
Checkpointing Facility on a Metasystem�

Yudith Cardinale and Emilio Hernández

Universidad Simón Boĺıvar,
Departamento de Computación y Tecnoloǵıa de la Información,

Apartado 89000, Caracas 1080-A, Venezuela
{yudith,emilio}@ldc.usb.ve
http://suma.ldc.usb.ve

Abstract. A metasystem allows seamless access to a collection of dis-
tributed computational resources. Checkpointing is an important service
in high throughput computing, especially for process migration and re-
covery after system crash. This article describes the experiences on incor-
porating checkpointing and recovery facilities in a Java-based metasys-
tem. Our case study is suma, a metasystem for execution of Java byte-
code, both sequential and parallel. This paper also shows preliminary
results on checkpointing and recovery overhead for single-node applica-
tions.

1 Introduction

The access to distributed high performance computing facilities for execution of
Java programs has generated considerable interest [3,1,12,7]. A metacomputing
system, or metasystem, allows uniform access to heterogeneous resources, in-
cluding high performance computers. This is achieved by presenting a collection
of different computer systems as a single computer.

This work addresses some aspects related to the implementation of a check-
pointing facility in a metasystem, with application to suma, a metasystem for
execution of Java bytecode, both sequential and parallel. We compared sev-
eral approaches for adding object persistence to the Java execution environment
and selected the approach proposed in [2], which uses an extended Java Virtual
Machine (JVM). We modified the architecture of suma for supporting remote
checkpointing and recovery facility based on this extended JVM. This approach
is semi-transparent at the user level, because the requirements for using this
facility can be easily hidden. We obtained preliminary results on the overhead
produced by the selected approach for single-node applications.

The rest of this document is organized as follows. Section 2 describes different
approaches to implement persistent Java environments, as a base for Java check-
pointing. Section 3 explains the implementation of the aforementioned services
in suma. Section 4 presents the preliminary results of our research and section 5
presents the conclusions.
� This work was partially supported by grants from Conicit (project S1-2000000623)
and from Universidad Simón Boĺıvar (direct support for research group GID-25)

R. Sakellariou et al. (Eds.): Euro-Par 2001, LNCS 2150, pp. 75–79, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

76 Yudith Cardinale and Emilio Hernández

2 Checkpointing Java on a Metasystem

Checkpointing involves capturing the state of a computation in terms of the
data necessary to restart it from that state. An advantage of using Java, as
far as checkpointing is concerned, is that checkpoints can be taken in a ma-
chine independent format. It is necessary to achieve Java object persistence for
implementing architecture-independent Java checkpointing.

Several strategies have been proposed for adding persistence to the Java
execution environment [4]. Some approaches are based on using language-level
mechanisms through libraries [5,10]. Other approaches extend the JVM in order
to make the computation state accessible from Java threads, which take the
checkpoints [9,2]. Other approaches consist in running the whole JVM over an
operating system that supports persistence or inserting a checkpointing layer
between the JVM and a traditional operating system, as in [6].

All of the formerly described checkpointing approaches have their advantages
and disadvantages. However, the implementation of a checkpointing facility in a
metasystem requires some particular considerations. The selection of an appro-
priate checkpointing approach for a metasystem should take into account:

– Portability, due to the heterogeneity of the systems that comprise a meta-
system. This consideration discards the approaches that save the machine
state at the operating system level or the JVM level. From a portability
viewpoint, the best options are those that keep the state of the computation
in terms of Java objects, which can be restarted in another JVM.

– Transparency, which may also be a desirable feature for stand-alone JVM’s.
However, the need for efficient use of resources in a metasystem may be a
reason for activating the checkpointing and recovery/migration services even
if the user does not explicitly invoke them.

– Low intrusiveness of the checkpointing process, in terms of performance,
especially if the metasystem design aims at high performance computing.
Taking a checkpoint is itself a process that may consume a significant amount
of time and should be optimized as much as possible. The checkpointing
approaches based on adding instructions to the source code or bytecode
have the risk of producing further performance reductions.

These aspects of metasystem design lead us to consider checkpointing approaches
based on extending the JVM.We evaluated several projects that extend the JVM
for implementing object persistence [11,8,9,2]. We are using the approach pro-
posed in [2] because it provides a fine-grained Java thread state capture/restora-
tion facility. This solution requires the checkpointable threads to be defined as
extensions of the class “CapturableThread”, contradicting the transparency re-
quirement. However, it is potentially transparent because automatic preprocess-
ing of the source code before compilation can easily be implemented.

Checkpointing Facility on a Metasystem 77

3 Checkpointing and Recovering Services in SUMA

suma is intended to provide services for checkpointing and profiling, as an added
value to on-line and off-line remote execution of Java applications. These services
are mainly implemented within the Execution Agents, which are the suma com-
ponents that actually execute the applications. On the client side, if a user wants
to use the checkpointing service, under the current version she should program
her applications based on threads that both extend the class CapturableThreads
and implement the Serializable interface. More specifically, the programmer has
only to include the statement “import java.lang.threadpack.*” and extend
all threads from CapturableThreads.

Figure 1 shows the steps during the development and execution of an user
application with checkpointing support on suma. On the client side there is no
need to install the extended JVM. A stub package is provided for the programmer
to compile the modified program. The code instrumentation on the client side can
be done automatically, by using a preprocessor of source or byte code (step 1).

compile with stub

Instrument code and

1

2

CLIENT

3

4

9
8

5

SUMAClassLoader

App. threads

7

SUMA CORE

10 Return

suma Execute

suma Submit
 or

node.Execute(app)

Return
Return

SUMACkpThreadMonitor
Take ckpts

EXECUTION NODE

Extended JVM

Execution Agent Slave

Load classes and data dynimically6

Execution
Agent

slave.Start(app)

Invoke SUMA service

with checkpointing option

Fig. 1. Application execution on suma

The user requests the checkpointing service explicitly when submitting the
application for execution in suma (step 2). This can be executed from a suma-
Client, which can invoke either sumaExecute or sumaSubmit services. These ser-
vices provide the checkpointing option.

After the suma client invokes the remote execution with the checkpointing
option, suma builds an object that contains all information needed for appli-
cation execution (step 3), finds a node with checkpointing support and sends
the object to the Execution Agent at the selected node (step 4). Once this Ex-
ecution Agent has received the object representing the application, it starts an
Execution Agent Slave in a extended JVM (step 5). Two threads are started
initially within this extended JVM: the SUMAClassLoader, whose function is
to load classes and data from the client during the execution (it communicates
with the client through CORBA callbacks), and the SUMACkpThreadMonitor,

78 Yudith Cardinale and Emilio Hernández

which will take the checkpoints. Then the main thread of the application is
loaded directly from the client and started. The checkpoints will be taken from
this moment on (step 7).

If the execution finishes successfully, the Execution Agent Slave informs the
Execution Agent of this and finishes (step 8). The Execution Agent passes this
information back to the suma core (step 9), which returns the results to the client
(step 10). If the execution is interrupted, an exception is caught in the suma core,
which launches the recovery process. The application will be restarted from the
last checkpoint, typically in a different execution node.

4 Experimental Results

We conducted experiments to evaluate the checkpointing intrusiveness and the
overhead of the recovery process. The platforms used in the experiments are
several 143 MHz SUN Ultra 1 workstations connected through Ethernet. We
executed a Java program (“Primes”) to calculate the first “n” prime numbers.
The prime numbers are saved in a vector, which means that the checkpoint
size increases as the program progresses. Table 1 shows the time spent by the
three last checkpoints and the recovery processes from these checkpoints. The
time spent by the recovery processes is measured, by the suma core, between
the point in which the failure exception is received and the point in which the
“resume” service returns. The failure is simulated by killing the process. In all
cases the application was restarted in a different node.

Table 1. Checkpointing and recovery overhead

Checkpoint No. Checkpoint time Recovery time Checkpoint size

2 55.1 sec. 45 sec. 95KB

3 2 min. 5 sec. 1 min. 1 sec. 162KB

4 3 min. 8 sec. 1 min. 56 sec. 393KB

In this example every checkpoint is taken approximately two minutes after
the previous one was saved. The overhead is currently very high, for instance,
the case in which 4 checkpoints are taken incurs an overhead of about 40%.
However, several improvements to this implementation can be done, such as the
use of native threads instead of green threads. On the other hand, the number
of checkpoints should be related to the probability of hardware failure.

5 Conclusions and Future Work

This work addressed some aspects related to the implementation of a check-
pointing facility in a metasystem, with application to the suma metasystem.

Checkpointing Facility on a Metasystem 79

This approach is almost transparent at the user level, because the requirements
for using this facility can be easily hidden. This requirements are (1) modify the
thread declarations, which can be done by a pre-processor just before compilation
and (2) link locally with a stub that provides extensions for persistent threads.
Future work will include the development of the aforementioned pre-processor.

The experiences shown in this article are limited to checkpointing of single-
node applications on suma. Ongoing research is focusing on reducing perfor-
mance overhead as well as incorporating a multiple-node (parallel) checkpointing
algorithm, implemented with mpiJava. We are currently working on an Execu-
tion Agent for parallel checkpointing.

References

1. A. Baratloo, M. Karaul, Z. M. Kedem, and P. Wyckoff. Charlotte: Metacomputing
on the web. Future Generation Computer Systems, 15(5–6):559–570, Octuber 1999.
75

2. S. Bouchenak. Making Java applications mobile or persistent. In Proceedings of 6th
USENIX Conference on Object-Oriented Technologies and Systems (COOTS’01),
January 2001. 75, 76

3. T. Brench, H. Sandhu, M. Shan, and J. Talbot. ParaWeb: Towards world-wide
supercomputing. In Proceedings of the 7th ACM SIGOPS European Worshop,
1996. 75

4. J. Eliot, B. Moss, and T. Hosking. Approaches to adding persistence to Java. In
Proceedings of the First International Workshop on Persistence and Java, Septem-
ber 1996. 76

5. S. Funfrocken. Transparent migration of Java-based mobile agents (capturing and
reestablishing the state of Java programs). Proceedings of Second International
Workshop Mobile Agents 98 (MA’98), September 1998. 76

6. Jon Howell. Straightforward Java persistence through checkpointing. In Advances
in Persistent Object Systems, pages 322–334, 1999. 76

7. Michael O. Neary, Bernd O. Christiansen, Peter Capello, and Klaus E. Schauser.
Javelin: Parallel computing on the internet. Future Generation Computer Systems,
15(5–6):659–674, Octuber 1999. 75

8. J. Plank and M. Puening. Checkpointing Java.
http://www.cs.utk.edu/˜plank/javackp.html. 76

9. T. Printezis, M. Atkinson, L. Daynes, S. Spence, and P. Bailey. The design of a
new persistent object store for pjama. In Proceedings of the Second International
Workshop on Persistence and Java, August, 1997. 76

10. T. Sakamoto, T. Sekiguchi, and A. Yonezawa. Bytecode transformation for
portable thread migration in Java. Proceedings of Second International Workshop
Mobile Agents 2000 (MA’2000), 1(3):123–137, September 2000. 76

11. T. Suezawa. Persistent execution state of a Java Virtual Machine. Proceedings of
the ACM 2000 Java Grande Conference, June 2000. 76

12. H. Takagi, S. Matsouka, H. Nakada, S. Sekiguchi, M. Satoh, and U. Nagashima.
Ninflet: a migratable parallel object framework using Java. In in Proc. of the ACM
1998 Worshop on Java for High-Performance Network Computing, 1998. 75

	Checkpointing Facility on a Metasystem
	Introduction
	Checkpointing Java on a Metasystem
	Checkpointing and Recovering Services in SUMA
	Experimental Results
	Conclusions and Future Work

