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Abstract. We introduce and construct timed commitment schemes, an
extension to the standard notion of commitments in which a potential
forced opening phase permits the receiver to recover (with effort) the
committed value without the help of the committer. An important ap-
plication of our timed-commitment scheme is contract signing: two mu-
tually suspicious parties wish to exchange signatures on a contract. We
show a two-party protocol that allows them to exchange RSA or Rabin
signatures. The protocol is strongly fair: if one party quits the protocol
early, then the two parties must invest comparable amounts of time to
retrieve the signatures. This statement holds even if one party has many
more machines than the other. Other applications, including honesty
preserving auctions and collective coin-flipping, are discussed.

1 Introduction

This paper introduces timed commitments. A timed commitment is a commit-
ment scheme in which there is an optional forced opening phase enabling the
receiver to recover (with effort) the committed value without the help of the
committer. A regular commitment scheme consists of two phases: (i) The com-
mit phase at the end of which the sender is bound to some value b, and (ii) The
reveal phase, where the sender reveals b to the receiver. Following the commit
phase the sender should be bound to b, but the receiver should be unable to
learn anything about b. A timed commitment has an additional forced opening
phase, where the receiver computes a moderately hard function and recovers the
value b without the participation of the sender. As a result, the value b remains
hidden from the receiver for only a limited amount of time.

Timed commitments satisfy the following properties: (1) verifiable recovery: if
the commit phase ends successfully, the receiver is convinced that forced opening
will yield b. (2) recovery with proof: the receiver not only recovers b but also a
proof of its value, so that anyone who has the commitment (or the transcript of
the commit phase) can verify that b is the value committed without going through
a recovery process. (3) commitment immune against parallel attacks: even if a
receiver has many more processors than assumed, it cannot recover b much faster
than a single-processor receiver.

An important application of our timed-commitment scheme is contract sign-
ing: two mutually suspicious parties wish to exchange signatures on a contract.
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We show a two-party protocol that allows them to exchange RSA, Rabin or
Fiat-Shamir signatures (or any scheme where the signature is a power of a pre-
determined value mod a composite). Therefore, no special “infrastructure” is
needed. One can use existing PKI and there is no need to modify the “seman-
tics” of a signature.

Our contract signing protocol is based on gradual release of information (how-
ever, we do not release the signature “bit-by-bit”). Our protocol enjoys strong
fairness: whatever one party may do (e.g. sending false information, stopping
prematurely, etc.), the time it takes the other party to recover the signature is
within a small constant of the time that it takes the misbehaving party to do so.
Furthermore, our protocol is the first to resist parallel attacks. Even if one party
has many more machines than the other, both parties need comparable amounts
of time to recover the signature when one party aborts before the other.

Another important application of our scheme is honesty-preserving auctions.
The auction participants who submit bids in sealed envelopes can have the seal-
ing done using timed-commitments. This allows the auctioneer to convince all
the participants that all the bids were considered, even if some of the parties
wish to withdraw their bids.

Our timed-commitments can be used to obtain zero-knowledge in various
settings, including the concurrent and the resettable settings. The most inter-
esting application that requires all the properties of our commitment (provable
recoverability and immunity to parallelization) is a three-round zero-knowledge
protocol for NP in the timing model of [23].

We also confirm the folklore belief that two-party contract signing protocols
require many rounds. We prove that if a protocol is to have bounded unfairness
for the two parties (the ratio between the time it takes to recover a signature
after early stopping) then it must take a number of rounds that is proportional
to the security of the forging.

Related Work. The problem of contract signing was the impetus of much of
the early research on cryptographic protocols. Roughly speaking contract signing
protocols can be partitioned into:

– Protocols that employ a trusted third-party as a referee or judge. The third
party intervenes only if things go wrong. Examples include [2,3,7,26,32,33]

– Protocols that are pure two-party (do not require a third party referee). Such
protocols are based on the gradual release of signatures/secrets. Examples
are [8,24,15,18,29].

Our method falls into the second category. The best scheme in this category is
due to Damgard [18]. However, this scheme releases the actual signature bit-by-
bit and hence is not immune to parallel exhaustive search attacks. If one party
has access to more machines then the other then the protocol becomes unfair.
This deficiency is common to all previously proposed schemes in this category.

Several recent papers focus on the trusted third party model with the goal of
making it more fair, abuse free and accountable [26]. These goals are achieved
by the strong fairness of our protocol.
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Timed Primitives. Timed primitives previously came up in several contexts:
Dwork and Naor [20] suggested moderately hard functions for “pricing via pro-
cessing” in order to deter abuse of resources, such as spamming. Bellare and
Goldwasser [4,5] suggested “time capsules” for key escrowing in order to deter
widespread wiretapping. A major issue there is to verify at escrow-time that the
right key is escrowed. Similar issues arise in our work, where the receiver should
make sure that at the end of the commit phase the value is recoverable.

Rivest, Shamir and Wagner [35] suggested “time-locks” for encrypting data
so that it is released only in the future. This is the only scheme we are aware of
that took into account the parallel power of the attacker. We employ a function
similar to the one they suggested. However in their setting no measures are taken
to verify that the puzzle can be unlocked in the desired time.

2 Timed Commitments and Timed Signatures

We begin by defining our notions of timed commitments and timed signatures.
We give efficient constructions for these primitives in the next section.

A (T, t, ε) timed commitment scheme for a string S ∈ {0, 1}n enables Alice
to give Bob a commitment to the string S. At a later time Alice can prove to
Bob that the committed string is S. However, if Alice refuses to reveal S, Bob
can spend time T to forcibly retrieve S. Alice is assured that within time t on
a parallel machine with polynomially many processors, where t < T , Bob will
succeed in obtaining S with probability at most ε. Formally, a (T, t, ε) timed
commitment scheme consists of three phases:

Commit phase: To commit to a string S ∈ {0, 1}n Alice and Bob execute a
protocol whose outcome is a commitment string C which is given to Bob.

Open phase: At a later time Alice may reveal the string S to Bob. They exe-
cute a protocol so that at the end of the protocol Bob has a proof that S is
the committed value.

Forced open phase: Suppose Alice refuses to execute the open phase and does
not reveal S. Then there exists an algorithm, called forced-open, that takes
the commitment string C as input and outputs S and a proof that S is the
committed value. The algorithm’s running time is at most T .

The commitment scheme must satisfy a number of security constraints:
Binding: during the open phase Alice cannot convince Bob that C is a commit-
ment to S′ �= S.
Soundness: At the end of the commit phase Bob is convinced that, given C,
the forced open algorithm will produce the committed string S in time T .
Privacy: every pram algorithm A whose running time is at most t for t < T on
polynomially many processors, will succeed in distinguishing S from a random
string, given the transcript of the commit protocol as input, with advantage at
most ε. In other words,∣∣∣∣ Pr[A(transcript, S) = “yes”] − Pr[A(transcript, R) = “yes”]

∣∣∣∣ < ε
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where the probability is over the random choice of S and R and the random bits
used to create C from S during the commit phase.

Note that the privacy constraint measures the adversary’s run time using
a parallel computing model (a pram). Consequently, the privacy requirement
ensures that even an adversary equipped with a highly parallel machine must
spend at least time t to forcibly open the commitment (with high probability).
In other words, even an adversary with thousands of machines at his disposal
cannot extract S from C in less than time t.

We define timed signatures analogously to timed commitments. A (T, t, ε)
timed signature scheme enables Alice to give Bob a signature S on a message M
in two steps. In the first step Alice commits to the signature S and Bob accepts
the commitment. At a later time Alice can completely reveal the signature S to
Bob. However, if Alice does not reveal the signature, Bob can spend time T to
forcibly retrieve the signature from the commitment. As before, Alice is assured
that after time t, where t < T , Bob will not be able to retrieve the signature
with probability more than ε.

As before, a timed signature consists of three phases commit, open, and forced-
open. The commit phase is identical to the commit phase of timed commitments.
It results in Bob accepting a commitment string C. At a later time Alice may
execute the open phase. At the end of the open phase Bob obtains a standard
(message,signature) pair satisfying all the requirements of a digital signature. If
the open phase is never executed Bob can run an algorithm whose run time is at
most T to forcibly extract the signature S from the commitment C. In addition
to soundness, a (T, t, ε) timed signature scheme must satisfy the following privacy
requirement: all pram algorithms whose running time is at most t will succeed
in extracting S from the commitment C with probability at most ε.

3 A Timed Commitment and Timed Signature Scheme

As one can imagine, there are two main difficulties in building a timed commit-
ment scheme. First, during the commit phase, the committer (Alice) must con-
vince the verifier (Bob) that the forced open algorithm will successfully retrieve
the committed value. This must be done without actually running the forced
open algorithm. Second, we must ensure that even an adversary with thousands
of machines cannot forcibly open the commitment much faster than a legitimate
party with only one machine. To solve the later issue we base our scheme on a
problem that appears to be inherently sequential: modular exponentiation. We
use the fact that the best known algorithm for computing g(2

m) mod N takes
m sequential squarings. The surprising fact is that there is an efficient zero-
knowledge protocol, with a running time of O(logm), enabling the committer
(Alice) to prove to the verifier (Bob) that the result of these m squarings will
produce the committed message M . This proof is done during the commit phase
and is at the heart of our timed commitment scheme.
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Let T = 2k be an integer. We build a timed commitment scheme where it
takes T = 2k modular multiplications to forcibly retrieve the committed string.
The commit phase takes O(k) modular exponentiations. We envision k as typ-
ically being in the range [30, . . . , 50]. This way the forced open algorithm can
take a few hours, or a few days depending on the requirements.
Setup: Let n be a positive integer representing a certain security parameter.
The committer generates two random n-bit primes p1 and p2 such that p1 =
p2 = 3 mod 4. He computes N = p1p2. The committer publishes 〈N〉 as a public
key (alternatively he could send N along with every commitment). He keeps the
factors 〈p1, p2〉 secret. The same modulus is used for all commitments.
Commit phase: The committer wishes to commit to a message M of length �.
The committer (Alice) and the verifier (Bob) perform the following steps:
Step 1: The committer picks a random h ∈ ZN . Next, the committer computes
g = h(

∏r
i=1 qn

i ) mod N where q1, q2, . . . , qr is the set of all primes less than some
bound B. For example, one could take B = 128. When the verifier receives h
and g he verifies that g is constructed properly from h. At this point the verifier
is assured that the order of g in Z

∗
N is not divisible by any primes less than B.

Step 2: The committer computes the value u = g2
2k

mod N . She computes u by
first computing a = 22

k

mod ϕ(N) and then computing u = ga mod N .
Step 3: Next, the committer hides the message M using a pseudo random se-
quence generated by the BBS generator [9] whose tail is u. In other words,
the committer hides the bits of M by Xoring them with the LSB’s of suc-
cessive square roots of u modulo N . More precisely, for i = 1, . . . , � we set
Si = Mi ⊕ lsb(g2

(2k−i)
mod N). Let S = S1 . . . S� ∈ {0, 1}�. The commitment

string is defined as C = 〈h, g, u, S〉. The committer sends C to the verifier.
Step 4: The committer must still convince the verifier that u is constructed
properly, i.e. u = g2

2k

mod N . To do so the committer constructs the following
vector W of length k:

W =
〈
g2, g4, g16, g256, . . . , g2

2i

, . . . , g2
2k

〉
(mod N)

She sends W to the verifier. Let W = 〈b0, . . . , bk〉. For each i = 1, . . . , k the
committer proves in zero-knowledge to the verifier that the triple (g, bi−1, bi) is
a triple of the form (g, gx, gx2

) for some x. This convinces the verifier that W is
constructed properly. By verifying that the last element in W is equal to u the
verifier is assured that indeed u = g2

2k

mod N .
Each of these k proofs take four rounds and they can all be done in parallel.

These proofs are based on a classic zero-knowledge proof that a tuple 〈g,A,B,C〉
is a Diffie-Hellman tuple [13]. Let q be the order of g in Z

∗
N , and let R be a secu-

rity parameter. The complete protocol for proving integrity of W is as follows:
(unless otherwise specified, all arithmetic is done modulo N)

Step 1: The verifier picks random c1, . . . , ck ∈ {0, . . . , R} and uses a regu-
lar commitment scheme to commit these values to the committer. For security
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against an infinitely powerful committer the verifier could use a commitment
scheme that is information theoretically secure towards the committer.
Step 2: The committer picks random α1, . . . , αk ∈ Zq and computes zi = gαi

and wi = bαi
i−1 for i = 1, . . . , k. She sends all pairs 〈zi, wi〉k

i=1 to the verifier.
Step 3: The verifier opens the commitment in step 1 and reveals c1, . . . , ck to
the committer.
Step 4: The committer responds with yi = ci · 22

i−1
+ αi mod q for all

i = 1, . . . , k.
Step 5: The verifier checks that for all i = 1, . . . , k:

gyi · b−ci
i−1 = zi and byi

i−1 · b−ci
i = wi

and rejects if any of these equalities does not hold.
The next two lemmas state the soundness and zero-knowledge properties of

the above protocol.

Lemma 1. Let q be the order of g in Z
∗
N and let d be the smallest prime divisor

of q. If W is constructed incorrectly then the committer will succeed in fooling
the verifier with probability at most1 k · [ 1

min(d,R) + o( 1
R )].

Lemma 2. The above protocol is zero-knowledge. That is, there exists a simu-
lator that produces a perfect simulation of the transcript for any verifier.

The proofs of the two lemmas follow standard techniques and can be found in
[13]. Recall that in Step 1 of the commitment protocol the verifier is convinced
that the smallest prime divisor of q (the order of g in Z

∗
N ) is larger than B.

Hence, with each invocation of the protocol, the committer has a chance of at
most 1/B in fooling the verifier. In this context, security of 2−70 is sufficient.
Hence, taking B = 128, this level of security is obtained if the committer and
verifier execute this protocol 10 times. These executions can be done in parallel.

Note that in Step 5, the verifier computes 4k exponentiations. However, using
simultaneous multiple exponentiation [30, p. 618] the two exponentiations on
the left hand side of each equality can be done for approximately the cost of
one exponentiation. Hence, in reality, the verifier does work equivalent to 2k
exponentiations. Recall that k is typically in the range [30, 50]. Thus, counting
10 repetitions of the proof, the commit protocol requires at most a total of 1000
exponentiations on the verifier.
Open phase: Recall that the commitment string is C = 〈h, g, u, S〉. We know
that g = h(

∏r
i=1 qn

i ) mod N where q1, q2, . . . , qr is the set of all primes less than
some bound B. In the open phase the committer (Alice) and verifier (Bob) exe-
cute the following protocol:
Step 1: Alice sends v′ = h2

(2k−�)
mod N to the verifier (Bob). Bob computes

1 The exact error bound is k ·
[

1
d

+ β(d−β)
d·R2

]
where β = R mod d, 0 ≤ β ≤ d. This

expression is the maximum probability that a malicious prover succeeds in guessing
ci mod d where ci is random in {0, . . . , R}.
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v = (v′)
∏r

i=1 qn
i mod N . This ensures that v has odd order. Bob then verifies

that v2
�

= u mod N . At this point Bob has a 2�’th root of u. Being a 2�’th root
of u and having odd order ensures that v is in the subgroup generated by g.
Step 2: Bob constructs the �-bit BBS pseudo-random sequence R ∈ {0, 1}� start-
ing at v. That is, for i = 1, . . . , � Bob sets Ri to be the least significant bit of
v2

(�−i)
. The message M is then M = R ⊕ S.

With an honest committer the open protocol clearly produces the committed
message M . We show that the commitment is binding by showing that M is the
only possible outcome of the open protocol.

Lemma 3. The commitment is binding. In other words, given a commitment
〈h, g, u, S〉 the committer can open the commitment in one way only.

Proof. Due to the test in Step 1 Bob obtains from Alice v′ which leads to v ∈ ZN

satisfying v2
�

= u mod N . Furthermore, v has odd order in Z
∗
N . Recall that dur-

ing the commit phase the verifier is assured that g has odd order in Z
∗
N and

that u is in the subgroup generate by g. Since the subgroup has odd order, u has
a unique 2�’th root in the subgroup. Denote this unique 2�’th root by v0. Then
v0 = g2

(2k−�)
mod N . Now, observe that in Z

∗
N there can be at most one 2�’th

root of u of odd order. Since both v and v0 are such roots we must have v = v0.
Consequently, there is a unique v′ ∈ Z

∗
N that will pass the test in Step 1. Hence,

Alice is bound to a unique message M . �

Forced open phase: In case the committer never executes the open phase,
the verifier can retrieve the committed value M himself by computing v as
v = g2

(2k−�)
mod N using (2k − �) squarings mod N .

We now prove that the above scheme satisfies the security properties of a
timed commitment scheme. The only property that remains to be proved is
privacy: no pram algorithm can obtain information about the committed string
in time significantly less than the time it takes to compute 2k squarings. The
proof of security relies on the following complexity assumption:
(n, n′, δ, ε) generalized BBS assumption:

For g ∈ Z and a positive integer k > n′ let Wg,k = 〈g2, g4, . . . , g22i

, . . . , g2
2k 〉.

Then for any integer n′ < k < n and any pram algorithm A whose running time
is less than δ · 2k we have that∣∣∣∣ Pr

[A(N, g, k, Wg,k mod N, g2
2k+1

) = “yes”
] −

Pr
[A(N, g, k, Wg,k mod N, R2) = “yes”

]∣∣∣∣ < ε

where the probability is taken over the random choice of an n-bit RSA modulus
N = p1p2 where p1, p2 are equal size primes satisfying p1 = p2 = 3 mod 4, an
element g ∈ ZN , and R ∈ ZN .

The assumption states that given Wg,k, the element g2
2k+1

mod N is indis-
tinguishable from a random quadratic residue for any pram algorithm whose
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running time is much less than 2k. The parallel complexity of exponentiation
modulo a composite has previously been studied by Adleman and Kompella [1]
and Sorenson [38]. These results either require a super polynomials number of
processors (larger than the time to factor), or give small speed ups that do not
affect the generalized BBS assumption. We note that the sequential nature of
exponentiation modulo a composite was previously used for time-lock cryptog-
raphy [35] and benchmarking [10].

The generalized BBS assumption is sufficient for proving privacy of the
scheme. This is stated in the next lemma whose proof is omitted due to lack
of space.

Theorem 1. Suppose the (n, n′, δ, ε) generalized BBS assumption holds for cer-
tain δ, ε > 0. Then, for k > n′, the above scheme is a (T, t, ε) timed commitment
scheme with t = δ · 2k and T = M(n) · 2k where M(n) is the time it takes to
square modulo an n-bit number.

Efficiency Improvements. The timed commitment scheme described above
can be made more efficient as follows:

– Rather than use a random element g ∈ ZN whose order is close to N we can
use a g of much smaller order. To do so, we choose N = p1p2 where q1 divides
p1 and q2 divides p2 where q1, q2 are distinct m bit primes, and m � log2 N .
We then use an element g in Z

∗
N of order q = q1q2. Since g has small order the

exponentiations in Step 4 of the commitment protocol take far less time.

– Suppose the committer needs to repeatedly commit a message to the same
verifier Bob. In this case the protocol can be improved significantly. During the
Setup phase, the committer picks a modulus N = p1p2 where p1 and p2 are
strong primes, i.e. p1−1

2 , p2−1
2 are prime. The committer and the verifier then

execute a protocol due to Camenisch and Michels [11] to convince the verifier in
zero-knowledge that N is the product of two strong primes and that the smallest
prime factor of N is at least m bits long for some predetermined m (e.g. m = 70).
This protocol is only executed once in order to validate the public key N . Step 1
of the commitment protocol is now replaced by the committer picking a random
h ∈ Z

∗
N and setting g = h2 mod N . Let q be the order of g in Z

∗
N . Since N

is the product of strong primes greater than 2m the verifier is assured that the
smallest prime factor of q is greater than 2m−1. Hence, by Lemma 1 the protocol
for verifying integrity of W in Step 4 of the commitment protocol need only be
run once (rather than multiple times as discussed above).

3.1 A Timed Signature Scheme

A timed signature scheme can be easily built out of our timed commitment
scheme and a regular signature scheme. Let (σ, V,G) be a signature scheme (σ
takes a message and a private key and generates a signature, V takes a signature
and a public key and verifies the signature, and G is a public/private key pair
generator). The (T, t, ε) timed signature scheme is as follows:



244 Dan Boneh and Moni Naor

Setup: The signer generates a public/private key pair 〈Pub, Pr〉 using algorithm
G. The signer’s public key is 〈Pub〉. He keeps 〈Pr〉 secret.
A valid signature: A valid signature on a message M is a tuple SIG =
〈S,C, Sig〉 where (1) C is a commitment string generated by the timed com-
mitment scheme when committing to the string S, and (2) Sig verifies using the
public key Pub as a valid signature on 〈M,C〉.
Commit phase: The signer picks a random secret string S and uses the timed
commitment scheme to commit S to the verifier. Let C be the resulting commit-
ment string given to the verifier. The signer uses her private key Pr to sign the
message 〈M,C〉. Let Sig be the resulting signature. The full commitment string
given to the verifier is 〈C, Sig〉.
Open phase: The signer reveals S. The verifier obtains a complete valid signa-
ture as 〈S,C, Sig〉.
Forced open: Use the forced open algorithm provided by the timed commitment
to retrieve S.

This signature scheme has the feature (or bug) that once the commit phase
is done, the verifier can convince a third party that the signer is about to give
him a signature on M . Indeed, the value Sig in the commitment string given
to the verifier could have only come from the signer. This is called an abuse of
the protocol [26]. In Section 4.2 we construct a timed signature scheme so that
after the commit phase is done the verifier cannot convince a third party that
he has been talking to the signer. This is a desirable property when using timed
signatures for contract signing.

4 Contract Signing

In this section we show how to use our timed primitives for contract signing and
fair exchange of signatures. We show how to enable two untrusting parties, Alice
and Bob, to exchange a signature on a joint contract. Neither party is willing to
sign the contract before the other. Any timed-signature scheme can be used to
solve the problem without relying on any infrastructure beyond a standard CA.
The main difference between previous gradual-disclosure solutions and ours is
that by using timed signatures Alice need not worry that Bob has ten times more
machines than her. Timed signatures are resistant to parallel attacks, whereas
previous proposals for gradual release of secrets become unfair as soon as one
party has more machines than the other.

We begin by specifying the desired properties of a contract signing protocol.
We then show that the timed commitment scheme of the previous section gives
an especially efficient solution.

4.1 Contract Signing Definitions

A contract signing protocol allows two parties, A0 and A1, to exchange signatures
on a contract C. Assume that A0 and A1 have established public keys P0 and
P1 respectively. For a given contract C the two parties exchange messages. At
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the end of the protocol each party Ab (for b ∈ {0, 1}) has a signature S1−b(C)
such that a third party (contract verifier) that is given S1−b(C) as well as P0
and P1 can verify the signature. More precisely, for a contract signing protocol
to be reasonable at all we need the following two conditions, which are standard
in signature schemes:

Completeness. With overwhelming probability the signature verification algo-
rithm outputs “accept” on a signature that is the result of a correct (by both
parties) execution of the protocol.

Unforgeability. For a properly generated Pb and for any contract C, unless Ab

participated in the contract signing protocol or C, the probability that any
probabilistic polynomial-time adversary A succeeds in finding a signature S
and key P1−b such that verifier accepts (C, S, Pb, P1−b) is negligible.

In addition to the normal operations (when no cheating by the other party
occurs) the protocol designer should also provide to each party Ab a forced
signature opening algorithm Rb: given the private information of Ab plus the
messages exchanged with A1−b algorithm Rb tries to produce S1−b(C). The time
that Rb is allowed to perform the recovery may be given as a parameter.

In order to define fairness we view a contract signing protocol as a game,
where the goal of each party is to obtain a signature on a contract that is
considered valid by the signature verification algorithm (for simplicity and wlog
we assume that the verification algorithm is deterministic), without revealing its
own signature.

Definition 1. We say that a protocol is (c, ε)-fair if the following holds: for
any time t smaller than some security parameter and any adversary A working
in time t as party Ab: let A choose a contract C and run the contract signing
protocol with party A1−b. At some point A aborts the protocol and attempts
to recover a valid signature S1−b(C). Denote A’s probability of success by q1.
Suppose now that party A1−b runs the forced signature opening R1−b for time
c · t and let q2 be the probability of recovering Sb(C). Then q1 − q2 ≤ ε.

The protocols in this section are (2, ε) fair for a negligible ε. That is, suppose
Ab aborts the protocol at some point and then recovers S1−b(C) in time t. Then
A1−b can recover the signature Sb(C) in time 2t. Smaller values of c can be
achieved as discussed in Section 4.3.
Strong Fairness: One problem with the above definition is that it leaves open
the possibility that one party Ab would be able to convince a third party that
A1−b is in the process of signing the contract C (even without the given signature
verification algorithm), whereas Ab does not have the signature Sb(C). This
type of unfairness is referred to as “abusing” [26,37]. We propose a stronger
requirement of fairness: if the adversary A invests time much smaller than the
threshold T allowing both parties to recover the desired signatures, then the
transcript of the conversation is useless: there is simulator (operating in time
proportional to the running-time of A) that can output a transcript that is
indistinguishable to any machine operating in time less than the threshold T . In
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other words, the protocol is zero-knowledge to an adversary not willing to invest
the recovery time (in which case the full signature is extractable.)

4.2 The Strongly Fair Contract Signing Protocol

We now describe a signature exchange protocol that enables two parties, Alice
and Bob, to exchange Rabin signatures on a contract C. The protocol works as
follows:
Setup: Alice generates an Na as in the timed commitment scheme of Section 3.
She will use 〈Na〉 for all her contract signings. Similarly Bob generates 〈Nb〉.
They agree on k as a security parameter, e.g. k = 40.
Valid signature: Alice’s signature on C is a regular Rabin signature modulo
Na. That is, let H ∈ ZNa

be the hash of C properly padded prior to signing
(e.g. according to pkcs1 or Bellare-Rogaway [6]). Alice’s signature on C is S =
H1/2 mod Na. Bob’s signature on C is defined analogously modulo Nb.
Init: To sign a contract C the protocol begins with Alice picking a random
ga ∈ ZN and generating a vector

Walice =
〈
g2a, g

4
a, g

16
a , g256a , . . . , g2

2i

a , . . . , g2
2k

a

〉
(mod Na)

Alice can constructs this vector efficiently by first reducing all the exponents
modulo the order of ga. She sends Walice to Bob. Next, she convinces Bob that
Walice is constructed correctly, i.e. Walice = 〈u0, . . . , uk〉 where ui = g2

2i

a . She
does so using the zero-knowledge protocol described in the commit phase in
Section 3.

Let 〈v0, . . . , vk〉 be the square roots modulo Na of the elements in Walice. Alice
computes the Rabin signature on C, namely Alice computes S = H1/2 mod Na.
She sends V = S · (v0 · · · vk) mod Na to Bob. Bob verifies validity of V by
checking that V 2 = H · (u0 · · ·uk) mod Na.

Bob initializes his contribution to the protocol by doing the analogous oper-
ations modulo Nb.
Iteration: from now on Alice and Bob take turns in revealing the square roots
of elements in Walice and Wbob. Alice begins by revealing v

(alice)
k , the square

root modulo Na of the last element in Walice (namely u
(alice)
k ). Bob responds by

revealing v
(bob)
k , the square root modulo Nb of the last element in Wbob (namely

u
(bob)
k ). Next, Alice reveals the square root of u

(alice)
k−1 and Bob responds by re-

vealing the square root of u
(bob)
k−1 . This continues for 2k rounds until the square

roots of all elements in Walice and WBob are revealed. At this point Bob can
easily obtain Alice’s signature on C by computing V/(v0 · · · vk) mod Na, where
V, v0, . . . , vk are the values sent from Alice. Alice obtains Bob’s signature on C
by doing the same on the values sent from Bob.
Forced Signature Opening: suppose Bob aborts the protocol after Alice re-
veals only m < k square roots. Then Bob has vk, . . . , vk−m+1 ∈ ZNa that are
the square roots of u

(alice)
k , . . . , u

(alice)
k−m+1. He can compute the remaining square
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roots by computing vi = g2
2i−1

mod Na for all i = 0, . . . ,m. This requires ap-
proximately 2m modular multiplications. He then obtains Alice’s signature on C.
Based on the generalized BBS assumption one can show that Bob cannot produce
the signature any faster: this will imply that he can distinguish between uk−m

and a random quadratic residue in ZNa . Fortunately, Alice can also obtain Bob’s
signature on C in roughly the same amount of time. Alice has to compute the
square root of one more element than Bob did. Namely, she has to compute the
square roots of u

(bob)
0 , . . . , u

(bob)
m+1. She does so by computing vi = g2

2i−1
mod Nb

for all i = 0, . . . ,m + 1. This requires approximately 2m+1 modular multipli-
cations. Thus her work load is roughly twice that of Bob’s. Consequently, Bob
does not gain much from prematurely aborting the protocol.

The following lemma shows that the above protocol is fair. The proof is along
the lines of the above discussion, and is omitted due to space limitations.

Lemma 4. Suppose the generalized BBS assumption holds for some parameters
(n, n′, δ, ε). Say Bob aborts the protocol after only n′ < m < 2k rounds. He then
recovers the complete signature in time T . Then Alice can obtain the complete
signature in at most expected time 2T · ε/δ. The same holds if Alice aborts the
protocol first.

Note that even if Bob has many more machines than Alice he cannot gain
much since, by assumption, parallelism does not speed up modular exponentia-
tion. As long as Bob’s machines run at approximately the same speed as Alice’s
machines, fairness is preserved.

The protocol also satisfies the strong fairness properties defined in the previ-
ous section. By the generalized BBS assumption, the value u

(alice)
k looks random

to a third party whose whose running time is much less than 2k. Since the proof
of validity of Walice is zero-knowledge, Bob cannot use it to convince a third
party that Walice is well formed. As a result, Bob can easily simulate the value
V by picking V ∈ ZNa at random, and setting uk = V 2/(H ·u0 · · ·uk−1). Hence,
Bob can simulate himself all the information he got from Alice during the com-
mit phase. Consequently, suppose Bob misbehaves during the protocol (given the
zero-knowledge proofs of consistency the only real bad behavior on Bob’s part
is early stopping), but Bob is able to convince with non-negligible probability a
third party verifier that he is executing a contract signing protocol with Alice.
Then Alice can produce a signature on the contract in time proportional to the
running time of Bob and the third party verifier.

Remark 1. Although the above description requires 2k rounds, it is easy to cut
it down to k rounds. Simply make each party send two square roots per turn
(rather than one). The advantage of early stopping is unchanged and rotates
from party to party.
We also point out that any square root based signature can be used, e.g. the
Fiat-Shamir method [25], or a non-oracle based one such as a variant of the
Dwork-Naor scheme [21]. In the next section we show how to incorporate RSA
signatures into the fair exchange scheme.



248 Dan Boneh and Moni Naor

4.3 Extensions

RSA Signatures. The scheme in Section 4.2 enables two parties to exchange
Rabin signatures. We describe a simple extension enabling fair exchange of RSA
signatures. Let (Na, e) be the public key of Alice. The difference with respect to
Rabin signatures is that now

Walice =
〈
ge·2

a , ge·4
a , ge·16

a , ge·256
a , . . . , ge·22i

a , . . . , ge·22k

a

〉
(mod Na)

Note that the generalized BBS assumption implies that the next element in
this sequence is indistinguishable from random in time δ2k, since it is easy to
transform a sequence

〈
g2a, g

4
a, g

16
a , g256a , . . . , g2

2i

a , . . . , g2
2k

a

〉
(mod Na)

into Walice by k parallel exponentiations in e. Showing that the vector Walice is
constructed correctly is similar to what was done previously: for any 1 ≤ i ≤ k
Alice should prove that the triple (g, bi−1, bi) is of the form (g, gex, gex2

) for a
given e. This can be done by the same protocol that proves triples of the form
(g, gx, gx2

). Simply run the protocol on the triple (g, gex, ge2x2
) and then verify

that bi is the eth root of ge2x2
.

The contract signing protocol proceeds along the same lines as before. For
0 ≤ i ≤ k let ui = ge·22i

a , let vi = u
1/e
i mod Na = g2

2i

a , i.e. the vi’s are defined
as eth roots of the ui’s (instead of square roots, as above). Let H be the value
to be signed by the RSA signature, i.e. the goal of the recipient it to obtain
H1/e mod Na. The vi’s mask H1/e mod Na — Alice gives Bob V = H1/e · v0 ·
v1 · · · vk. As before, the vi’s are released one-by-one. The validity of each vi is
easy to verify by comparing ve

i to ui.
To argue the security of the scheme we assume the generalized BBS Assump-

tion as well as the usual RSA one (that it is hard to extract eth roots). Based
on these two assumptions, given u0, u1, . . . ui it is hard to distinguish between
ui+1 and a random value and it is hard to compute vi+1. Therefore in case of
early stopping i steps from the end it is impossible to find the RSA signature,
H1/e mod Na, more efficiently than to compute g2

2i

. Furthermore, a simulator
can efficiently create an indistinguishable conversation.

Other Ratios. The signature exchange protocol of Section 4.2 achieves a fair-
ness ratio of c = 2. That is, if Alice aborts the protocol, Bob has to do twice as
must work as Alice to obtain the signature. The protocol easily generalizes to
provide smaller fairness ratios as well, at the cost of increasing the number of
rounds. For example, one can define Walice as

Walice =
〈
g2

c0

a , g2
c1

a , g2
c2

a , . . . g2
ck

a

〉
(mod Na)
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where c0 = 1 and ci = ci−1 +ci−2 for i = 1, . . . , k. The proof of validity of Walice

given in Section 3 must be changed accordingly. This approach gives a fairness
ratio of α = 1+

√
5

2 ≈ 1.618. Even smaller values can be obtained by other such
recurrences. The downside is that to obtain an initial security of 2k the protocol
must take logα 2k rounds, as opposed to only taking k rounds as in Section 4.2.

5 More Applications

We now describe several other applications of timed commitments. In all appli-
cations, we assume that the parties involved use clocks, but the adversary has
control over the scheduling and the clocks. However, the adversary must satisfy
the (α, β) constraint (for α < β) of clocks [23]: for any two (possibly the same)
non-faulty parties P1 and P2, if P1 measures α elapsed time on its local clock and
P2 measures β elapsed time on its local clock, and P2 begins its measurement in
real time after P1 begins, then P2 will finish after P1 does. An (α, β) constraint
is implied by many reasonable assumptions on the behavior of clocks in a system
(e.g. the linear drift assumption). We assume that α is large enough that one
party can send a message and expect a response in time α, and β is smaller than
the security parameter of the commitment scheme.

Collective Coin-Flipping. We have two parties A and B who want to flip a
coin in such a matter that (i) the value of the coin is unbiased and well defined
even if one of the parties does not follow the protocol (if both of them don’t
follow, then it is a lost case) (ii) if both parties follow the protocol, then they
agree on the same value for the coin.

Consider the protocol where one party commits to a bit and the other guesses
it and the result is the Xor of the two bits. The problem with this simple protocol
is that one party knows the results before the other and can quit early (if it
doesn’t like the result), thus biasing the result. Indeed Cleve[14] has shown that
for any k-round protocol one of the parties can bias the coin with at least 1/k
(this bound was improved in [16] to 1/

√
k).

What we show now is a protocol that works in the (α, β) timing model using
our timed commitment and (i) the coin has only negligible bias. (ii) the number
of rounds is constant.
1. A to B: pick a random bit bA ∈ {0, 1} and time-commit to bA.
2. B to A: pick a random bit bB ∈ {0, 1} and send to A
3. A to B: open bA.
The collective coin is bA ⊕ bB .
Timing: A makes sure that B’s message arrives within time α from the beginning
of Step 1.
Forced opening: if A does not open bA at Step 3, then B uses the forced opening
procedure to extract bA and sets the coin to bA ⊕ bB .

It is easy to verify that if B can bias the coin, then it can guess the value
of a timed-committed bit in time smaller than the security parameter of the
scheme. On the other hand A can try to influence the bit only by not opening
bA; however this is defeated by the forced opening.
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Honesty-Preserving Auctions. In a second-price (Vickrey) auction partici-
pants submit their bids to an item. The winner is the highest bidder but pays
the second highest bid. A problem with running these auctions is establishing
the trust in the auctioneer: how can the winner be assured that the auctioneer
hasn’t introduced a 2nd highest bid which is just ε less than the winning one?

Recent work focuses on many aspects of uncheatable auctions [31]. Here we
are interested mostly in the honesty-preserving aspect of the protocol, i.e. making
sure that the auctioneer is not changing some bids as a function of others. At
the end of the protocol all the participants will know all the bids.
One simple solution is as follows:

1. The participants submit their bids by committing to their values. Here care
must be taken to make the commitments non-malleable (see [19]).

2. When all of the commitments are in, the auctioneer posts them on a bulletin
board. The participants should verify that their hidden bids were posted.

3. The participants then open their commitments. The auctioneer posts the
results and everyone can verify that the auction was conducted properly

However, there is a problem with this solution: what if one (or more) participant
refuses to open their commitment? If they are simply ignored, an auctioneer can
plant several bogus bids with different values and open only those lower then
the winning bid.

The timed commitment of Section 3 solves the problem. In Step 1 participants
commit to their bid using a timed commitment. The bidders verify that that
within time α the bid is posted, i.e. that from Step 1 to Step 2 no more than
α time elapses. If in Step 3 a participant does not open its commitment, the
auctioneer can “force open” the commitment using the forced opening algorithm.

Note that it is important for the commitment to have the soundness property
(i.e. that at the end of the commit phase it is clear that forced open would work),
otherwise the other bidders would not be convinced that it was properly opened.

Zero-Knowledge. We now briefly discuss the application of our timed com-
mitments for achieving zero-knowledge in various settings. Consider concurrent
zero-knowledge: Several parties who are not mutually aware of each other and
may lack coordination are simultaneously engaged in zero-knowledge protocols.
This settings received much attention recently (see [23,28,34,17].)The problem
is in showing that the composed protocols are zero-knowledge in total. If the ad-
versary controls the scheduling then it can create nested interactions that make
the simulator’s life difficult2. However, as suggested in [23], if the adversary is
(α, β)-restricted, then it is possible to obtain a constant round zero-knowledge
protocol. Our timed commitments can be used for the verifier to commit to its
queries. The verifier should accept only if the prover send its own commitments
within time α. The simulator force opens them and knows what to send as the
prover.
2 Indeed, Kilian, Petrank and Rackoff [28] showed that no black-box simulation is

possible for 4-round protocols and this was recently improved to 7-round [36].
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Very recently Dwork and Naor [22] constructed Zaps - two-round witness
indistinguishable proof systems - for any language in NP. Using timed-commit-
ments with properties such as ours (verifiable recovery) they were able to show
a three-round (concurrent) zero-knowledge proof system for all langauges in NP
(in the (α, β)-timing model.) The zap was used to prove that the commitment
is proper and it is possible to perform forced opening. Note that this stands in
contrast to the impossibility result even in the standard (non-concurrent) model
[27]. They were also able to construct a three-round zero-knowledge protocol
in the resettable setting [12], where prover is executed by a device that has no
independent source of randomness and cannot record history.

6 Lower Bound on the Number of Rounds
for Contract Signing

We now show that any protocol for signing contracts must take a number of
rounds linearly proportional to the advantage one side has over the other. While
contract signing has been investigated extensively we haven’t quite found a sim-
ilar statement in the literature. The closest that we are aware of is Cleve’s [15]
lower bound regarding gradual disclosure of secrets, a task that can be used for
contract signing. However, it does not directly imply lower bounds for contract
signing.

Let A0 and A1 be the two parties as in Section 4.1. The key to understanding
the limitations of contract signing algorithms is to have a single-dimensional no-
tion of progress. We choose (computing time)/(prob. of success) as the measure
of progress, though there are other reasonable possibilities.

This gives us the definition of unfairness. Fix a model of computation (say
a specific Turing Machine, or, for nonuniform results, Boolean circuits over the
complete {0, 1}2 �→ {0, 1} basis). Fix an adversary A that produces a contract
C, plays the role of A1−b and attempts to come up with Sb. Let γ(A) be the
running time of A over its probability of success. Similarly, for A let δ(A) be
the running time of the forced signature opening algorithm Rb over probability
that Rb succeeds in finding an accepting S1−b.

Definition 2. The unfairness of a protocol is the worst case of all adversaries
A of the quantity γ(A)/δ(A).

Remark 2. Note that this notion of unfairness is more forgiving then the one in
Section 4.1, in the sense that it ignores a case where Rb retrieves the signatures
in the same amount of time as A, but with slightly smaller (but not negligible)
probability. Nevertheless our lower bound is applicable to this definition.

Definition 3. For every signing protocol we say that the protocol has security
gap W if the ratio between the running time an adversary needs in order forge a
signature on a message without the signers agreement and the running time of
the signing and verification algorithm is at least W .
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For a protocol to be useful the security gap must be large, say at least 250.

Theorem 2. For every contract signing protocol and forced opening algorithm,
if the protocol consists of k rounds and has security gap W , then the unfairness
of the protocol is at least W 1/k.

All our adversary A will do is to stop early. For each round i of the protocol we
consider all programs that get the transcript of the first i rounds plus the secret
of one of the sides and attempt to produce a valid signature on the contract. For
such a program we are interested in its running time divided by the probability
it succeeds in producing a valid signature where the probability is over the coin
flips of all the participants. We assume that none was cheating except for early
withdrawal.

Let Ti be the minimum over all machines of the above product. If the con-
tract signing protocol is secure at all, then T0 should be large (super-polynomial).
From completeness (i.e. that the protocol ends with valid signatures if the par-
ticipants follow the protocol) for a k-round protocol Tk should be small and by
the assumption on the security gap we have T0/Tk ≥ W .

If k is a constant, then there must be a large gap between Tj−1 and Tj for
some 1 < j ≤ k, more specifically

T0 = Tk · Tk−1

Tk
· Tk−2

Tk−1
· · · T0

T1
.

Therefore for at least one 1 ≤ j ≤ k we have Tj−1
Tj

≥ ( T0
Tk

)1/k ≥ W 1/k. This
gives a way for one of the participants to make the protocol unfair - the one who
receives a message at step j stops afterwards and tries to create the signature.
For this party the product of the time and probability of success is Tj , whereas
for the other party it is at most Tj−1. Hence the unfairness of this protocol is at
least W 1/k.

Note that if W is at least 250 and we want the unfairness to be at most 2,
then the number of rounds must be at least 50.

This lower bound is applicable to a wider model than had been considered
previously, In particular it applies to scenarios where the participants are timed
(by real clocks) and their partner expect a response with in a certain amount
of time (e.g. the model of [23]). In contrast, as we have seen in Section 5, the
problem of collective coin-flipping has a constant round protocol in a timed model,
as opposed to the untimed one.

7 Conclusions

We introduced the concepts of timed commitments and timed signatures, which
are useful for contract signing, auctions and other applications. In auctions timed
commitments ensure that users cannot make a sealed bid and then refuse to open
the bid. We emphasized the importance of defending against parallel attacks in
all applications. Our constructions for timed commitments and timed signatures
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resist parallel attacks by relying on modular exponentiation which is believed to
be an inherently serial operation.

It would be interesting to try to construct timed commitments and timed
signatures based on other primitives. For example, all lattice basis reduction
algorithms are sequential. Can one build timed primitives based on lattice basis
reductions? It is also interesting to see what other areas in cryptography can
benefit from the ability to delay one’s capabilities by a fixed time period.
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