
The Hardware Performance Monitor Toolkit

Luiz A. DeRose

Advanced Computing Technology Center, IBM T. J. Watson Research Center
Yorktown Heights, NY, USA

laderose@us.ibm.com

Abstract. In this paper we present the Hardware Performance Mon-
itor (HPM) Toolkit, a language independent performance analysis and
visualization system developed for performance measurements of appli-
cations running on the IBM Power 3 with AIX and on Intel clusters with
Linux. The HPM Toolkit supports analysis of applications written in
Fortran, C, and C++. It was designed to collect hardware events with
low overhead and minimum measurement error, and to display a rich
set of metrics, including hints to help users in optimizing applications,
without requiring modifications in the software infrastructure.

1 Introduction

Application developers have been facing new and more complex performance
tuning and optimization problems as parallel architectures become more com-
plex, with clustered SMPs, deep-memory hierarchies managed by distributed
cache coherence protocols, and more intricate distributed interconnects. The
sensitivity of parallel system performance to slight changes in application code,
together with the large number of potential application performance problems
(e.g., load balance, false sharing, and data locality) and continually evolving
system software, make application tuning complex and often counter-intuitive.
Thus, it is not surprising that users of parallel systems often complain that it is
difficult to achieve a high fraction of the theoretical peak performance.

Correlating parallel source code with dynamic performance data from both
software and hardware measurements, while still providing a portable, intuitive,
and easy to use interface, is a challenging task [6]. In order to understand the
execution behavior of application code in such complex environments, users need
performance tools that are able to access hardware performance counters and
map the resulting data to source code constructs. Moreover, these tools should
be able to help the user to identify the causes of the performance problems,
and not only display raw values for the hardware metrics. Without such tools,
the optimal use of high-performance parallel systems will remain limited to a
small group of application developers willing to master the intricate details of
processor architecture, system software, and compilation systems.

To provide a system for performance measurements and visualization of ap-
plications, we developed the Hardware Performance Monitor (HPM) Toolkit,
which is currently composed of three modules: an utility to start an application,

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 122–132, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



The Hardware Performance Monitor Toolkit 123

providing performance data at the end of execution, an instrumentation library
with multi-language support, and a graphical user interface for performance
visualization. The HPM Toolkit supports performance data capture, analysis,
and presentation for applications written in Fortran, C, and C++, executing
on sequential or parallel systems, running shared memory applications, message
passing, or both paradigms.

During the execution of the instrumented code, the HPM library captures
hardware performance data from each instrumented section of the program on
each thread of execution. At the end of the execution it combines the collected
information to compute derived metrics, such as cache hit ratio and MFLOPS
rates, generating one performance file for each task. To allow multi language
cross-architecture support, as well as, flexibility in metrics selection, the perfor-
mance file is represented with a self-defined format in XML.

The main contributions of the HPM Toolkit described in this paper are: First,
the exploitation of the hardware performance counters to compute and present
a rich set of derived metrics. These derived metrics allow users to correlate the
behavior of the application to one or more of the components of the hardware.
Second, an analysis of the measurement error and a technique to reduce this
error. Third, an approach to analyze the derived metrics and provide hints to
help users to identify the causes of performance problems, and finally, a flexible
interface, defined in XML, that is able to separate performance data presentation
from language and architecture peculiarities, allowing multi-language support
and architecture independence.

The remainder of this paper is organized as follows: §2 describes the compo-
nents of the HPMToolkit used to collect application performance data. §3 discuss
the hardware performance counters support. §4 describes the HPM Toolkit per-
formance visualization interface and the XML interface used to allow flexibility
in metric selection. Finally, §5 presents our conclusions.

2 The HPM Data Collection System

Unfortunately, most users do not have the time or desire to learn how to use
complex tools. Hence, one of the main design goals of the HPM Toolkit was to
create an easy to use environment for performance analysis. The first compo-
nent of the HPM Toolkit is the hpmcount utility. It allows users to start serial
or parallel applications, and at the end of execution, it provides a summary out-
put with wall clock time (WCT), hardware performance counters information,
derived hardware metrics, and resource utilization statistics.

The hpmcount utility provides a general view of the performance of an ap-
plication. However, in general, this is not enough for a more complete under-
standing of the application behavior. Thus, the HPM Toolkit also provides an
instrumentation library, so users can place instrumentation calls in selected pro-
gram regions to measured the performance of the program at a finer granularity.

The HPM library supports multiple instrumentation sections, nested instru-
mentation, and multiple calls to the same instrumented section. During program



124 Luiz A. DeRose

execution, the HPM library accumulates counts and durations for all instru-
mented sections of the program. When nested instrumentation is used, exclusive
duration is generated for the outer sections. Average and standard deviation are
provided when an instrumented section is activated multiple times. As we shall
see in Section 4, performance metrics are shown for each instrumented section,
allowing users to instrument an application, examine the correlation of perfor-
mance metrics and source code, and use the graphical interface to re-instrument
the application with the knowledge obtained.

Currently, the HPM instrumentation is inserted statically by the user. A new
HPM Toolkit component under development is an utility for dynamic instru-
mentation of programs. This utility uses the Dynamic Probe Class Library [2]
(DPCL), a layer built on top of the Dyninst API [1], to support dynamic instru-
mentation on multiple nodes.

One important aspect of the HPM Toolkit is the support for multi-threaded
applications. Due to the current trend in computer architecture, parallel systems
are being built as clusters of shared memory processor. Thus, support for the
shared-memory programming paradigm (e.g., pThreads or OpenMP) is a neces-
sary requirement for any new performance tool. In order to provide multi-thread
support, the HPM library has two pairs of functions to indicate the start and
end of each code region to be instrumented. One pair of functions is used for
instrumentation within a parallel region on a multi-threaded application, while
the other pair is used outside of parallel regions. The main difference between
these functions is that the former only counts the activity of the calling thread,
while the latter counts the activity of a process and all of its children.

3 Hardware Performance Counters

Although software instrumentation can capture the interaction of compiler-
synthesized code with runtime libraries and system software, understanding the
effects of deep-memory hierarchies, cache coherence protocols, and branch pre-
diction requires concurrent capture of both software and hardware performance
metrics. Fortunately, new microprocessors provide a set of registers for access to
hardware performance data.

Hardware performance counters are special purpose registers that keep track
of programmable hardware events. Since they are provided at hardware level,
their main strengths are low intrusion cost, accuracy, and low overhead. On
the other hand, they are still a limited resource, with current processors having
between 2 and 8 counters. Moreover, hardware counters tend to be specific to
each processor, are generally 32 bit, and are normally programmed at kernel
level, which make them prone to frequent overflows and difficult to program.

To address these problems, vendors normally provide a software API for
access to the hardware counters. On IBM systems, we use the system and kernel
thread performance monitor API (PMAPI), which takes care of most of the lower
level issues related to accessing hardware counters, such as handling of overflows,
context switches, and thread level support. However, since a particular vendor



The Hardware Performance Monitor Toolkit 125

API does not provide portability across processors from different vendors, the
HPM Toolkit was also implemented on top of PAPI [3], a system-independent
interface for hardware performance counters. Using the PAPI interface, the HPM
Toolkit was ported to Intel platforms under Linux, and can be easily extended
to any other system supported by PAPI. This paper, however, concentrates on
issues related to IBM Power 3 systems. In the reminder of this section we discuss
the derived metrics supported by the HPM Toolkit, and present an analysis of
overhead and measurement error.

3.1 Derived Hardware Metrics

Another weakness of hardware performance counters is that they provide only
raw counts, which does not necessarily help users to identify which events are
responsible for bottlenecks in the program performance. For example, the infor-
mation that an executed program had x million cache misses tend to be useless
for a user, unless he or she can correlate this number with other data, such as
number of loads and stores. To address this problem, the HPM Toolkit calculates
a rich set of derived metrics that combine hardware events and time informa-
tion to provide more meaningful information, such as cache miss rates, branches
miss-predicted percentage, MIPS, and MFLOPS rates. Fortunately, the IBM
Power 3 processor has 8 counters, which provides enough information for the
generation of several derived metrics on each program execution. On systems
that have less hardware counters available, multiplexing [5] could be used under
PAPI, increasing coverage, but reducing accuracy.

The HPM library allows users to specify via an input file the desired set of
hardware events to be used. To facilitate use, the HPM Toolkit also provides
sets of pre-defined events that can be selected via environment variables. In-
dependently of the mechanism used to select the hardware events, the library
identifies the events being used and generates all possible derived metrics for
the events selected. A list of the current set of derived metrics supported for
the IBM Power 3 is presented in Table 1. Each of these metrics allows users to
correlate the behavior of the application to one or more of the components of
the hardware.

3.2 Instrumentation Overhead and Measurement Errors

As mentioned above, some of the strengths of hardware performance counters
are low overhead and accuracy. Thus, it is important that performance tools
based on hardware performance counters preserve these features. Two issues are
considered here: instrumentation overhead and measurement error. Any software
instrumentation is expected to incur in some overhead [4]. Thus, since it is not
possible to eliminate the overhead, our goal was to minimize it. On the HPM
library, the observed overhead for each instrumented code section, generated by
the start and stop of data collection calls, is in the order of 2500 cycles (about
6.7 µsec on a 375 MHz processor). During this time, the library executes about
3000 instructions. The bulk of these operations are fixed point (about 2100),



126 Luiz A. DeRose

Table 1. Supported derived metrics on the IBM Power 3

Derived Metric Method

Total time in user mode Cycles/CPU frequence

Utilization rate Total time in user mode/WCT

IPC Instructions completed/Cycles

MIPS Instructions completed/(1000000 × WCT)

Instructions per IC Miss Instructions completed/Instructions cache misses

Total LS operations Loads + Stores

% of cycles LSU is idle 100 × LSU idle/Cycles

Instructions per LS Instructions completed/Total LS

Loads per load miss Loads/L1 Load misses

Stores per store miss Stores/L1 Store misses

Loads per L2 load miss Loads/L2 Load misses

Stores per L2 store miss Stores/L2 Store misses

Loads per TLB miss Loads/TLB misses

Load stores per D1 miss Total LS/(L1 Load misses + Store misses)

L1 cache hit rate 100 × (1 − ((L1 Load misses + Store misses)/Total LS)

L2 cache hit rate 100 × (1 − ((L2 Load misses + Store misses)/Total LS)

Snoop hit ratio 100 × Snoop hits/Snoop requests

HW FP instructions
per cycle (FPU0 + FPU1)/Cycles

Float point operations FPU0 + FPU1 + FMAs

Float point operations rate (FPU0 + FPU1 + FMAs)/(1000000 × WCT)

Computation intensity (FPU0 + FPU1 + FMAs)/Total LS

FMA % 100 × (FMAs executed × 2)/(FPU0 + FPU1 + FMAs)

Fixed point instructions FXU0 + FXU1 + FXU2

Branches
Misspredicted % 100 × Branches Misspredicted/Branches

loads (445), and stores (325). Most of the overhead is due to time measurement,
since for portability we use the function gettimeofday, that unfortunately tends
to be an expensive operation in most systems. Since we are accessing the hard-
ware counters, we could have avoided this overhead by deriving time using cycles
and the frequency rate of the processor. However, this approach would reduce
the number of available counters for user selection, which could be a problem,
specially when only a few hardware counters are available. Moreover, since the
PMAPI takes care of context switches and thread accumulation, this approach
would measure the total time in user mode, not wall clock time, which is a more
interesting metric for program optimization. Therefore, we decided not to use
this approach.

Several issues were considered in order to reduce measurement error. First,
most of the library operations are executed before starting the counters, when
returning the control to the program, or after stopping the counters, when the
program calls a “stop” function. However, even at the library level, there are
a few operations that must be executed within the counting process, as for ex-



The Hardware Performance Monitor Toolkit 127

Table 2. Counter measurements for timing and counting functions within HPM

Function Cycles Instr. Stores Loads FX Ops

Count 285 234 40 69 93

Time 2000 2200 48 53 2048

Table 3. Average metric values and standard deviation for the start and stop
functions

Cycles IC Miss LD Miss TLB Miss

Average 285 0.350 0.004 0.023

Standard deviation 15.27 1.216 0.077 0.150

ample, releasing a lock. Second, since timing collection and capture of hardware
counters information are two distinctive operations, we had to decide between
timing the counters or counting the timer. We used the hardware counters to
measure the overhead of both operations (i.e., start and stop the counters, and
calling the timing function twice, which would correspond to the timing calls
at the beginning and end of one instrumented section). As shown in Table 2,
timing is about one order of magnitude more expensive than counting. Thus,
the counters calls are wrapped by the timer calls, generating a small error in
the time measurement (in the order of 0.8 µsec on a 375 MHz processor), but
minimal error in the counting process.

However, in order to access and read the counters, the library still has to
call lower level routines from the PMAPI. Although one of the last instructions
executed by the library before returning the control to the program is a PMAPI
call to start the counters, and the first instruction executed by a “stop” function
is a call to stop the counters, there are always some instructions executed by
the kernel that are accounted as part of the program. Also, cache or TLB misses
occurred while executing library calls can generate measurement errors. So, in
order to compensate for these measurement errors, we use the hardware counters
to measure the cost of one call to the start and stop functions. This measurement
is performed twice, during initialization and finalization of the library, and we
consider the minimum of these calls as measurement error, and subtract these
values from the values obtained on each instrumented code section.

In order to estimate the final measurement error, we called the start and
stop functions 1000 times, counting all pre-defined set of events provided in the
library. We observed that the number of completed instructions, loads, and stores
were constant (the values shown on Table 2), while there was a small variation on
cycles and number of misses (TLB, instruction, and loads1), as shown in Table 3.
The standard deviations presented in Table 3 correspond to the measurement
error for each of the main hardware events measured by the library.
1 The number of store misses was always zero.



128 Luiz A. DeRose

4 Performance Visualization

One of the design goals of the HPM Toolkit was to create an easy to use cross-
architecture, language independent performance analysis interface. Hence, the
implementation of the performance visualization component (hpmviz) relies on
a single interface for performance visualization that provides a source code editor.
This editor allows users to refine the performance analysis by re-instrumenting
the application, while visualizing performance data from earlier executions. Ad-
ditionally, one can access and load performance data from multiple executions,
including different numbers of processors and different hardware count events.
This functionality allows users to compare executions, in order to better under-
standing hardware and software interactions. In this section we present the main
functionality of hpmviz, and a description of the XML interface used as input.

4.1 Hpmviz

Hpmviz takes as input the performance files generated by the HPM library. Users
can visualize a single performance file from a parallel execution or multiple files
from the same execution. In the latter case, hpmviz takes care of merging the
files. As Shown in Figure 1, which displays an instrumented version of a mixed
mode implementation of the swim code from the SPEC CPU benchmark, the
main window of hpmviz is divided in two panes. The left pane displays for each
instrumented section an identification, inclusive duration, exclusive duration,
and count2. The instrumented sections are sorted by exclusive duration, so users
can quickly identify the major time consuming portions of the application.

Left clicking on an instrumentation point in the left pane refocus the corre-
sponding section in the source code pane. Right clicking on any instrumentation
section in the left pane, brings a “metrics” window, shown in Figure 2, which
displays all metrics for the corresponding instrumented section.

4.2 Identifying Possible Performance Problems

In order to help users identify performance problems based on the values of the
derived metrics, the HPM Toolkit uses heuristics based on the characteristics of
the architecture, to define a range of values considered satisfactory for some of
the metrics (the metrics in bold in Table 1). When a metric value is below the
threshold predefined as minimum recommended value for the metric, it appears
in the metrics window highlighted with red. Similarly, when the metric value is
above the predefined threshold value, it appears highlighted with green.

These threshold values were defined and fine-tuned based on the understand-
ing of the architecture and feedback from application experts. A green value indi-
cates that the hardware components addressed by the metric are being well uti-
lized, while a red value indicates that the corresponding section of the code may
2 These values correspond to the maximum value of the metric, across the parallel

execution of the program.



The Hardware Performance Monitor Toolkit 129

Fig. 1. Hpmviz main window

Fig. 2. Metrics window

need optimization with regards to the utilization of the hardware components
covered by the metric. Consider for example the derived metric computation in-
tensity, which is the ratio of number of floating-point operations by the number
of array loads and stores. The Power 3 architecture has two floating-point units
(FPU) and two load-store units (LSU). Each FPU can execute a multiply, an
add, or a fused-multiply-add (FMA) per cycle. Therefore, computation intensity
of 2 would represent the best utilization of these hardware components (FPU
and LSU) when performing floating-point operations. Similarly, to achieve the
best possible utilization of the FPU, the program should have FMA percent-
age close to 100%. However, since the threshold values depend on the context
of the program, the red and green colors are only considered as hints to the
user, and not as hard indication of a performance problem. For instance, if the
measured section of the program, in the example above, was performing mostly
communications or fixed-point operations, The tool would probably indicate a



130 Luiz A. DeRose

poor FPU utilization, which is true, but would not be necessarily the reason for
a performance problem.

4.3 Performance Files

An important aspect of the HPM performance visualization system is its multi-
language support and architecture independence. The problem in providing such
functionality is that the performance visualization system should be built such
that it can work with minimum knowledge of the data that is going to be dis-
played. In order to be able to provide such functionality, it was necessary to
define a flexible interface that is able to separate performance data presentation
from language and architecture peculiarities. Only with this separation it is pos-
sible to display any kind of metrics, as well as, add new metrics and support
new languages and architectures, without requiring extensive modifications to
the graphical user interface. The HPM Toolkit performance file was designed
to provide the generality and extensibility necessary to represent a diverse set
of performance metrics. XML was chosen as the language for the data format
because it provides this flexibility. In addition, by using XML, we could use its
parsing framework, which allowed a quicker development, since very little new
code had to be built over the framework.

The performance file consists of one set of data for each instrumented record
in the code. Due to the support of threaded and MPI programs, an instru-
mented section of the program may generate several instrumentation records.
To be able to present the performance data grouped by instrumented sections
of the program, and not by records, we defined a unique identification for each
instrumented section based on the file name and the line numbers. This informa-
tion is transparently inserted into the library calls during a pre-processor phase
at compile time. Each of these performance records contains specifications that
include both mandatory and optional data fields, as shown in Figure 3, which
displays the XML definition for one instrumentation record.

The combination of metadata and data defined for the performance file is the
key to the HPM Toolkit extensibility. It allows hpmviz to render the necessary
information for presentation, such as the metrics being displayed, as well as,
presentation characteristics, like the range of pre-defined thresholds and display
defaults (e.g., if the metric should be displayed or not).

5 Conclusions

In this paper, we described the HPM Toolkit, a language independent perfor-
mance analysis and visualization system developed for performance measure-
ments of sequential and parallel applications running on the IBM Power 3 and
on Intel clusters with Linux.

The HPM Toolkit supports instrumentation and analysis of MPI and multi-
threaded applications written in Fortran, C, and C++. One of its main strengths



The Hardware Performance Monitor Toolkit 131

<InstrumentationPt lid="swim.f775" disp="true" tid="37" task="0"
label="Loop 300" file="swim.f" linestart="775" lineend="786" >

<data name="Count" value="1198" />
<data name="ExcSec" value=" 2.918" />
<data name="IncSec" value=" 2.918" />
<data name="PM CYC" value=" 169719339" disp="false" />
<data name="PM INST CMPL" value=" 135603862" disp="false" />
<data name="PM ST CMPL" value=" 8255773" disp="false" />
<data name="PM LD CMPL" value=" 56883532" disp="false" />
<data name="PM FPU0 CMPL" value=" 6463248" disp="false" />
<data name="PM FPU1 CMPL" value=" 5122784" disp="false" />
<data name="PM EXEC FMA" value=" 7697521" disp="false" />
<data name="User time" value=" 0.764" />
<data name="Use rate" value=" 0.262" />
<data name="Total LS" value=" 65.139" />
<data name="Instr/LS" value=" 2.082" sbad="-1.0" sgood="2.5" dbad="-1.0" dgood="2.5" />
<data name="MIPS" value=" 46.476" />
<data name="IpC" value=" 0.799" sbad="-1.0" sgood="2.0" dbad="-1.0" dgood="2.0" />
<data name="HW FP/Cyc" value=" 0.068" />
<data name="FPI+FMA" value=" 19.284" />
<data name="Mflip/s" value=" 6.609" />
<data name="FMA %" value=" 79.835" sbad="-40.0" sgood="70.0" dbad="-40.0" dgood="70.0" />
<data name="Comp Int." value=" 0.296" sbad="-0.7" sgood="1.4" dbad="-0.7" dgood="1.4" />

</InstrumentationPt>

Fig. 3. XML definition for one instrumentation record

is the collection of hardware events with low overhead and minimum measure-
ment error, for the presentation of a rich set of derived metrics, including hints
to help users in optimizing applications.

In order to provide multi-language support and architecture independence,
we defined a flexible and extensible format for the performance file, which allows
measurement of different metrics, without requiring major modifications in the
software infrastructure.

References

1. Buck, B. R., and Hollingsworth, J. K. An API for Runtime Code Patching.
Journal of High Performance Computing Applications 14, 4 (Winter 2000). 124

2. DeRose, L., Hoover Jr., T., and Hollingsworth, J. K. The Dynamic Probe
Class Library - An Infrastructure for Developing Instrumentation for Performance
Tools. In Proceedings of 2001 International Parallel and Distributed Processing
Symposium (April 2001). 124

3. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P. A Portable Pro-
gramming Interface for Performance Evaluation on Modern Processors. The In-
ternational Journal of High Performance Computing Applications, 14:3, Fall 2000.
125

4. Malony, A. D., Reed, D. A., and Wijshoff, H. A. G. Performance Mea-
surement Intrusion and Perturbation Analysis. IEEE Transactions on Parallel and
Distributed Systems 3, 4 (July 1992), pp. 433–450. 125

5. May, J. M. MPX: Software for multiplexing hardware performance counters in mul-
tithreaded programs. In Proceedings of 2001 International Parallel and Distributed
Processing Symposium (April 2001). 125



132 Luiz A. DeRose

6. Pancake, C. M., Simmons, M. L., and Yan, J. C. Performance Evaluation Tools
for Parallel and Distributed Systems. IEEE Computer 28, 11 (November 1995). 122


	The Hardware Performance Monitor Toolkit
	Introduction
	The HPM Data Collection System
	Hardware Performance Counters
	Derived Hardware Metrics
	Instrumentation Overhead and Measurement Errors

	Performance Visualization
	Hpmviz
	Identifying Possible Performance Problems
	Performance Files

	Conclusions


