
Topic 04

Compilers for High Performance

Jens Knoop, Manish Gupta, Keshav K. Pingali, and Michael F. P. O’Boyle

Topic Chairpersons

It is a pleasure for us to welcome you to this year’s Euro-Par conference in
Manchester, and its topic on “Compilers for High Performance.” As in previous
years, this meeting provides an excellent opportunity to socialize with fellow
researchers from all over the world, and to get hands on up-to-date research and
the many activities going on in the field of parallel processing.
Within Euro-Par, the High Performance Compilers topic is devoted to re-

search in all subjects concerning technology for compilation of programs for high
performance systems, including, but not limited to, optimizing the utilization of
system resources such as power consumption, code size, and memory require-
ments. Contributions were sought in all related areas, including the traditional
fields of compiler technology such as static program analysis and transformation
(including automatic parallelization), mapping programs to processors (includ-
ing scheduling, and allocation and mapping of tasks), and code generation, but
also dynamic and feedback directed optimization, compiling for embedded, hy-
brid and heterogeneous systems, and the interplay between compiler technology
and development and execution environments. The focus on the application of
these techniques to the automatic extraction and exploitation of parallelism dis-
tinguishes the topic from the other compiler oriented topics in Euro-Par (#03,
#07, #13, and #20).
This year fifteen papers, contributed by an international mix of authors from

three continents and eight countries, were submitted, one of which was moved
from Topic 03 on “Scheduling and Load Balancing” to Topic 04. Each of these
papers was reviewed by at least three referees, with an average of 3.66 reports
per paper. Using the referees’ reports as guidelines, the topic committee selected
after intensive e-mail discussions eight of the submitted papers for publication
and presentation at the conference. Of these, five papers were elected as reg-
ular papers, and three as research notes. These papers were presented in two
consecutive sessions on Friday morning.
The topics covered by this year’s submissions reflect the wide spectrum of

current research in the field of high performance compilers. This heterogeneity is
still visible in the papers accepted for presentation at the conference. However,
there are some superordinate themes predominating in this year’s submissions.
Above all, these are novel uses of elsewhere developed and approved means and
techniques for new applications and new application scenarios, and the integra-
tion of dynamic and static approaches to benefit from the best of both worlds.
Additionally, much emphasis is given to the comparing exploration of the effi-
cacy of competing approaches, and the extraction of their specific application
profiles. Considering the accepted papers in more detail makes this evident.

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 204–206, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Compilers for High Performance 205

The first session of the High Performance Compilers topic is devoted to pro-
gram analysis and transformation. It begins with a paper by Sebastian Unger and
Frank Mueller, in which they reconsider the handling of irreducible code in opti-
mization, a classical problem getting new relevance with the growing dissemina-
tion of modern VLIW-like architectures supporting instruction-level parallelism
such as Intel’s IA-64. The authors present a novel approach for transforming
irreducible loops into reducible ones, which is guided by a new heuristic for node
splitting based on computing the dominator tree of a program. They explore
the efficacy and adequacy of the new approach for subsequent optimizations in
comparison to both the traditional node-splitting approach, and an approach
using DJ-graphs for representing and optimizing irreducible code. Their findings
will be useful for anyone (re-) designing a compiler. The next two papers are
concerned with redundancy elimination. The first of these, by Manel Fernández,
Roger Espasa, and Saumya Debray, targets the elimination of (partially) re-
dundant loads in executable code by replacing expensive loads from memory
by inexpensive register transfers. Conceptually similar to classical partial redun-
dancy elimination, the specific constraints of the setting such as the fixed number
of hardware registers, require original solutions, for which the authors develop
three algorithms of different power and complexity. In the next paper, by Peter
Faber, Martin Griebl, and Christian Lengauer, the elimination of loop-carried
redundancies among computations involving arrays is targeted, a subject not
considered by classical redundancy elimination techniques. Focusing on a typi-
cal setting for scientific code, where loop bounds and array subscripts are often
expressible as affine functions, they show how to re-orchestrate and utilize tech-
niques for scheduling and automatic parallelization to restructure such loops
making them amenable to redundancy elimination involving array expressions.
The final paper of this session, by Apan Qasem, David Whalley, Xin Yuan, and
Robert van Engelen, describes an alternative approach to that of Fernández and
colleagues to reducing the number of load and store instructions in a program.
They explore the adequacy of using swap instructions, which are typically used
for process synchronization, to coalescing load and store operations. Their re-
sults are promising, showing that both the number of executed instructions and
of accesses to the memory system are reduced.
The second and final session of the High Performance Compilers topic is de-

voted to automatic parallelization and compiler support techniques. The first pa-
per, by Daniel Chavarŕıa-Miranda, John Mellor-Crummey, and Trushar Sarang,
targets the automatic parallelization of data-parallel programs using multiparti-
tioned data distributions. These are known to offer better parallel efficiency and
scalability for multi-directional line-sweep computations than block unipartition-
ings. In their paper, the authors present a comprehensive study of the compiler
techniques implemented in the dHPF compiler supporting the automatic gener-
ation of multipartitioned code. The reported performance results are impressive
showing that the generated code is most competitive to that of hand-coded
parallelizations using multipartitioning. The second paper, by Peter M. W. Kni-
jnenburg, Toru Kisuki, and Kyle Gallivan, deals with iterative compilation, a



206 Jens Knoop et al.

highly effective, but time-consuming approach searching for the best program
optimizations by profiling many variants and selecting the most efficient one.
The authors show that iterative compilation can effectively be guided by static
models. Considering loop unrolling and tiling for illustration, they demonstrate
that the usage of static cache models allows substantial reductions of the com-
putation costs essentially without any performance deductions of the final code.
The next paper, by Vincent Loechner, Benôıt Meister, and Philippe Clauss, tar-
gets the efficient usage of the memory hierarchy. The reduction of cache misses
is here an important source for getting performance improvements, addressed
for example by methods for enhancing temporal locality. The authors present an
architecture-independent generalization of these methods focusing on innermost
loops to non-perfect loop nests. Essentially, this works by minimizing the num-
ber of iterations between consecutive accesses of the data in memory. In effect,
this reduces cache misses as well as TLB (translation lookaside buffer) misses,
while still allowing the additional application of specific architecture-dependent
transformations such as blocking. The final paper of this session, by Vivek Sarkar
and Stephen Fink, targets dependence analysis for arrays in Java programs that
is efficiently enough for usage in just-in-time compilers in contemporary Java
Virtual Machines. Features such as the dynamic allocation of arrays in Java re-
quiring pointer-induced aliases of array objects make this a difficult task. The
authors address this by a new approach based on sparse congruence partitioning
representations built on the so-called array SSA form. Preliminary experimen-
tal results reported are encouraging, but underline also the importance of, e.g.,
enhanced interprocedural information for further improving the precision of the
analysis results.
In closing, we would like to express our gratitude to the many people, whose

contributions made this conference, and the High Performance Compilers track
possible. Above all, we thank the authors who submitted a paper, the Euro-Par
Organizing Committee, and the numerous referees, whose excellent work was an
invaluable help for the topic committee. We hope you will enjoy the presenta-
tions, as well as the papers in the proceedings, finding (many of) them useful
for your work and research.


	Topic 04 Compilers for High Performance

