Load Redundancy Elimination
on Executable Code*

Manel Ferndndez', Roger Espasal, and Saumya Debray?

1 Computer Architecture Department, Universitat Politécnica de Catalunya
Barcelona, Spain
{mfernand,roger}@ac.upc.es
2 Department of Computer Science, University of Arizona
Tucson AZ, USA
debray@cs.arizona.edu

Abstract. Optimizations performed at link time or directly applied to
final program executables have received increased attention in recent
years. This paper discuss the discovery and elimination of redundant
load operations in the context of a link time optimizer, an optimiza-
tion that we call Load Redundancy Elimination (LRE). Our experiments
show that between 50% and 75% of a program’s memory references can
be considered redundant because they are accessing memory locations
that have been referenced less than 200—400 instructions away. We then
present three profile-based LRE algorithms targeted at optimizing away
these redundancies. Our results show that between 5% and 30% of the
redundancy detected can indeed be eliminated, which translates into
program speedups in the range of 3% to 8%. We also test our algorithm
assuming different cache latencies, and show that, if latencies continue
to grow, the load redundancy elimination will become more important.

1 Introduction

Optimizations performed at link time or directly applied to final program exe-
cutables have received increased attention in recent years [13,3,11]. First, large
programs tend to be compiled using separate compilation, that is, one or a few
files at a time. Therefore, the compiler does not have the opportunity to opti-
mize the full program as a whole, even performing sophisticated inter-procedural
analysis. A second reason is the emergence of profile-directed compilation tech-
niques [12,7]. However, the same problem of separate compilation plagues the
use of profile feedback: large projects will be forced to re-build every file to
take advantage of the profiling information. Link time optimizations are able to
re-optimize the final binary using profile data without recompiling source code.

This paper presents an optimization to be applied in the context of link
time optimizers. We discuss the discovery and elimination of load operations

* This work is being supported by the Spanish Ministry of Education under grants
CYCIT TIC98-0511 and PN98 46057403-1. The research described in this paper has
been developed using the resources of the CEPBA.

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 221-229, 2001.
© Springer-Verlag Berlin Heidelberg 2001

222 Manel Ferndndez et al.

100

75

—-0-- go

— O- m88ksim
—-a—- gee
—-X--- compress
R]

50

25 g
P
L
0 = T T T T T T T T
4 8 16 32 64 128 256 512 1024

Redundancy window size (entries)

Dinamic load redundancy (%)

Fig. 1. Dynamic amount of load redundancy for the whole SPECint95 (Com-
paq/Alpha executables compiled with full optimizations). X-axis is logarithmic

that are redundant and can be safely removed in order to speed up a program,
an optimization that we call Load Redundancy Elimination (LRE). Unnecessary
memory references appear in a binary due to a variety of reasons: a variable may
not have been kept in a register by the compiler because it was a global, or maybe
the compiler was unable to resolve aliasing adequately. We then present three
profile-based LRE algorithms targeted at optimizing away these redundancies: a
basic LRE algorithm for extended basic blocks, and two general algorithms that
work over regions of arbitrary control flow complexity: one for removing fully
redundant loads and the other for removing partially redundant loads.

2 Dynamic Amount of Load Redundancy

We start motivating our work by measuring a potential upper bound on how
many loads could be removed from a program. Our goal is to measure how often
a load is re-loading data that has already been loaded in the near past. Thus,
we instrument the SPECint95 programs to catch all their memory references.
Dynamic load redundancy is measured by recording the most recent n memory
references into a redundancy window. This is a simple FIFO queue, where new
references coming into it displace the oldest reference stored in the window. A
dynamic instance of a load is then redundant if its effective address matches the
address of any prior load or store that is still in the redundancy window.

The results of our measures are shown in Figure 1, for various redundancy
window sizes. Clearly, a lot of redundancy exists even in these highly optimized
binaries. As an example, for m88ksim, almost 75% of all load references were to
memory locations that had been referenced by at least one of the most recent
256 memory instructions. In general, almost 50% of all loads are re-loading a
data item that was read/written less than 100 memory instructions ago. Today’s
optimizing compilers are clearly able to deal with regions larger than this size,
and should be expected to optimize all this redundancy away.

Load Redundancy Elimination on Executable Code 223

| .

I1 load (al), rl
I1| load (al), rl move rl , r0

I2| load (a2), r2 move r0 , r2

12 | -tead-taZ2)r -2

@ ®)

Fig. 2. Elimination of redundant load inside a machine code basic block

3 LRE on Executable Code

The simplest example of Load Redundancy Elimination (LRE) is shown in Fig-
ure 2. Suppose that an instruction I; loads a value into register r; from memory
location pointed by a;. This load is followed after some instructions by another
instruction I within the same basic block, which puts its value from location
pointed by as into register ro. If it can be proved that both memory locations
are the same, and this location is not modified between these two instructions,
then I is redundant in front of I;*. Once a redundant load has been identified,
we may try to eliminate it by bypassing the value from the first load to the re-
dundant one, as shown in Figure 2b. This is accomplished by inserting a couple
of move operations that use a new available register (r¢ in the example).

Although this is the most simple case of LRE, it already introduces the three
fundamental problems that this optimization has to deal with. The first problem
is to decide if both loads are really accessing the same memory location, and also
that there is no store between them that may be in conflict with that location.
There is an extensive work on alias analysis [1,9], but they are typically formu-
lated in terms of source-level constructs that do not handle features encountered
in executable programs [4]. The second problem is to find a register to bypass the
source value to the redundant load. Register liveness analysis computes which
registers are live at every point in the code [6,10]. Finally, the example shows
that eliminating a load doesn’t come without a cost: we have inserted “move”
instructions in the code in the hope that (a) they can be removed by a copy
propagator and (b) even if they are not, their cost will be lower than that of the
original redundant load. In any case, a careful cost-benefit analysis is required.

Alias and register liveness analysis are well-known data-flow problems already
described in the literature [9]. From now on, we assume that both of them have
been computed before applying the LRE optimization. The more accurate are
these analysis, the more opportunities appear for LRE.

! Note that the redundancy is also present if the instruction I; is a store operation.

224 Manel Ferndndez et al.

4 Profile-Guided LRE

Information about the program execution behavior can be very useful in op-
timizing programs. Our proposal is to be aware of profile information to guide
LRE. We next outline the algorithms used and present the cost-benefit equations
that use the profile information to choose the candidates for removal.

4.1 Eliminating Close Redundancy

The results presented in Section 2 show that between 25% and 40% of all the
redundancy detected can be captured using a redundancy window of just 16
entries. This indicates that the first source of redundancy that we should target
our optimization at is located within small groups of basic blocks.

A natural extension of the example given in Figure 2 is to perform LRE on
Extended Basic Blocks?. For every load in the EBB, we search bottom-up for
other load or store that may be a source of redundancy, as shown in Figure 3a.
But what if the hot path does not flow through BB2? A move instruction has
been inserted in the critical path, although the bypassed value will be most
often unused. There is no benefit in applying LRE and we might risk lowering
performance. The lesson to learn is that it is not always beneficial to remove
a redundant load, and it is necessary to apply LRE carefully. We need to be
compute as precisely as possible the benefit (B) and cost (C') of applying the
optimization for each particular load. The equations we use are as follows:

B = latjpaq X BBI™
C = latmope X (BB + BB]™7)
LRE < C<B

The benefit includes the latency of the load being eliminated times the fre-
quency of its basic block. The costs include the latencies of the new two “move”
instructions weighted by the execution frequencies of their corresponding basic
blocks. Note that the costs are pessimistic, as they always include both “move”
instructions even though they might be later removed by a copy propagator.

4.2 Eliminating Distant Redundancy

Going back to Figure 1, there is still a lot of redundancy that can be caught if
we can explore larger distances between instructions. To catch this redundancy,
we need to apply LRE to regions of code that expand beyond an EBB.

The second algorithm we present is targeted at detecting fully redundant
loads, that is, loads that are redundant with respect to all the control flow
paths that reach them. For every load, we scan all potential paths looking for
a source instruction that may render it. As shown in Figure 3b, if redundancy
is found on all paths and all intervening stores do not alias with the load, the

2 An EBB is a set of basic blocks with a single entry point but multiple exit points.

Load Redundancy Elimination on Executable Code 225

i BB1 L BB2

I1| load (al), rl 12| load (a2), r2
move rl , r0 move r2 , r0

l BB1

I1 load (al), rl
move rl , r0

I BB3
move r0 , r2
Hot ;| s oyrra
Path
move r0 , r3

l 13 | “tead-ta3)r-=3
Fig. 3. Elimination of fully redundantloads: (a) within extended basic blocks, (b)

for multi-path redundant loads. LRE should be applied coupled to a cost-benefit
analysis

load becomes a candidate for removal. Then we apply the cost-benefit equations
already described, although we have to extend the cost (C') to account for all
the move instructions that must be inserted on each of the redundancy paths:

C = latmone x (BBl + X1, BBIY)

If the benefit of removing the candidate out-weight the cost of adding the
“move” instructions, the algorithm starts looking for an available register to
bypass the value [5]. If no register is found, then the load can not be removed.

In the LRE algorithms discussed so far, the removal of a load is a safe trans-
formation because there is always a static source of redundancy. However, a high
percentage of dynamic redundancy comes from partially redundant loads, that
is, loads that are redundant only on some control flow paths. Imagine that in-
struction Iy in Figure 4 is an invariant inside the loop. The previous algorithm
will fail to remove the load because it is not fully redundant: I is redundant on
the loop back-edge with I7, but it is not on the entry point of the loop. This
situation arises frequently, even without considering loops.

Partial LRE involves insertion of new instructions. As insertions are usually
done on a different EBB, the inserted instructions become speculative. In general,
it is safe to perform speculation for instructions that cannot cause exceptions, but
this is not the case for speculative loads. In order to deal with safe insertions only,
our implementation of partial LRE is restricted to global and stack references.
We have followed the approach described by Horspool and Ho [g], that proposed
a general profile driven PRE algorithm based upon edge profiles. The idea is
to insert copies on less frequently executed paths in favor of more frequently
executed paths. We have adapted their algorithm to (a) only consider redundant
load operations, and (b) to deal with our cost-benefit analysis. Being n the

226 Manel Ferndndez et al.

| i

move r0 , rl

: 12 | -toad--tabr- =t \

11| store rl , (a0)
move rl , r0

. 7

(@)

12| load (a0), rl

I1| store rl , (a0)

(b)

Fig. 4. Elimination of a partially redundant load. Removing the redundant load
requires to insert instances in less-frequent paths, in order to make the load fully
redundant

number of partial redundancies and m the number of load insertions needed, the
cost of removing a load is then:

Chypass = latmove X (BBfTeq +3 e BBfTeq)

red sre;

Cinsert - latload X 27;1 EDG{req7 C= bepass + Oinsert

Cost involves not only bypassing the value, but inserting the new load op-
erations that make the candidate become fully redundant. We use the same
algorithm as before for obtaining available registers, but it has been extended to
also look for register availability at the new load insertion points.

5 Performance Evaluation

We have implemented the proposed LRE approaches within the alto link-time
optimizer [11,5]. The SPEC95 integer benchmarks were compiled with full op-
timizations using the vendor-supplied C compiler, on an AlphaServer equipped
with an Alpha 21264 microprocessor. The programs were instrumented using
Pixie and executed on the SPEC training inputs to obtain an execution fre-
quency profile. Finally, these binaries and were processed by Alto with/without
using different degrees of profile-guided LRE: LRE on EBB for catching close
redundancy, and fully- and partial-LRE for catching distant redundancy.

We start evaluating the effectiveness of the three LRE algorithms under study
by comparing the number of dynamic loads executed, for each benchmark. As it
can be seen in Figure Ha, all programs show improvements around 5%, with some
rather better cases such as m88ksim and compress. The results also show that
working only on EBBs is not enough to catch the close-redundancy we presented
in Section 2. Except for perl and vortex, LRE applied to EBBs yields a small
reduction in dynamic loads. By contrast, fully-LRE improves the overall results

Load Redundancy Elimination on Executable Code 227

102

-
3
b

100~ 100

95+
98—+
90— -
= EBB
{1 @ Fully
= Partial

| =Ers
| =@ Fully
= Partial

85 96 |

80— - 94
75

(b) Execution time (%)

704 92

(a) Dynamic number of loads (%)

65— 90 -

< o D&
< Qe&Q > "\S& ¢ &

Fig. 5. Effect of different LRE degrees in (a) number of loads at run time, and
(b) execution time. The baseline is optimized binaries by Alto without any LRE
at all

for five programs and partial-LRE only yields extra improvements for compress.
Additional number to better understand this results are presented in [5].

We are also interested in quantifying the percentage of reduction in execution
time. We have decided to use the SimpleScalar toolset [2] that models a Com-
paq Alpha 21264 to get an accurate measure of the differences between the LRE
algorithms. Results are presented in Figure 5b. Since loads are only a fraction
of all instructions executed in a program, reduction in execution time is smaller
than the corresponding reduction in number of dynamic loads. Thus, for exam-
ple, the 30% reduction in dynamic loads in m88ksim only translates into an 8%
reduction in execution time. However, the decrease in execution time shows that
we have removed some loads that indeed were on the program’s critical path.

Another interesting measure is to see what will happen in the future, as L1-
cache latency continues to increase. Current CPUs are typically at a 2-cycle or
3-cycle latency and the trend is towards hyper-pipelining and, therefore, longer
latencies. We re-simulated all the benchmarks changing the L1-cache latency to
3, 4 and 5 cycles. We also re-compiled every benchmark, since our cost/benefit
analysis is dependent on the latency of the loads. Results can be seen in Figure 6.
As expected, the longer the latency the worse the execution time of all programs.
However, as latency increases, the importance of performing LRE also grows. For
example, after applying partial-LRE in vortex, the execution time at a 5-cycle
latency is better than the original execution time using a 3-cycle latency.

6 Summary and Future Directions

This paper has presented three algorithms to perform load redundancy elimi-
nation on executable files. We have shown that between 50% and 75% of all
memory references in the SPECint95 programs can be considered “redundant”’,
since they access memory locations that had already been referenced by another
load or store within a close dynamic distance. The first algorithm, LRE within
extended basic blocks, is able to remove less than 5% of all loads, and yields

speedups below 4% in execution time. The results indicate that an extended

228 Manel Ferndndez et al.

120

115

110 Wl

= no LRE

105 = w/ LRE

m

345 345 345 345 345 345 345 345

100

Execution time (%)

95—

90

& 4
O o S D 03
S é"%& &y &S

Fig. 6. Effect of load latency in execution time (from 3-cycle to 5-cycle hit
latency)

basic block is too small to catch the redundancy measured in our experiments.
The second algorithm, LRE for fully redundant loads on arbitrary control flow
regions, yields an average increase of a 10% in loads to be removed. Despite
this small increase, fully-LRE does detect some of the critical loads and thus
increases speedups up to an 8%. The third algorithm, LRE for partially redun-
dant loads, significantly increases the number of static loads removed (a 30%
over the EBB algorithm). However, the algorithm only shows its strengths on
compress, where an extra 12% of dynamic loads are removed over the fully-LRE
algorithm. We believe that we need to explore better alias analysis algorithms to
fully obtain the potential of the LRE optimization. We also test our algorithms
assuming different cache latencies, and show that, if latencies continue to grow,
LRE will become more important.

References

1. A. V. Aho, R. Sethi, and J. D. Ullman. Compilers principles, techniques, and tools.
Addison-Wesley, Reading, MA, 1986. 223

2. D. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0. Technical
Report CS-TR-97-1342, CS Department, University of Wisconsin-Madison, 1997.
227

3. R. Cohn, D. Goodwin, P. G. Lowney, and N. Rubin. Spike: An optimizer for Alpha/
NT executables. In USENIX, editor, The USENIX Windows NT Workshop 1997,
pages 17-23, Seattle, Washington, August 11-13 1997. 221

4. S. Debray, R. Muth, and M. Weippert. Alias analysis of executable code. In The
25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 12-24, Orlando, Florida, January 19-21 1998. 223

5. M. Fernédndez, R. Espasa, and S. Debray. Load redundancy elimination on ex-
ecutable code. Technical Report UPC-DAC-2001-3, Computer Architecture De-
partment, Universitat Politecnica de Catalunya-Barcelona, 2001. 225, 226, 227

6. D. W. Goodwin. Interprocedural dataflow analysis in an executable optimizer.
In Proceedings of the ACM SIGPLAN 97 Conference on Programming Language
Design and Implementation, pages 122-133, Las Vegas, Nevada, June 15-18 1997.
223

11.

12.

13.

Load Redundancy Elimination on Executable Code 229

R. Gupta, D. A. Berson, and J. Z. Fang. Path profile guided partial redundancy
elimination using speculation. In Proceedings of the 1998 International Conference
on Computer Languages, pages 230-239, Chicago, May 14-16 1998. 221

R. N. Horspool and H. C. Ho. Partial redundancy elimination driven by a cost-
benefit analysis. In 8th Israeli Conference on Computer System and Software En-
gineering, pages 111-118, Herzliya, Israel, June 1997. 225

S. S. Muchnick. Building an Optimizing Compiler. Morgan Kaufman, 1997. 223

. R. Muth. Alto: A Platform for Object Code Modification. PhD thesis, Department

of Computer Science, University of Arizona, 1999. 223

R. Muth, S. Debray, S. Watterson, and K. de Bosschere. alto: A link-time optimizer
for the DEC Alpha. Technical Report TR98-14, Department of Computer Science,
University of Arizona, 1998. 221, 226

K. Pettis and R. C. Hansen. Profile guided code positioning. In Proceedings of
the ACM SIGPLAN 90 Conference on Programming Language Design and Imple-
mentation, pages 16-27, June 1990. 221

A. Srivastava and D. W. Wall. A practical system for intermodule code opti-
mization at link-time. Journal of Programming Languages, 1(1):1-18, Dec. 1992.
221

	Load Redundancy Elimination on Executable Code
	Introduction
	Dynamic Amount of Load Redundancy
	LRE on Executable Code
	Profile-Guided LRE
	Eliminating Close Redundancy
	Eliminating Distant Redundancy

	Performance Evaluation
	Summary and Future Directions

