel algorithm has been compared with recently reported improved
fast correlation attacks based on convolutional codes and turbo decoding. The
underlying principles, performance and complexity have been compared, and the
essential gain obtained with the novel approach is pointed out. The developed
algorithm has the following two main advantages over other reported ones:

(a) Assuming a lower overall complexity, and the same inputs, the proposed
algorithm yields significantly better performance.

(b) Tt is suitable for high-speed software implementation as well as for simple
hardware implementation and highly parallel architectures.
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