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Abstract. In this paper we investigate the relationship between the
nonlinearity and the order of resiliency of a Boolean function. We first
prove a sharper version of McEliece theorem for Reed-Muller codes as
applied to resilient functions, which also generalizes the well known Xiao-
Massey characterization. As a consequence, a nontrivial upper bound on
the nonlinearity of resilient functions is obtained. This result coupled
with Siegenthaler’s inequality leads to the notion of best possible trade-
off among the parameters: number of variables, order of resiliency, nonlin-
earity and algebraic degree. We further show that functions achieving the
best possible trade-off can be constructed by the Maiorana-McFarland
like technique. Also we provide constructions of some previously un-
known functions.
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1 Introduction

Stream cipher cryptosystems are extensively used for defence communications
worldwide and provide a reliable and efficient method of secure communication.
In the standard model of stream cipher the outputs of several independent Lin-
ear Feedback Shift Register (LFSR) sequences are combined using a nonlinear
Boolean function to produce the keystream. This keystream is bitwise XORed
with the message bitstream to produce the cipher. The decryption machinery is
identical to the encryption machinery.

Siegenthaler [23] pointed out that if the combining function is not chosen
properly then the whole system is susceptible to a divide-and-conquer attack.
He also defined the class of functions which can resist such attacks [22]. Moreover,
such functions must also provide resistance against other well known attacks [4].
Later work on stream ciphers with memoryless Boolean functions have proceeded
along two lines. In one direction, Siegenthaler’s attack has been successively
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refined and sharpened in a series of papers [14,11,10,15]. On the other hand,
in another direction, researchers have tried to design better and better Boolean
functions for use in stream cipher systems. Here we concentrate on this second
direction of research.

It is now generally accepted that for a Boolean function to be used in stream
cipher systems it must satisfy several properties - balancedness, high nonlinear-
ity, high algebraic degree and high order of correlation immunity (see Section 2
for definitions). Also a balanced correlation immune function is called a resilient
function. However, we would like to point out that though the necessity of these
properties is undisputed, it is by no means clear that these are also sufficient to
resist all kinds of attacks. In fact, for practical stream cipher systems, security is
judged by the ability of the system to guard against the currently known attacks.
In such a situation, it is important to understand the exact degree of protec-
tion that a particular system provides. The present effort should be viewed as a
contribution to the development of this understanding.

Each of the above mentioned parameters provide protection against a class
of attacks. Also it is known that there are certain trade-offs involved among the
above parameters. For example, Siegenthaler showed [22] that for an n-variable
function, of degree d and order of correlation immunity m, the following holds:
m+d ≤ n. Further, if the function is balanced then m+d ≤ n−1. However, the
exact nature of trade-off between order of correlation immunity and nonlinearity
has not been previously investigated. A series of papers [1,21,3,5,13,16,19] have
approached the construction problem in the following fashion. Fix the number
of variables and the order of correlation immunity (and possibly the algebraic
degree) and try to design balanced functions with as high nonlinearity as possi-
ble. Many interesting ideas have been used and successively better results have
been proved.

Thus, the natural question that arises is, what is the maximum nonlinear-
ity achievable with a fixed number of variables and a fixed order of correlation
immunity? More generally, the crucial question is when can we say that a bal-
anced Boolean function achieves the best possible trade-off among the following
parameters: number of variables, order of correlation immunity, nonlinearity and
algebraic degree? From a practical point of view, a designer of a stream cipher
system will typically try to achieve a balance between the size of the hardware
and the security of the system. The size of the hardware is directly proportional
to the number of input variables of the combining Boolean function. On the
other hand, the parameters nonlinearity, algebraic degree and order of resiliency
have to be chosen to be large enough so that the current attacks do not succeed
in reasonable time. Thus it is important to have good functions on small number
of variables. A natural choice for good functions are those which achieve the
best possible trade-off among the above mentioned parameters. Thus the ability
to identify, construct and implement such functions is very important from the
designer’s point of view.

In a more theoretical direction, one of the main results we prove is that
if f is an n-variable, m-resilient function, then Wf (ω) ≡ 0 mod 2m+2, for all
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ω ∈ {0, 1}n, where Wf () is the Walsh transform of f . This is a generalization
of the famous Xiao-Massey characterization of correlation immune functions.
More importantly, the result has a root in coding theory. From Siegenthaler’s
inequality it is known that any n-variable,m-resilient function has degree at most
n−m−1 and hence is in Reed-Muller codeR(n−m−1, n). The famous McEliece
theorem [12, Page 447] when applied to Reed-Muller code R(n − m − 1, n)
guarantees that Wf (ω) ≡ 0 mod 21+� n−1

n−m−1 �. The above mentioned result that
we prove is much sharper. From this result we obtain a nontrivial upper bound
on the nonlinearity of n-variable, m-resilient functions. In a series of papers
Hou [8,7,9], has investigated the covering radius problem for Reed-Muller codes.
The covering radius of first order Reed-Muller code is equal to the maximum
possible nonlinearity of n-variable functions. As observed before, an m-resilient
function is in R(n−m− 1, n), but it does not seem that the current results on
the covering radius of higher order Reed-Muller codes can be applied to obtain
an upper bound on the maximum possible nonlinearity of m-resilient functions.

We show that one of the existing construction methods (the Maiorana-
McFarland like construction technique) can provide all but finitely many func-
tions of certain infinite sequences of functions which provide best possible trade-
off among the parameters: number of variables, order of resiliency, nonlinearity
and algebraic degree. However, the Maiorana-McFarland like construction tech-
nique does not work in all cases. In such cases, we introduce a new sharper
construction method to obtain such functions. Functions with these parameters
were not known earlier. We also discuss important issues on functions with small
number of variables in Section 5.

Future work on resilient Boolean functions should proceed along the follow-
ing lines. It is not clear whether the upper bounds on nonlinearity of resilient
functions obtained in Theorem 2 are tight. It will be a major task to show
that in certain cases the upper bounds are not tight and to obtain sharper up-
per bounds. However, in significantly many cases these upper bounds can be
shown to be tight (for example see Table 1 in Section 3). Based on these upper
bounds, we introduce concepts of Type-I and Type-II resilient functions (see Sec-
tion 4). Type-II resilient functions with maximum possible algebraic degree are
well suited for use in stream ciphers. We have used existing and new techniques
to construct such functions. Also it seems that the construction of these func-
tions are difficult in some cases. Either obtaining new construction methods for
these functions or showing their non-existence should be the main theme of any
further work. On one hand these are combinatorially challenging problems and
on the other hand their answers have direct relevance to the task of designing
secure stream cipher systems.

2 Preliminaries

In this section we introduce a few basic concepts. Note that we denote the
addition operator over GF (2) by ⊕.
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Definition 1. For binary strings S1, S2 of same length λ, we denote
by #(S1 = S2) (respectively #(S1 	= S2)), the number of places where S1 and S2
are equal (respectively unequal). The Hamming distance between S1, S2 is denoted
by d(S1, S2), i.e. d(S1, S2) = #(S1 	= S2). The Walsh Distance wd(S1, S2),
between S1 and S2, is defined as, wd(S1, S2) = #(S1 = S2)−#(S1 	= S2). Note
that, wd(S1, S2) = λ−2 d(S1, S2). Also the Hamming weight or simply the weight
of a binary string S is the number of ones in S. This is denoted by wt(S). An
n-variable function f is said to be balanced if its output column in the truth table
contains equal number of 0’s and 1’s (i.e. wt(f) = 2n−1).

Definition 2. An n-variable Boolean function f(Xn, . . . , X1) can be consid-
ered to be a multivariate polynomial over GF (2). This polynomial can be ex-
pressed as a sum of products representation of all distinct k-th order products
(0 ≤ k ≤ n) of the variables. More precisely, f(Xn, . . . , X1) can be written as
a0 ⊕ (

⊕i=n
i=1 aiXi) ⊕ (

⊕
1≤i �=j≤n aijXiXj) ⊕ . . . ⊕ a12...nX1X2 . . . Xn where the

coefficients a0, aij , . . . , a12...n ∈ {0, 1}. This representation of f is called the al-
gebraic normal form (ANF) of f . The number of variables in the highest order
product term with nonzero coefficient is called the algebraic degree, or simply
degree of f .

In the stream cipher model, the combining function f must be so chosen that it
increases the linear complexity [17] of the resulting key stream. High algebraic
degree provides high linear complexity [18,4] and hence it is desirable for f
to have high algebraic degree. Another important cryptographic property for a
Boolean function is high nonlinearity. A function with low nonlinearity is prone
to Best Affine Approximation (BAA) [4, Chapter 3] attack.

Definition 3. Functions of degree at most one are called affine functions. An
affine function with constant term equal to zero is called a linear function. The
set of all n-variable affine (respectively linear) functions is denoted by A(n)
(respectively L(n)). The nonlinearity of an n variable function f is nl(f) =
ming∈A(n)(d(f, g)), i.e. the distance from the set of all n-variable affine func-
tions.

An important tool for the analysis of Boolean function is its Walsh transform,
which we define next.

Definition 4. Let X = (Xn, . . . , X1) and ω = (ωn, . . . , ω1) both belong to
{0, 1}n and X.ω = Xnωn ⊕ . . . ⊕ X1ω1. Let f(X) be a Boolean function on
n variables. Then the Walsh transform of f(X) is a real valued function over
{0, 1}n that can be defined as Wf (ω) =

∑
X∈{0,1}n(−1)f(X)⊕X.ω. The Walsh

transform is sometimes called the spectral distribution or simply the spectrum of
a Boolean function.

Xiao and Massey [6] provided a spectral characterization of correlation immune
functions. Here we state this characterization as the definition of correlation
immunity.
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Definition 5. A function f(Xn, . . . , X1) is m-th order correlation immune (CI)
iff its Walsh transform Wf satisfies Wf (ω) = 0, for 1 ≤ wt(ω) ≤ m. Further, if
f is balanced thenWf (0) = 0. Balanced m-th order correlation immune functions
are called m-resilient functions. Thus, a function f(Xn, . . . , X1) is m-resilient
iff its Walsh transform Wf satisfies Wf (ω) = 0, for 0 ≤ wt(ω) ≤ m.
The relationship between Walsh transform and Walsh distance is [13] Wf (ω) =
wd(f,

⊕i=n
i=1 ωiXi).

We will require the following basic result, which is known [12, Page 8], but we
give a proof for the sake of completeness. Let f × g denote the Boolean function
h whose ANF is the product (over GF (2)) of the ANFs (which are polynomials
over GF (2)) of f and g, i.e., h(Xn, . . . , X1) = f(Xn, . . . , X1)× g(Xn, . . . , X1).

Lemma 1. Let f(Xn, . . . , X1) and g(Xn, . . . , X1) be two n-variable functions.
Then d(f, g) = wt(f) + wt(g)− 2wt(f × g).
Proof. Let Fn

2 = {0, 1}n. The function f can be completely described by a subset
A of Fn

2 , such that (bn, . . . , b1) ∈ Fn
2 is in A iff f(bn, . . . , b1) = 1. This set A

is usually called the support of f . We can get a similar support B for g. The
support of f ⊕ g is A∆B (symmetric difference) and the support of f × g is
A ∩ B. The result follows from the fact that d(f, g) = wt(f ⊕ g) = | A∆B | =
| A |+ | B | − 2| A ∩B |. 
�

2.1 Some Useful Notations

Before proceeding, we would like to introduce a few notations for future conve-
nience. Recall from Definition 3 that nl(f) denotes the nonlinearity of a Boolean
function f . We use nlmax(n) to denote the maximum possible nonlinearity of
an n-variable function. The maximum possible nonlinearity of an n-variable, m-
resilient function is denoted by nlr(n,m) and the maximum possible nonlinearity
of an n-variable function which is CI of order m is denoted by nlc(n,m).

By an (n,m, d, x) function we mean an n-variable, m-resilient function with
degree d and nonlinearity x. By (n, 0, d, x) function we mean a balanced n-
variable function with degree d and nonlinearity x. In the above notation the
degree component is replaced by a ’−’, i.e., (n,m,−, x), if we do not want to
specify the degree.

Further, given an affine function l ∈ A(n), by ndg(l) we denote the number
of variables on which l is nondegenerate.

2.2 Maiorana-McFarland Like Construction Technique

There are several construction methods for resilient Boolean functions in the
literature. Perhaps the most important of all these is the Maiorana-McFarland
like construction technique which has been investigated in a number of previous
papers [1,21,3,2,19]. Here we briefly describe the basic method. Let π be a map
from {0, 1}r to {0, 1}k, where for any X ∈ {0, 1}r, wt(π(X)) ≥ m + 1. Let f :
{0, 1}r+k → {0, 1} be a Boolean function defined as f(X,Y ) = Y .π(X)⊕ g(X),
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where X ∈ {0, 1}r, Y ∈ {0, 1}k and Y .π(X) is the inner product of Y and π(X).
Then f is m-resilient. It is possible to interpret f as a concatenation of 2r affine
functions l0, . . . , l2r−1 from A(k), the set of k-variable affine functions, where
ndg(li) ≥ m + 1. Later we will use this method to construct certain sequences
of resilient functions.

3 Spectral Weights of CI and Resilient Functions

In this section we prove a crucial result on the divisibility properties of the
spectral weights of correlation immune and resilient functions. Such a result has
an analogue in the McEliece Theorem [12] for Reed-Muller codes: the weight of
any function in R(r, n) is divisible by 2� n−1

r �, where R(r, n) is the set of all n-
variable Boolean functions of degree at most r. If f is an n-variable, m-resilient
function, using Siegenthaler’s inequality we know that the degree of f is at most
n−m− 1. For any linear function l ∈ L(n), we have f ⊕ l is in R(n−m− 1, n)
and so wt(f ⊕ l) = d(f, l) is divisible by 2� n−1

n−m−1 �. However, this result is not
sharp enough to prove a nontrivial upper bound on the nonlinearity of resilient
functions. In Theorem 1 we prove that for any n-variable, m-resilient function
f and l ∈ L(n), d(f, l) is divisible by 2m+1. This is a much stronger result.
For example, if n = 7 and m = 3, McEliece Theorem guarantees that d(f, l) is
divisible by 22. On the other hand Theorem 1 establishes that d(f, l) is divisible
by 24.

Theorem 1 also sharpens the Xiao-Massey characterization [6] of correlation
immune functions. A Boolean function f is m-th order CI iff wd(f, l) = 0 for
all l ∈ L(n) with 1 ≤ ndg(l) ≤ m. However, this characterization does not
state anything about wd(f, l) with ndg(l) > m. We show in Theorem 3 that
2m+1 divides wd(f, l) for all l in L(n) with ndg(l) > m. For resilient functions
the Xiao-Massey characterization can only be extended to include the condition
that Walsh distance between f and the all zero function is 0. However, Theorem 1
shows that 2m+2 divides wd(f, l) for all l in L(n) with ndg(l) > m.

Using Theorem 1 and Theorem 3 we prove nontrivial upper bounds on the
nonlinearity of resilient and correlation immune functions. Previous works re-
lated to upper bound on nonlinearity of resilient functions were attempted
in [3,16]. In [3] an upper bound was obtained for a very small subset of re-
silient functions. It was shown in [19], that it is possible to construct resilient
functions, outside the subset of [3], with nonlinearity more than the upper bound
obtained in [3]. In [16], the maximum nonlinearity issue for 6-variable resilient
functions has been completely settled by exhaustive computer search technique.
Corollary 1 provides a simple proof of the same result.

Lemma 2. Let f be an n-variable function of even weight and l ∈ L(n). Then
d(f, l) (respectively wd(f, l)) is congruent to 0 mod 2 (respectively 0 mod 4).

Proof. From Lemma 1 we know that d(f, l) = wt(f) +wt(l)− 2wt(f × l). Since
all the terms on the right are even it follows that d(f, l) is also even. 
�
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The next result is a simple consequence of the fact thatR(m,n) is orthogonal
to R(n−m− 1, n) [12, Page 375].
Lemma 3. Let f be an n-variable (n ≥ 3), 1-resilient function and l ∈ L(n).
Then d(f, l) (respectively wd(f, l)) is congruent to 0 mod 4 (respectively 0 mod
8).

Proof. Since f is 1-resilient, by Siegenthaler’s inequality we know that degree of
f is at most n−2. If l is in L(n), then f×l is a function of degree at most n−1 and
hence wt(f× l) is even. Thus d(f, l) = wt(f)+wt(l)−2wt(f× l) ≡ wt(f) mod 4.
As f is balanced, wt(f) ≡ 0 mod 4, and consequently d(f, l) ≡ 0 mod 4. 
�

Corollary 1. The maximum nonlinearity for a six variable 1-resilient function
is 24.

Proof. Using Lemma 3, we know that for any l ∈ L(6) and any 1-resilient func-
tion f , d(f, l) ≡ 0 mod 4. Thus the possible values for d(f, l) are 32±4k, for some
k ≥ 0. If for every l, k ≤ 1, then f must be bent and hence cannot be resilient.
So there must be some l, such that d(f, l) = 32± 8. But then the nonlinearity is
at most 24. 
�

Next we present the major result on the spectral weights of resilient functions.

Theorem 1. Let f be an n-variable, m-resilient (with n ≥ 3 and m ≤ n −
3) function and l ∈ L(n). Then d(f, l) (respectively wd(f, l)) is congruent to
0 mod 2m+1 (respectively 0 mod 2m+2).

Proof. There are three inductions involved : on the number of variables n, on
the order of resiliency m and on the number of variables in the linear function
l, which we denote by k = ndg(l).
Base for induction on n: It is possible to verify the result for n = 3. Assume the
result is true for all functions on less than n variables (with n ≥ 4).
Inductive Step for induction on n: Let f be an n-variable function.

Now we use induction on m. The induction on m is carried out separately
for odd and even values.
Base for induction on m: If m = 0, then f is a balanced function and Lemma 2
provides the base case.
If m = 1, then Lemma 3 provides the base case.

Next we make the induction hypothesis that if f is (m − 2)-resilient (with
m− 2 ≥ 0), and l ∈ L(n), then d(f, l) ≡ 0 mod 2m−1.
Inductive Step for induction on m: Let f be m-resilient and let l be any function
in L(n). We now use induction on the number of variables k in l (i.e., l ∈ L(n)
is nondegenerate on exactly k variables).
Base for induction on k: k ≤ m, since f is m-resilient d(f, l) = 2n−1 ≡ 0 mod
2m+1.
Inductive Step for induction on k: Let k > m and using Lemma 2 and Lemma 3
we can assume k ≥ 2. Without loss of generality assumeXn andXn−1 are present
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in l. Write l = Xn⊕Xn−1⊕λ, where λ is nondegenerate on at most k−2 variables.
Also define λ1 = Xn ⊕ λ and λ2 = Xn−1 ⊕ λ. Using induction hypothesis on
k, we know d(f, λ) ≡ d(f, λ1) ≡ d(f, λ2) ≡ 0 mod 2m+1. Let g00, g01, g10, g11 be
(n− 2)-variable functions defined by gij(Xn−2, . . . , X1) = f(i, j,Xn−2, . . . , X1).
Since λ has at most n−2 variables, there is a function µ ∈ L(n−2) which has the
same set of variables as λ. Denote by aij the value d(gij , µ). Since λ, λ1, λ2 have
less than k variables, using the induction hypothesis on k we have the following
equations.
1. d(f, λ) = a00 + a01 + a10 + a11 = k12m+1,
2. d(f, λ1) = a00 + a01 − a10 − a11 = k22m+1,
3. d(f, λ2) = a00 − a01 + a10 − a11 = k32m+1, and
4. d(f, l) = a00 − a01 − a10 + a11.

From the first three equations, we can express a01, a10 and a11 in terms of
a00. This gives us
a01 = (k1+ k3)2m − a00, a10 = (k1+ k2)2m − a00 and a11 = −(k2+ k3)2m+ a00.

Now using equation 4, we get d(f, l) = 4a00 − (k1 + k2 + k3)2m+1. Since
f is m-resilient and g is obtained from f by setting two variables to constant
values, g is an (n−2)-variable, (m−2)-resilient function. First assume m is even,
then m− 2 is also even. Using the induction hypothesis on n and the induction
hypothesis on even m we have a00 = d(g, µ) ≡ 0 mod 2m−1. The argument is
similar for odd m. (This is the reason for choosing the base cases separately for
m = 0 and m = 1.) Hence d(f, l) ≡ 0 mod 2m+1. 
�

Using Theorem 1, it is possible to obtain an upper bound on the nonlinearity
of an n-variable, m-resilient function.

Theorem 2. 1. If n is even and m+1 > n
2 − 1, then nlr(n,m) ≤ 2n−1 − 2m+1.

2. If n is even and m+ 1 ≤ n
2 − 1, then nlr(n,m) ≤ 2n−1 − 2n

2 −1 − 2m+1.
3. If n is odd and 2m+1 > 2n−1 − nlmax(n), then nlr(n,m) ≤ 2n−1 − 2m+1.
4. If n is odd and 2m+1 ≤ 2n−1−nlmax(n), then nlr(n,m) is the highest multiple
of 2m+1 which is less than or equal to 2n−1 − nlmax(n).
Further in cases 1 and 3, the spectrum of any function achieving the stated bound
must be three valued, i.e. the values of the Walsh distances must be 0,±2m+2.

Proof. We prove only cases 1 and 2, the other cases being similar.
1. Using Theorem 1 for any n-variable, m-resilient function f and l ∈ L(n), we
have d(f, l) ≡ 0 mod 2m+1. Thus d(f, l) = 2n−1 ± k2m+1 for some k. Clearly k
cannot be 0 for all l and hence the nonlinearity of f is at most 2n−1 − 2m+1.
2. As in 1, we have d(f, l) = 2n−1 ± k2m+1 for some k. Let 2

n
2 −1 = p2m+1 (we

can write in this way as m < n
2 − 1). If for all l we have k ≤ p, then f must

necessarily be bent and hence cannot be resilient. Thus there must be some l
such that the corresponding k > p. This shows that the nonlinearity of f is at
most 2n−1 − 2n

2 −1 − 2m+1.
The proof of the last statement follows from the fact that if the Walsh dis-

tances are not three valued 0,±2m+2, then ±2m+i must be a Walsh distance
value for i ≥ 3. The nonlinearity for such a function is clearly less than the
stated bound. 
�
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In Table 1 we provide some examples of the upper bound provided in Theo-
rem 2. The boundary case of Theorem 2 is given in the following corollary (see
also [3,16]).

Corollary 2. For n ≥ 4, nlr(n, n− 3) = 2n−2.

Proof. From Theorem 2 it is clear that nlr(n, n − 3) ≤ 2n−1 − 2n−2 = 2n−2.
Moreover, it is easy to construct an (n, n− 3, 2, 2n−2) function by concatenating
two distinct linear functions from L(n− 1), each of which are nondegenerate on
n− 2 variables. 
�

We also need the following corollary which will be used to define the concept
of saturated function in Section 4.

Corollary 3. Let m > �n
2 �−2. Then, nlr(n,m) ≤ 2n−1−2m+1 ≤ 2n−1−2� n−1

2 �.
Further, the spectrum of any (n,m,−, 2n−1 −2m+1) function is necessarily three
valued.

Table 1. The entries represent the upper bound on nlr(n, m) given by Theorem 2,
where n is the number of variables and m is the order of resiliency. Entries with
∗ represent bounds which have not yet been constructed. Entries with # represent
bounds which have been constructed here for the first time.

n m 1 2 3 4 5 6 7 8
5 12 8 0
6 24 24 16 0
7 56 56∗ 48 32 0
8 116∗ 112 112# 96 64 0
9 244∗ 240 240∗ 224# 192 128 0
10 492∗ 480 480 480∗ 448 384 256 0

The set of n-variable m-th order correlation immune functions is a superset of
n-variable m-resilient functions. The following two results are for correlation
immune functions and are similar to Theorem 1 and 2.

Theorem 3. Let f be an n-variable, m-th order correlation immune (with n ≥ 3
and m ≤ n − 2) function and l ∈ L(n). Then d(f, l) (respectively wd(f, l)) is
congruent to 0 mod 2m (respectively 0 mod 2m+1).

Proof. We have to note that if a function f is 1st order correlation immune (CI)
then d(f, l) is even (wd(f, l) ≡ 0 mod 4) for any linear function l. Now given a
2nd order CI function, by Siegenthaler’s inequality we know that degree of f is
at most n−2. Thus, similar to the proof of Lemma 3, we get d(f, l) (respectively
wd(f, l)) is congruent to 0 mod 4 (respectively 0 mod 8). Using these as the base
cases, the proof is similar to the proof of Theorem 1. 
�
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Theorem 4. 1. If n is even and m > n
2 − 1, then nlc(n,m) ≤ 2n−1 − 2m.

2. If n is even and m ≤ n
2 − 1, then nlc(n,m) ≤ 2n−1 − 2n

2 −1 − 2m.
3. If n is odd and 2m > 2n−1 − nlmax(n), then nlc(n,m) ≤ 2n−1 − 2m.
4. If n is odd and 2m ≤ 2n−1 −nlmax(n), then nlc(n,m) is the highest multiple
of 2m which is less than or equal to 2n−1 − nlmax(n).
Further in cases 1 and 3, the spectrum of any function achieving the stated bound
must be three valued, i.e. the values of the Walsh distances must be 0,±2m+1.

The nonlinearity bounds proved in this section have the following important
consequences.
1. These bounds set up a benchmark by which one can measure the efficacy of
any new construction method for resilient functions. It will also be a major task
to show that in certain cases the upper bound of Theorem 2 is not tight.
2. Based on Theorem 2 and Siegenthaler’s inequality, we are able to satisfacto-
rily identify the class of Boolean functions achieving the best possible trade-off
among the parameters : number of variables, order of resiliency, nonlinearity and
algebraic degree.

4 Construction of Resilient Functions

Motivated by Theorem 2, we introduce two classes of resilient functions. An
(n,m, d, x) function is said to be of Type-I if x is the upper bound on nlr(n,m)
provided in Theorem 2. Note that, given an n-variable function, there may be
more than one possible values of order of resiliency m, such that the upper
bound on nlr(n,m) is same using Theorem 2. We call an n-variable, m-resilient
function having nonlinearity x to be of Type-II if the function is of Type-I and
further for any p > m the upper bound on nlr(n, p) in Theorem 2 is strictly less
than x. These notions of trade-offs can be further strengthened by requiring the
degree to be the maximum possible. For this we require Siegenthaler’s inequality
for resilient functions: m + d ≤ n − 1, for any n-variable, m-resilient, degree d
function. Thus (n,m, n − m − 1, x) Type-II functions achieve the best possible
trade-off among the parameters : number of variables, order of resiliency, degree
and nonlinearity.

Example 1. An (8, 2, 5, 112) function is of Type-I. Moreover, (8, 2,−, 112) func-
tions are not of Type-II since nlr(8, 3) ≤ 112. However, an (8, 3,−, 112) function
is of Type-II since nlr(8, 4) ≤ 96. Also an (8, 3, 4, 112) function maximizes the al-
gebraic degree and hence provides best possible trade-off among the parameters
we consider here. From Theorem 2, the spectrum of any (8, 3,−, 112) function
is necessarily three valued. However, this may not necessarily be true for any
Type-II function. For example, an (8, 1, 6, 116) function (if one exists) will be of
Type-II, but its spectrum will not be three valued.

The way we have defined Type I and Type II functions, it is not guaranteed
that such functions always exist. The tightness of the upper bounds in Theorem 2
is contingent on the existence of such functions. However, we will show for certain
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sequences of Type-II functions, it is possible to construct all but finitely many
functions of any such sequence.

We call a Type-II function to be saturated if its spectrum is three valued
according to Corollary 3. Thus an (n,m, n−m−1, x)-function is called a saturated
maximum degree function if it is of Type-II and its spectrum is three valued.
For such a function we must necessarily have m > �n

2 � − 2. Therefore, the
(8, 3, 4, 112) functions are of Type II and are also saturated maximum degree
functions. However, the (8, 1, 6, 116) Type-II functions (if they exist) can not
have a three valued Walsh spectrum. From Parseval’s theorem, if it has a three
valued Walsh spectrum, then 242 × z = 216, which is not possible for integral z.
Thus, (8, 1, 6, 116) functions are of Type-II and have maximum degree but are
not saturated.

Lemma 4. If an (n,m, n −m − 1, x) function f is a saturated function, then
so is an (n+ 1,m+ 1, n−m− 1, 2x) function g.
Proof. Since f is saturated, x = 2n−1 − 2m+1 and so 2x = 2n − 2m+2. From
Corollary 3, nlr(n+1,m+1) ≤ 2n − 2m+2 and hence the spectrum of g is three
valued. 
�

This naturally leads to a notion of a sequence of Boolean functions, each
of which is a saturated maximum degree function. More precisely, a saturated
function sequence (an SS for short), is an infinite sequence of Boolean functions
f0, f1, . . ., where f0 is an (n0,m0, n0 −m0 − 1, x0) function which is a Type II,
saturated maximum degree function and the upper bound on nlr(n0 −1,m0 −1)
in Theorem 2 is strictly less than x0

2 . Also for j ≥ 0, fj+1 is an (nj + 1,mj +
1, nj −mj − 1, 2xj) function (and hence is also saturated from Lemma 4). Note
that nj − mj − 1 = n0 − m0 − 1 and so the degree of all the functions in an
SS are same. Thus an SS is completely defined by specifying the parameters
of a function f0. Note that the functions which form an SS is not unique, i.e.,
there can be more than one distinct (n0,m0, n0 −m0 − 1, x0) functions and all
of them are possible representatives for f0. Thus a particular SS is characterized
by several parameters and any sequence of functions satisfying these parameters
is said to form the particular SS.

Example 2. The following seqences are SS’s.
1. f0, f1, . . ., where f0 is a (3, 0, 2, 2) function.
2. f0, f1, . . ., where f0 is a (5, 1, 3, 12) function.
3. f0, f1, . . ., where f0 is a (7, 2, 4, 56) function.
It is not known whether (7, 2, 4, 56) functions exists. However, we show how to
construct an (8, 3, 4, 112) function, which is f1 in this SS.

Definition 6. For i ≥ 0 we define SS(i) as follows. An SS(0) is a sequence
f0,0, f0,1, . . ., where f0,0 is a (3, 0, 2, 2) function and f0,j is a (3 + j, j, 2, 2j+1)
function for j > 0. For i > 0, an SS(i) is a sequence fi,0, fi,1, . . ., where fi,0 is
a (3 + 2i, i, 2 + i, 22+2i − 21+i) function which is a Type II, saturated maximum
degree function. Also for j > 0, fi,j is a (3+ 2i+ j, i+ j, 2+ i, 22+2i+j − 21+i+j)
function.
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Note that all functions in an SS(i) have the same degree 2 + i. Construction of
SS(0) and SS(1) are already known. Unfortunately, it is not known whether the
initial functions for an SS(i) exist for i > 1. In the next subsection we show how
to construct all but finitely many initial functions of any SS(i).

Now we will concentrate on the construction problem of saturated sequences.
In defining SS we stated that any function in an SS must be a saturated function.
However, the converse that given any saturated function, it must occur in some
SS(i) is not immediate. The following result proves this and justifies the fact
that we can restrict our attention to the construction problem for SS(i) only.

Lemma 5. Any saturated function must occur in some SS(i).

Proof. First note that any function of SS(i) has algebraic degree 2 + i. Any
saturated function f must be an (n,m, n−m− 1, 2n−1 − 2m+1) function having
degree d = n−m−1. Hence f must occur in SS(d−2), i.e., in SS(n−m−3). 
�

4.1 Construction of SS(i)

Here we show that the Maiorana-McFarland like construction procedure can be
used to construct all but finitely many functions of any SS(i). First we state the
following result which is easy to prove using Lemma 4.

Lemma 6. Let fi,j be a j-th function of SS(i). Then the function g = Y ⊕ fi,j

(where the variable Y does not occur in fi,j) is an fi,j+1 function of SS(i).
Consequently, if one can construct fi,j, then one can construct fi,k for all k > j.

This shows that if one can construct any one of the functions in SS(i), then
it is possible to construct any function in the succeeding part of the sequence.
Thus it is enough if we can construct the first function of each sequence. This
is possible for SS(0) and SS(1) since construction of (3, 0, 2, 2) and (5, 1, 3, 12)
functions are known. However, the construction problem for the first function of
SS(i) for i > 1 is an ongoing research problem. Here we show that the Maiorana-
McFarland like construction procedure can be used to construct all but finitely
many functions of any SS(i). More precisely, if SS(i) = fi,0, fi,1 . . ., then we show
how to construct fi,t for all t ≥ t0, where t0 is such that 21+i = 3 + i + t0. For
SS(2), this gives t0 = 3. Moreover, in Subsection 4.2, we show how to construct
f2,1 and f2,2. This leaves open the problem of constructing fi,t, with t < t0 and
i ≥ 3 as a challenging research problem.

Theorem 5. For any SS(i) = fi,0, fi,1, . . ., it is possible to construct fi,t for all
t greater than or equal to some t0.

Proof. The first function fi,0 is a (3+2i, i, 2+ i, 22+2i −21+i) function. We show
that for some j, fi,j is constructible by Maiorana-McFarland like construction
techniques. Let j be such that 21+i = 3 + i + j. A function fi,j is to be an
(n = 3+ 2i+ j, i+ j, 2 + i, 22+2i+j − 21+i+j). We show how to construct such a
function. Consider the set Λ of all k = 2 + i+ j-variable linear functions which
are nondegenerate on at least 1 + i + j variables. Clearly there are

(
2+i+j
2+i+j

)
+
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(
2+i+j
1+i+j

)
= 3 + i + j such linear functions. Consider an n-variable function f

(a string of length 2n) formed by concatenating 2n−k functions from Λ. Since
2n−k = 21+i = 3+ i+ j = | Λ |, we use each of the functions in Λ exactly once in
the formation of f . Since each function in Λ is nondegenerate on 1+i+j variables
each of these functions is (i+ j)-resilient. Let V = {X2+i+j , . . . , X1} be the set
of variables which are involved in the linear functions in Λ. Each of the variables
in V occur in 21+i − 1 of the linear functions in Λ. Thus each variable occurs an
odd number of times and hence the degree of f is n−k+1 = 2+i. Moreover, this
implies that each of the n input variables of the function occurs in the maximum
degree term. Since each linear function is used once, the nonlinearity of f is
2n−1−2k−1 = 22+2i+j −21+i+j . Thus f is a (3+2i+j, i+j, 2+i, 22+2i+j −21+i+j)
function and can be taken as fi,j . Take t0 = j. Then using Lemma 6 it is possible
to construct fi,t for all t > t0 = j. 
�

In the proof of the above theorem we use Lemma 6 to construct fi,t for all t >
j, given the function fi,j . Thus fi,t(Yt−j , . . . , Y1, X) = Yt−j ⊕ . . .⊕ Y1 ⊕ fi,j(X).
This results in the function fi,t depending linearly on the variables Yt−j , . . . , Y1.
This is not recommendable from cryptographic point of view. There are two
ways to avoid this situation.
(I) The above proof of Theorem 5 can be modified so that Lemma 6 is not
required at all. In fact, the linear concatenation technique used to construct fi,j

can directly be used to construct fi,t. In fi,j , a total of 21+i slots were filled up
using the 3 + i + j different linear functions (each exactly once) and this was
made possible by the fact that 21+i = 3 + i+ j. In constructing fi,t directly we
will still have to fill 21+i slots but the number of linear functions that can be
used will increase to 3 + i + t. Hence no linear function need to be used more
than once and as a result the nonlinearity obtained will achieve the upper bound
of Theorem 2. The ANF of the resulting fi,t will depend nonlinearly on all the
variables Yt−j , . . . , Y1.
(II) After obtaining fi,j , instead of using Lemma 6 we can use a more powerful
construction provided in [13]. The method of [13] shows that if f is anm-resilient
function, then g defined as g(Y,X) = (1 ⊕ Y )f(X) ⊕ Y (a ⊕ f(X ⊕ α)), is an
(m + 1)-resilient function, where α is an all one vector and a = m mod 2. This
also guarantees that g does not depend linearly on Y . Hence if we use this
technique repeatedly to construct fi,t from fi,j , then the ANF of the resulting
fi,t will depend nonlinearly on all the variables Yt−j , . . . , Y1.

4.2 A Sharper Construction

For SS(2) = f2,0, f2,1, f2,2, . . ., Theorem 5 can be used to construct f2,t for all
t ≥ 3. Here we show how to construct f2,1 (an (8, 3, 4, 112) function). However,
the construction of f2,0, the (7, 2, 4, 56) Type-II function, is not yet known.

For a Boolean function f , we define NZ(f) = {ω |Wf (ω) 	= 0}, where Wf is
the Walsh transform of f . The following result is the first step in the construction
of (8, 3, 4, 112) function.
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Lemma 7. Let f1, f2 be two (7, 3,−, 48) functions such that NZ(f1)∩NZ(f2) =
∅. Let f = (1⊕X8)f1 ⊕X8f2. Then, f is an (8, 3,−, 112) function.

First let us construct the function f2 using concatenation of linear functions.
We take four 5-variable linear functions with each of them nondegenerate on at
least 4 variables : l51 = X1 ⊕X2 ⊕X3 ⊕X4, l52 = X1 ⊕X2 ⊕X3 ⊕X5, l53 =
X1 ⊕X2 ⊕X4 ⊕X5 and l54 = X1 ⊕X3 ⊕X4 ⊕X5. We consider f2 = l51l52l53l54,
concatenation of the four linear functions. It is easy to see that since each l5i is
3-resilient, f2 is also 3-resilient. Note that each of the variables X2, X3, X4, X5
occurs in exactly three linear functions, so algebraic degree of f2 is 3. Moreover,
nonlinearity of f2 is 3× 16 = 48.

Now let us analyze the Walsh spectrum of f2. Note that for the linear func-
tions λ of the form a7X7 ⊕ a6X6 ⊕ l5i, a7, a6 ∈ {0, 1}, 1 ≤ i ≤ 4, wd(f2, λ) is
nonzero. There are 16 such functions in L(7). For the rest of the functions λ1 in
L(7), wd(f2, λ1) is zero. Also, note that according to the Theorem 2, this is a
three valued Walsh spectrum.

Next we need to use the following basic idea. When d(f2, l) is minimum,
then d(f1, l) must be 64, i.e., when wd(f2, l) is maximum, then wd(f1, l) must be
0. We now construct another (7, 3, 3, 48) function, having a three valued Walsh
spectrum such that wd(f1, λ) is zero for all λ of the form a7X7 ⊕ a6X6 ⊕ l5i,
a7, a6 ∈ {0, 1}, 1 ≤ i ≤ 4.

We start from a (5, 1, 3, 12) function g. The Walsh spectrum of the func-
tion need to be such that wd(g, l5i) = 0 for 1 ≤ i ≤ 4. We choose g to be
00000111011111001110010110100010 by running a computer program. Then we
construct f1 = X7 ⊕X6 ⊕g. Note that f1 is a (7, 3, 3, 48) function and the Walsh
spectrum of f1 is such that wd(f1, λ) is zero for all λ of the form a7X7⊕a6X6⊕l5i,
a7, a6 ∈ {0, 1}, 1 ≤ i ≤ 4. Thus, NZ(f1) ∩ NZ(f2) = ∅. Also there are degree
three terms in f1 (respectively f2) which are not in f2 (respectively f1). Hence,
f = (1 ⊕ X8)f1 ⊕ X8f2 is an (8, 3, 4, 112) function. The output column of the
function is a 256-bit string and is as follows in hexadecimal format.

077C E5A2 F883 1A5D F883 1A5D 077C E5A2
6996 6996 6969 9696 6699 9966 5AA5 A55A

Theorem 6. It is possible to construct (8, 3, 4, 112) and (9, 4, 4, 224) functions.

Proof. Above we discussed how to construct an (8, 3, 4, 112) function f . Further
a (9, 4, 4, 224) function can be constructed as either (1 ⊕ X9)f(X8, . . . , X1) ⊕
X9(1⊕ f(1⊕X8, . . . , 1⊕X1)) or X9 ⊕ f . 
�

5 On Construction of Small Functions

First we consider balanced functions. The maximum possible nonlinearities for
balanced functions on 7, 8, 9 and 10 variables are 56, 118, 244 and 494 respec-
tively. In [20], construction of nonlinear balanced functions on even number of
variables was considered. The values obtained for 8 and 10 variables are re-
spectively 116 and 492. In [19], the degree was considered and construction of
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(7, 0, 6, 56), (8, 0, 7, 116), (9, 0, 8, 240) and (10, 0, 9, 492) functions were presented.
The existence of (8, 0,−, 118) functions have been open for quite some time. We
next present a result which could be an important step in solving this problem.

Theorem 7. Let if possible f be a (8, 0,−, 118) function. Then degree of f must
be 7 and it is possible to write f = (1 ⊕X8)f1 ⊕X8f2, where f1 and f2 are 7-
variable functions each having nonlinearity 55 and degree 7.

Proof. First we prove that the degree of f must be 7. If the degree of f is less
than 7, then using a result of Hou [7, Lemma 2.1], we can perform an affine
transformation on the varibles of f to obtain an 8-variable function g, such
that g(X8, X7, . . . , X1) = (1 ⊕ X8)g1(X7, . . . , X1) ⊕ X8g2(X7, . . . , X1) and the
degrees of g1 and g2 are each less than or equal to 5. The affine transformation
preserves the weight and nonlinearity of f and so wt(f) = wt(g) = wt(g1) +
wt(g2) and nl(f) = nl(g). Since f is balanced, wt(g1) + wt(g2) = wt(g) =
wt(f) = 128 ≡ 0 mod 4. Also wt(g1) and wt(g2) are both even since their degrees
are less than or equal to 5. Hence wt(g1) ≡ wt(g2) ≡ 0 mod 4 or wt(g1) ≡
wt(g2) ≡ 2 mod 4. Since g1, g2 are 7-variable functions with degree ≤ 5, it follows
that (see [12]) for any linear function l ∈ L(7), d(g1, l) ≡ wt(g1) mod 4 and
d(g2, l) ≡ wt(g2) mod 4. Hence for any l ∈ L(7),
d(g1, l) ≡ d(g2, l) mod 4 and so d(g1, l) + d(g2, l) ≡ 0 mod 4 (**).
Since the nonlinearity of g is 118, there exists λ ∈ L(7) such that one of the
following must hold: (1) d(g, λλ) = 118, (2) d(g, λλ) = 138, (3) d(g, λλc) = 118,
(4) d(g, λλc) = 138. Here we consider only case (1), other ones being similar.
From (1) we have 118 = d(g, λλ) = d(g1, λ)+d(g2, λ) and so d(g1, λ)+d(g2, λ) =
118 ≡ 2 mod 4 which is a contradiction to equation (**).

Thus the degree of f is 7. Without loss of generality we considerX7 . . . X1 is a
degree 7 term in the ANF of f . We put f1(X7, . . . , X1) = f(X8 = 0, X7, . . . , X1)
and f2(X7, . . . , X1) = f(X8 = 1, X7, . . . , X1). Thus both f1, f2 are of degree 7
and hence of odd weight and so nl(f1), nl(f2) ≤ 55. It can be proved that if any
of nl(f1) or nl(f2) is ≤ 53, then nl(f) < 118. 
�

The major implication of Theorem 7 is that if it is not possible to construct
(8, 0, 7, 118) function by concatenating two 7-variable, degree 7, nonlinearity 55
functions, then the maximum nonlinearity of balanced 8-variable functions is
116.

Now we turn to resilient functions. We first present a construction of a pre-
viously unknown function.

Theorem 8. It is possible to construct (10, 3, 6, 480) functions.

Proof. We construct a function f by concatenating linear functions from L(5)
as follows. There are 10 functions µ0, . . . , µ9 in L(5) which are nondegenerate
on exactly 3 variables. Also there are 5 functions λ0, . . . , λ4 in L(5) which are
nondegenerate on exactly 4 variables. The function f is the concatenation of the
following sequence of functions,
λ0λ0λ0λ

c
0λ1λ1λ1λ

c
1λ2λ2λ3λ4µ0µ

c
0µ1µ

c
1µ2µ

c
2µ3µ

c
3µ4µ

c
4µ5µ

c
5µ6µ

c
6µ7µ

c
7µ8µ

c
8µ9µ

c
9.

The functions λi and µjµ
c
j are both 3-resilient and hence f is 3-resilient too.
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It can be checked that there are variables between X5, . . . , X1 which occur odd
number of times overall in the above sequence. Hence the degree of f is 6. Also
the nonlinearity of f can be shown to be 480. 
�

Note that the constructed function is not a saturated function and its Walsh
spectrum is five-valued (0,±32,±64).

In Table 2, we list some of the best known functions. Also Table 3 provides
some open problems.

Table 2. Some best known functions. The (8, 3, 4, 112) and (9, 4, 4, 224) functions are
from Theorem 6 and the (10, 3, 6, 480) function is from Theorem 8. All the other con-
structions were known previously [21,19].

n

7 (7,1,5,56), (7,3,3,48), (7,4,2,32)
8 (8,1,6,112), (8,2,5,112), (8,3,4,112), (8,4,3,96),

(8,5,2,64)
9 (9,1,7,240), (9,2,5,240), (9,3,5,224), (9,4,4,224),

(9,5,3,192), (9,6,2,128)
10 (10,1,8,484), (10,2,7,480), (10,3,6,480), (10,4,5,448),

(10,5,4,448), (10,6,3,384), (10,7,2,256)

Table 3. Existence of functions with these parameters is not known.

n

7 (7,2,−,56)
8 (8,1,−,116)
9 (9,1,−,244), (9,2,6,240)
10 (10,1,−,492), (10,1,−,488), (10,2,−,488), (10,4,−,480)

Notes : In a recent work [24], Tarannikov showed that the maximum possible
nonlinearity of an n-variable, m-resilient function is 2n−1 − 2m+1 for 2n−7

3 ≤
m ≤ n− 2 and functions achieving this nonlinearity must have maximum possi-
ble algebraic degree n−m− 1. Also a construction method for such n-variable
functions with the additional restriction that each variable occurs in a maximum
degree term is provided for m in the range 2n−7

3 ≤ m ≤ n− log2
n−2

3 − 2.
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