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Abstract. In this paper, we introduce a framework in which we can
uniformly and comprehensively discuss security notions of public-key en-
cryption schemes even for the case where some weak generator producing
seemingly random sequences is used to encrypt plaintext messages. First,
we prove that indistinguishability and semantic security are not equiv-
alent in general. On the other hand, we derive some sufficient condition
for the equivalence and show that polynomial-time pseudo-randomness
is not always necessary for the equivalence.

1 Introduction

One of the important goals in computational cryptography is to provide a public-
key encryption scheme that achieves a security level as strong as possible under
various circumstances. For this purpose, several security notions have been in-
troduced. In particular, we will discuss in this paper the notions of “semantic
security” and “indistinguishability of encryptions” introduced by Goldwasser
and Micali [12], which have shown to be equivalent [12,18]. For another major
security notion, we have “non-malleability” introduced in [8]. These notions are
defined in terms of an adversary who is given only a challenge ciphertext. This
attack model is called ciphertext only attack (abbreviated COA). Besides COA,
three major attack models have been studied in the literature. One is called
chosen plaintext attack (abbreviated CPA) model, in which the adversary can
encrypt any plaintext messages of his choice. For more stronger attack models,
chosen ciphertext attack [19] and adaptive chosen ciphertext attack [20] have
been also considered.

Although these security notions have been studied quite well (see, e.g., [1,2,4]),
we think that there are still some important issues that have not been addressed
in the previous research. Security when used with a “pseudo-random” resource is
one of such issues. Usually, security notions are defined assuming that ideal (i.e.,
true) random resource is available. Furthermore, it has been shown that one can
safely use any “polynomial-time pseudo-random” generator for the substitute of
the true random resource; that is, most security notions do not change by using
the polynomial-time pseudo-randomness for the true randomness. Although we
have several “theoretically guaranteed” polynomial-time pseudo-random gener-
ators, they are unfortunately not fast enough for practical use, and much faster
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but less reliable pseudo-random generators have been used in many practical sit-
uations. Then the above security notions (and their relations) may be no longer
valid with such weak pseudo-randomness. In fact, it has been shown [3] that if
DSS is used with a linear congruential generator, then its secret key can be easily
detected after seeing a few signatures. (See also [7,9,15,22].) Though this result
indicates that the linear congruential generator is unsuitable for cryptographic
purposes, it does not mean that the linear congruential generator is useless at
all for all cryptographic systems. It is certainly important to study more care-
fully which aspect of the randomness is indeed important for discussing several
security levels.

In this paper, we will introduce a framework in which we can uniformly and
comprehensively discuss “semantic security” and “indistinguishability” notions
even for the case where some weak generator producing seemingly random se-
quences is used. (In order to avoid confusion, we will use throughout the paper
the term “quasi-random” for referring pseudo-randomness including one without
any guarantee.) While most of corresponding notions are easily restated from
the original definitions, we have to be a bit careful for choosing right definitions
in relation to attack models. In the context of public-key encryption scheme,
CPA is equivalent to COA because once the adversary obtains the public-key,
he can compute ciphertext messages easily. This may not be true any more when
quasi-random generators are involved. In this paper, for the model corresponding
to COA, we consider the situation in which an adversary cannot access to the
quasi-random generator, it is still possible for the adversary to make use of the
encryption algorithm. On the other hand, in the model corresponding to CPA,
it may be more natural that adversary can invoke the encryption oracle which,
given a plaintext message, uses the quasi-random generator in encrypting the
message and replies with its ciphertext message. Throughout this paper, we will
discuss under this revised COA model.

Next we will study the relationships between these security notions: seman-
tic security and indistinguishability. We first prove that they are not equiva-
lent in general. On the other hand, while the well-known fact can be restated
in our framework as the polynomial-time pseudo-randomness is sufficient to
have the equivalence between semantic security and indistinguishability, the
polynomial-time pseudo-randomness is not necessary for the equivalence. It is
easy to see that “polynomial-time pseudo-randomness” has two aspects: “effi-
cient samplability” and theoretically guaranteed “pseudo-randomness.” We call
the former property samplability simply and the latter semi-randomness to dis-
tinguish from both pseudo-randomness and quasi-randomness. Then we derive
that semi-randomness or samplability is better sufficient condition for the equiv-
alence between semantic security and indistinguishability.

In Section 2, we review the definitions of security notions of public-key en-
cryption scheme. In Section 3, we introduce our new framework and reformulate
well-known security notions to fit for the new framework. In Section 4, we dis-
cuss the relation between semantic security and indistinguishability in our new
framework.
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2 Preliminaries

2.1 Notations and Conventions

We introduce some useful notations and conventions for discussing probabilistic
algorithms. If A is a probabilistic algorithm, then for any input x, the notation
A(x) refers to the probability space which assigns to the string y the probability
that A, on input x, outputs y. If S is a probability space, denote by Pre←S [e]
(or PrS [e]) the probability that S associates with element e. When we consider a
finite probability space, it is convenient to consider separately the corresponding
sample set and probability distribution on the set. If S is a finite set and D is a
probability distribution on S, denote by Pre∈DS [e] the probability that element
e ∈ S is chosen according to D. If S is a finite set, denote by Pre∈U S [e] the
probability that element e ∈ S is chosen uniformly.

By 1n we denote the unary representation of the integer n. A function f :
{0, 1}∗ → {0, 1}∗ is polynomially-bounded if there exists a polynomial p(·) such
that |f(x)| ≤ p(|x|) for all x ∈ {0, 1}∗.

2.2 True Randomness Framework

In this paper, we will introduce a framework in which we can uniformly and com-
prehensively discuss “semantic security” and “indistinguishability” notions even
for the case where some weak generator producing seemingly random sequences
is used. (In order to avoid confusion, we will use throughout the paper the term
“quasi-random” for referring the pseudo-randomness including one without any
guarantee.) Usually any cryptographic notions are defined in the “true random-
ness framework,” where the true randomness is available. We review the notions
of semantic security and indistinguishability (in the true randomness framework)
and the relation between them. We begin with the definition of public-key en-
cryption schemes (in the true randomness framework).

Definition 1 (public-key encryption scheme). A public-key encryption
scheme is a quadruple (G, M, E, D), where the following conditions hold.

1. G, called the key generator, is a probabilistic polynomial-time algorithm
which, on input 1n, outputs a pair of binary strings.

2. M = {Mn}n∈N is a family of message spaces from which all plaintext mes-
sages are drawn. In order to make our notation simpler (but without loss of
generality), we assume that Mn = {0, 1}n.

3. For every n, for every pair (e, d) in the support of G(1n), and for any α ∈Mn,
probabilistic polynomial-time (encryption) algorithm E and deterministic
polynomial-time (decryption) algorithm D satisfy
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Pr
E
[D(d, E(e, α)) = α] = 1,

where the probability is over the internal coin tosses of the algorithm E.

The integer n serves as the security parameter of the scheme. Each (e, d) in the
range of G(1n) constitutes a pair of corresponding encryption/decryption keys.
The string E(e, α) is the encryption of the plaintext message α ∈ {0, 1}∗ using
the encryption key e, whereas D(d, β) is the decryption of the ciphertext message
β using the decryption key d.

Hereafter, we write Ee(α) instead of E(e, α) and Dd(β) instead of D(d, β).
We also write Ee(α; r) when we want to express explicitly the randomness r of
the encryption algorithm. Also, we let G1(1n) denote the first element in the
pair G(1n).

Since Goldwasser and Micali defined semantic security and polynomial secu-
rity (a.k.a. indistinguishability), several ways to define such notions are shown.
In this paper, we adopt a non-uniform formulation as in [10] in order to sim-
plify the exposition. We note that employing such a non-uniform formulation
(rather than a uniform one) may strengthen the definitions; yet, it does weaken
the implications proven between the definitions, since proofs make free usage of
non-uniformity.

A transformation is a uniform algorithm which, on input Cn, outputs C ′n,
where Cn (resp., C ′n) is the representation of a circuit Cn (resp., C ′n) in some
standard encoding. Without loss of generality, we identify a circuit with its
representation (in the standard encoding).

Definition 2 (semantic security). An encryption scheme (G, M, E, D) is se-
mantically secure if there exists a probabilistic polynomial-time transformation
T so that for every polynomial-size circuit family {Cn}n∈N , for every probabil-
ity ensemble {Xn}n∈N satisfying that Xn is a probability distribution on Mn,
for every pair of polynomially-bounded functions f, h : {0, 1}∗ → {0, 1}∗, every
polynomial p(·) and sufficiently large n,

Pr
G,E,Xn

[
Cn(G1(1n), EG1(1n)(Xn), 1n, h(Xn)) = f(Xn)

]

< Pr
T,G,Xn

[
C ′n(G1(1n), 1n, h(Xn)) = f(Xn)

]
+

1
p(n)

where C ′n = T (Cn) is the circuit produced by T on input Cn. (The probability
in the above terms is taken over Xn as well as over the internal coin tosses of
the algorithms G and E.)

Definition 3 (indistinguishability). An encryption scheme (G, M, E, D) has
indistinguishable encryptions if for every polynomial-size circuit family {Cn}n∈N ,
for every polynomial p(·), for all sufficiently large n, and for every x, y ∈Mn∣∣∣∣ PrG,E

[
Cn(G1(1n), EG1(1n)(x)) = 1

]− Pr
G,E

[
Cn(G1(1n), EG1(1n)(y)) = 1

]∣∣∣∣ <
1

p(n)
.
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The probability in the above terms is taken over the internal coin tosses of the
algorithms G and E.

We have seen two notions of security for public-key encryption schemes. The
above definitions only refer to the security of a scheme that is used to encrypt
a single plaintext message (per key generated). Clearly, in reality, we want to
encrypt many massages with the same key. The corresponding definitions of se-
curity notions in the multiple message setting have been given and discussed
in [10]. Although it is important to consider the security in the multiple mes-
sage setting, we will omit to discuss them on account of space constraints. The
following theorem has been already shown [12,18].

Theorem 1 ([12,18]). Let (G, M, E, D) be an encryption scheme. In the true
randomness framework, (G, M, E, D) is semantically secure if and only if (G, M,
E, D) has indistinguishable encryptions.

The reductions that are used in the proof of the above theorem are random-
ized. Care must obviously be taken to confirm that the reductions still work for
the case where some quasi-random generator is used instead of the true random
resource.

3 Quasi-randomness Framework

In this section, we prepare a framework — quasi-randomness framework — in
which we can uniformly and comprehensively discuss “semantic security” and
“indistinguishability” notions even for the case where some weak quasi-random
generator producing seemingly random sequences is used.

3.1 Public-Key Encryption Scheme for Quasi-random Set Family

We begin with introducing the notion of “quasi-randomness” and some nota-
tions. In this paper, a quasi-random string is just a string (of certain length)
drawn from some subset of strings (of this length) uniformly at random. More
specifically, we consider the following family of sets of strings.

Definition 4. Let q(·) be a polynomial. A q(n)-quasi-random set family (ab-
breviated QRSF) {Rn}n∈N is a family of sets of strings of length q(n).

Below we usually use {Rn} to denote some quasi-random set family. On the
other hand, q(n)-true-random set family (abbreviated TRSF) is just a collection
of sets Tn = {0, 1}q(n). We use {Tn} to denote some true-random set family.

Our ultimate purpose is to give a taxonomy of quasi-random set families
from a viewpoint of the security of public-key encryption schemes. We have to
enumerate some properties over quasi-random set families to begin with.

While the well-known fact can be restated in our framework as the polynomial-
time pseudo-randomness is sufficient to have the equivalence between seman-
tic security and indistinguishability, we show that the polynomial-time pseudo-
randomness is not necessary to have the equivalence. This implies that there may
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be more usable sufficient conditions for the equivalence. It is easy to consider
separately “efficient samplability” and “pseudo-randomness” as some properties
on quasi-randomness. We call the former property samplability simply and the
latter semi-randomness to distinguish from both pseudo-randomness and quasi-
randomness. “Samplability” is quite a natural property because generators with-
out samplability is, in general, difficult to use. Especially in Monte-Carlo simula-
tion, efficient samplability is required. On the other hand, “semi-randomness” is
also one of important properties. Semi-random sequences pass many statistical
tests. Some sequences that are obtained from physical sources such as electronic
noise or the quantum effects in a semiconductor. When the sequences pass all
known statistical tests, it is often that we use the sequences as “random se-
quences.” We may consider that such sequences may have the semi-randomness
property. So, in this paper, we study these two properties on QRSF.

We begin with definition of “semi-randomness.” Semi-random sequences are
ones that are not distinguished by any polynomial-size circuit. More specifically,
we consider the following definition.

Definition 5. A q(n)-QRSF {Rn} is said to be semi-random if for every poly-
nomial-size circuit family {Cn}n∈N , every polynomial p(·), all sufficiently large
n, ∣∣∣∣ Pr

r∈U Rn

[
Cn(r) = 1

]− Pr
r′∈U Tn

[
Cn(r′) = 1

]∣∣∣∣ <
1

p(n)
,

where {Tn} is q(n)-TRSF.

We note that semi-random sequences are different from output sequences by
polynomial-time pseudo-random generators. Semi-random sequences need not to
be recursive nor generated efficiently.

Next, we give a definition of “samplability.” For any samplable sequence,
there exists a (polynomial-size) generator {Sn}n∈N whose output is statistically
close to the samplable sequence. More specifically, we consider the following
definition.

Definition 6. A q(n)-QRSF {Rn} is said to be samplable if there exists a
polynomial-size circuit family {Sn}n∈N so that for every polynomial p(·) and
all sufficiently large n,

max
A

{∣∣∣∣ Pr
r∈U{0,1}q(n)

[
Sn(r) ∈ A

]− Pr
r∈U Rn

[
r ∈ A

]∣∣∣∣
}

<
1

p(n)
,

where the maximum is taken all over the subsets of {0, 1}q(n).

We note that the maximum value in the above definition is so called “statistical
difference” between two probability distributions: {Sn(r)}r∈U{0,1}q(n) and the
uniform distribution on Rn.

We extend the notion of public-key encryption scheme in order to cope with
QRSF instead of the true randomness.
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Definition 7 (public-key encryption scheme, revisited). A public-key en-
cryption scheme is a quadruple (G, M, E, D), where the following conditions
hold.

1. G, called the key generator, is a probabilistic polynomial-time algorithm
which, on input 1n, outputs a pair of binary strings. (Although the key
generator also uses randomness, we disregard it here in order to cast light
on roles of randomness in encrypting. So, we assume that randomness in key
generator is always ideal.)

2. M = {Mn}n∈N is a family of message spaces from which all plaintext mes-
sages will be drawn. In order to make our notation simpler (but without loss
of generality), we will assume that Mn = {0, 1}n.

3. For every q(n)-QRSF {Rn}, for every n, for every pair (e, d) in the support
of G(1n) and for any α ∈Mn, “deterministic” polynomial-time (encryption)
algorithm E and deterministic polynomial-time (decryption) algorithm D
satisfy

Pr
r∈U Rn

[
Dd(Ee(α; r)) = α

]
= 1,

where the probability is over the uniform distribution on Rn.

We note that we treat the encryption algorithm as deterministic one fed with a
plaintext message and a (random) supplementary input of length q(n).

3.2 Security Notions for Quasi-random Set Family

In this subsection, we reformulate the notions of semantic security and indistin-
guishability to suit the framework of quasi-random set family.

Definition 8 (semantic security, revisited). An encryption scheme (G, M,
E, D) is semantically secure w.r.t. q(n)-quasi-random set family {Rn} if there ex-
ists a probabilistic polynomial-time transformation T so that every polynomial-
size circuit family {Cn}n∈N , for every probability ensemble {Xn}n∈N satisfying
that Xn is a probability distribution on Mn, every pair of polynomially-bounded
functions f, h : {0, 1}∗ → {0, 1}∗, every polynomial p(·) and all sufficiently large
n,

Pr
G,Xn;r∈U Rn

[
Cn(G1(1n), EG1(1n)(Xn; r), 1n, h(Xn)) = f(Xn)

]

< Pr
T,G,Xn

[
C ′n(G1(1n), 1n, h(Xn)) = f(Xn)

]
+

1
p(n)

where C ′n = T (Cn).

Some explanation on the attack model is needed here. In the above defini-
tion, an adversary Cn is given only an encryption key G1(1n) and a ciphertext
message EG1(1n)(Xn; r) (and some supplementary information h(Xn)). Thus, it
is considered as ciphertext only attack (COA) model. But note here that we
may consider any polynomial-size circuit Cn for the adversary; hence, we may
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assume that the encryption algorithm is also included in Cn. In the true random-
ness framework, this immediately includes the chosen plaintext attack (CPA) in
which model the adversary can encrypt any plaintext messages of his choice.
This is not true any more in the quasi-randomness framework because there
is no guarantee that some (randomized) polynomial-size circuit can generate
quasi-random strings in Rn uniformly at random.

Moreover, we consider our revised COA model. For our COA model, we
consider the situation in which an adversary cannot access to the quasi-random
generator. The situation means that those who use public-key encryption scheme
have their private quasi-random generators. In general, they do not have to
publicize their quasi-random generators which are used in public-key encryption
scheme. In addition, the case where private quasi-random generators are used is
more secure than the case where public quasi-random generators are used. Thus,
we can say that our COA model makes sense.

Definition 9 (indistinguishability, revisited). An encryption scheme (G,
M, E, D) has indistinguishable encryptions w.r.t. q(n)-quasi-random set family
{Rn} if for every polynomial-size circuit family {Cn}n∈N , every polynomial p(·),
all sufficiently large n and every x, y ∈Mn,∣∣∣∣ Pr

G;r∈U Rn

[
Cn(G1(1n), EG1(1n)(x; r)) = 1

]

− Pr
G;r′∈U Rn

[
Cn(G1(1n), EG1(1n)(y; r′)) = 1

]∣∣∣∣ <
1

p(n)
.

We also note that Cn, in the above definition, cannot directly access to QRSF
{Rn}.

The following notion is somewhat artificial. However, it is useful to charac-
terize the notions of semantic security and indistinguishability.

Definition 10 (skew-indistinguishability). An encryption scheme (G, M, E,
D) has skew-indistinguishable encryptions w.r.t. q(n)-quasi-random set family
{Rn} if for every polynomial-size circuit family {Cn}n∈N , every polynomial p(·),
all sufficiently large n and every x, y ∈Mn,∣∣∣∣ Pr

G;r∈U Rn

[
Cn(G1(1n), EG1(1n)(x; r)) = 1

]

− Pr
G;r′∈U Tn

[
Cn(G1(1n), EG1(1n)(y; r′)) = 1

]∣∣∣∣ <
1

p(n)

where {Tn} is q(n)-TRSF.

In this paper, we do not consider the non-malleability, However, we only give
the corresponding definition. We note that, in the definition below, “r′ ∈ Rn” is
optional, since the definition without it is alternative.

Definition 11 (non-malleability, revisited). An encryption scheme (G, M,
E, D) is non-malleable w.r.t. q(n)-quasi-random set family {Rn} if there exists
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a probabilistic polynomial-time transformation T so that every polynomial-size
circuit family {Cn}n∈N , for every relation V that is decidable by a polynomial-
size circuit family, for every probability ensemble {Xn}n∈N satisfying that Xn

is a probability distribution on Mn, every polynomially-bounded function h :
{0, 1}∗ → {0, 1}∗, every polynomial p(·) and all sufficiently large n,

Pr
G,Xn;r∈U Rn

[
Cn(G1(1n), EG1(1n)(Xn; r), 1n, h(Xn)) = EG1(1n)(X ′n; r

′)

such that V (Xn, X ′n) = 1, Xn 	= X ′n and r′ ∈ Rn

]
< Pr

T,G,Xn

[
C ′n(G1(1n), 1n, h(Xn)) = EG1(1n)(X ′n; r

′)

such that V (Xn, X ′n) = 1, Xn 	= X ′n and r′ ∈ Rn

]
+

1
p(n)

where C ′n = T (Cn).

We note that, in four definitions above, any adversary does not directly access
to QRSF {Rn} but gets ciphertext messages encrypted using QRSF {Rn} as
challenge inputs.

4 Properties in Quasi-randomness Framework

4.1 Relations among Security Notions

In this subsection, we consider classes of pairs of QRSF and public-key encryp-
tion schemes w.r.t. the QRSF. We will especially show that semantic security
and indistinguishability (in the quasi-randomness framework) are separable from
each other.

We denote by SSq the class of pairs of encryption scheme (G, M, E, D) and
QRSF {Rn} satisfying that (G, M, E, D) w.r.t. {Rn} is semantically secure. We
also denote 〈(G, M, E, D), {Rn}〉 ∈ SSq if an encryption scheme (G, M, E, D)
which is semantically secure w.r.t. a QRSF {Rn}. We denote by INDqq the
class of pairs of encryption schemes (G, M, E, D) and QRSF {Rn} satisfying
that (G, M, E, D) w.r.t. QRSF {Rn} has indistinguishable encryptions. We de-
note by INDqt the class of pairs of encryption scheme (G, M, E, D) and QRSF
{Rn} satisfying that (G, M, E, D) w.r.t. QRSF {Rn} has skew-indistinguishable
encryptions.

Theorem 2. INDqt � SSq � INDqq.

The above theorem follows the four lemmas below.

Lemma 1. SSq ⊆ INDqq.

Lemma 2. INDqt ⊆ SSq.

Lemma 3. INDqq \ SSq 	= ∅.
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Lemma 4. SSq \ INDqt 	= ∅.
Proof. (Lemma 1) We show that if an encryption scheme (G, M, E, D) w.r.t.
{Rn} is semantically secure then (G, M, E, D) w.r.t. {Rn} has indistinguishable
encryptions.

Now, we assume that (G, M, E, D) w.r.t. {Rn} does not have indistinguish-
able encryptions; namely, there exist a polynomial-size circuit family {Dn}n∈N

and a polynomial p(·) such that for infinitely many n, there exist xn and x̃n

satisfying∣∣∣∣ Pr
G;r∈U Rn

[
Dn(G1(1n), EG1(1n)(xn; r)) = 1

]

− Pr
G;r∈U Rn

[
Dn(G1(1n), EG1(1n)(x̃n; r)) = 1

]∣∣∣∣ >
1

p(n)
.

Without loss of generality, for infinitely many n, there exist xn and x̃n satisfying

Pr
G;r∈U Rn

[
Dn(G1(1n), EG1(1n)(xn; r)) = 1

]

− Pr
G;r∈U Rn

[
Dn(G1(1n), EG1(1n)(x̃n; r)) = 1

]
>

1
p(n)

.

Let Xn be a random variable such that Pr[Xn = xn] = Pr[Xn = x̃n] = 1/2.
Let f be a function such that f(xn) = 1 and f(x̃n) = 0. Now, we consider the
following circuit Cn. On input (e, Ee(x; r)), the new circuit Cn feeds Dn with
input (e, Ee(x; r)) and output 1 if Dn outputs 1; otherwise, Cn outputs 0. It
is left to estimate the probability that Cn(e, Ee(x; r)) = f(x) when x is drawn
according to Xn.

Pr
G;x∈Xn{xn,x̃n}

r∈U Rn

[
Cn(G1(1n), EG1(1n)(x; r)) = f(x)

]

=
1
2
· Pr

G;r∈U Rn

[
Cn(G1(1n), EG1(1n)(xn; r)) = f(xn)

]

+
1
2
· Pr

G;r∈U Rn

[
Cn(G1(1n), EG1(1n)(x̃n; r)) = f(x̃n)

]

=
1
2

(
Pr

G;r∈U Rn

[
Dn(G1(1n), EG1(1n)(xn; r)) = 1

]
+ 1

− Pr
G;r∈U Rn

[
Dn(G1(1n), EG1(1n)(x̃n; r)) = 1

])

≥ 1
2
+

1
2p(n)

.

In contrast, for every (randomized) circuit C ′n, Pr[C
′
n(G1(1n)) = f(Xn)] ≤ 1/2.

This contradicts the hypothesis that the scheme is semantically secure. ��
Proof. (Lemma 2) We show that if (G, M, E, D) w.r.t. q(n)-QRSF {Rn} has
skew-indistinguishable encryptions then (G, M, E, D) w.r.t. q(n)-QRSF {Rn} is
semantically secure.
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Now, we assume that there exist a polynomial-size circuit family {Cn}n∈N , a
polynomial p(·), and polynomially-bounded functions f, h such that for infinitely
many n,

Pr
T,G;x∈Xn Mn

r∈U Rn

[
Cn(G1(1n), EG1(1n)(x; r), 1n, h(x)) = f(x)

]

− Pr
G;x∈Xn Mn

r∈U Rn

[
C ′n(G1(1n), 1n, h(x)) = f(x)

]
>

1
p(n)

.

Now, we consider the following circuit C ′n,r. C
′
n,r feeds Cn with input (e, Ee(1n; r),

1n, h(x)) and outputs a value that Cn outputs. Thus it is easy to transform Cn

to C ′n,r in probabilistic polynomial time. Then

Pr
G;x∈Xn Mn

r∈U Rn

[
Cn(G1(1n), EG1(1n)(x; r), 1n, h(x)) = f(x)

]

− Pr
G;x∈Xn Mn

r∈U Tn

[
Cn(G1(1n), EG1(1n)(1n; r), 1n, h(x)) = f(x)

]
>

1
p(n)

,

where {Tn} is q(n)-TRSF. Let xn be a string for which the difference above is
maximum over Xn. Using this xn, we construct a new circuit Dn as follows. On
input (e, Ee(α; r)), Dn feeds Cn with input (e, Ee(α; r), 1n, h(xn)) and outputs
1 if Cn outputs f(xn); otherwise Dn outputs 0. Then

Pr
G;r∈U Rn

[
Dn(G1(1n), EG1(1n)(xn; r)) = 1

]

− Pr
G;r∈U Tn

[
Dn(G1(1n), EG1(1n)(1n; r)) = 1

]
>

1
p(n)

.

This contradicts the hypothesis that the encryption scheme has skew-indistin-
guishable encryptions. ��
Proof. (Lemma 3) Suppose that 〈(G, M, E, D), {Tn}〉 ∈ SSq, where {Tn} is
q(n)-TRSF. Then there exists an encryption scheme (G, M, E′, D′) such that
〈(G, M, E′, D′), {T ′n}〉 ∈ SSq, where {T ′n} is (q(n) + 1)-TRSF, E′e(α; r) =
Ee(α; r1)r2, D′d(β) = Dd(β′), r = r1r2, |r2| = 1, and β′ is the prefix of β
of length |β| − 1. Let V be a non-BPP subset (i.e., tally set) of 1∗. We con-
sider a QRSF {Rn} = {{0, 1}q(n)b}, where b = 1 if 1n ∈ V ; b = 0 otherwise.
Since the last bit of the ciphertext message is always constant of all cipher-
text messages specified by security parameter n, any distinguishing circuit can-
not use the last bit of the ciphertext message. ¿From Lemma 1, it follows that
〈(G, M, E, D), {Tn}〉 ∈ INDqq. Thus 〈(G, M, E′, D′), {Rn}〉 ∈ INDqq.

On the other hand, 〈(G, M, E′, D′), {Rn}〉 	∈ SSq. We will show this by
contradictory. We assume that 〈(G, M, E′, D′), {Rn}〉 ∈ SSq. In other words,
there exists a probabilistic polynomial transformation T such that for every
polynomial-size circuit {Cn}n∈N , for every probability ensemble {Xn}n∈N satis-
fying that Xn is a probability distribution on Mn, for every pair of polynomially-
bounded functions f, h : {0, 1}∗ → {0, 1}∗, every polynomial p(·) and sufficiently



98 Takeshi Koshiba

large n,

Pr
G,Xn;r∈U Rn

[
Cn(G1(1n), EG1(1n)(Xn; r), 1n, h(Xn)) = f(Xn)

]

< Pr
T,G,Xn

[
C ′n(G1(1n), 1n, h(Xn)) = f(Xn)

]
+

1
p(n)

where C ′n = T (Cn). Here, we consider a circuit family {Cn}n∈N , probability
ensemble {Xn}n∈N , polynomially-bounded functions f, h satisfying the follow-
ing: Cn outputs the last bit of the ciphertext message; Pr[Xn = 1n] = 1; h is
constant; and f(Xn) = 1 if 1n ∈ V , f(Xn) = 0 otherwise. Then Cn always com-
putes f(Xn) correctly. We can say that there exists a probabilistic polynomial
transformation T such that for sufficiently large n,

1− Pr
G,T

[
T (Cn)(G1(1n), 1n) = f(1n)

]
<

1
p(n)

.

Since {Cn}n∈N can be implemented by a (uniform) constant size circuit family,
T ({Cn}n∈N ) can be also implemented by a (uniform) probabilistic polynomial-
time algorithm B. Thus, we can say that B computes the membership of a non-
BPP tally set. This is a contradiction. Therefore 〈(G, M, E′, D′), {Rn}〉 	∈ SSq.

��
Proof. (Lemma 4) Suppose that 〈(G, M, E, D), {Tn}〉 ∈ INDqt, where {Tn}
is q(n)-TRSF. Then there exists an encryption scheme (G, M, E′, D′) such that
〈(G, M, E′, D′), {T ′n}〉 ∈ INDqt, where {T ′n} is (q(n) + 1)-TRSF, E′e(α; r) =
Ee(α; r1)r2, D′d(β) = Dd(β′), r = r1r2, |r2| = 1, and β′ is the prefix of β of
length |β| − 1. We consider a QRSF {Rn} = {{0, 1}q(n)1}. It is easy to see that
〈(G, M, E′, D′), {Rn}〉 	∈ INDqt because a distinguisher can use the last bit of
the ciphertext message.

On the other hand, from Lemma 2, it follows that 〈(G, M, E, D), {Tn}〉 ∈
SSq. Since, in the scheme (G, M, E′, D′), the last bit of the ciphertext message
gives no information on the plaintext message, 〈(G, M, E′, D′), {Rn}〉 ∈ SSq.

��

4.2 Properties of QRSF and Their Effects on the Security

In this subsection, we consider how properties of QRSF affect on the security
of encryption schemes. We will especially give a sufficient condition that seman-
tic security and indistinguishability become equivalent in the quasi-randomness
framework.

Theorem 3. Suppose that 〈(G, M, E, D), {Rn}〉 ∈ INDqq. If {Rn} is semi-
random, then 〈(G, M, E, D), {Rn}〉 ∈ INDqt.

We note that since the true randomness is semi-random, the equivalence be-
tween semantic security and indistinguishability (w.r.t. the true randomness)
can be shown as a corollary of Lemmas 1, 2 and Theorem 3. The above theorem



Secure Randomness in Public-Key Encryption Schemes 99

says that if an encryption scheme is semantically secure in the true-randomness
framework and we use “semi-random” sequence as random inputs to the en-
cryption algorithm then the encryption scheme is still semantically secure in the
quasi-randomness framework.

Proof. We show that if an encryption scheme (G, M, E, D) w.r.t. {Rn} has in-
distinguishable encryptions and {Rn} is semi-random, then (G, M, E, D) w.r.t.
{Rn} has skew-indistinguishable encryptions.

Now, we assume that there exist a polynomial-size circuit family {Dn}n∈N

and a polynomial p(·) such that for infinitely many n and for some x, x̃ ∈Mn∣∣∣∣ Pr
G;r′∈U Tn

[
Dn(G1(1n), EG1(1n)(x; r′)) = 1

]

− Pr
G;r∈U Rn

[
Dn(G1(1n), EG1(1n)(x̃; r)) = 1

]∣∣∣∣ >
1

p(n)
.

If x = x̃ then it is easy to construct a polynomial-size circuit from Dn and Ee to
distinguish r′ and r using the circuit. This contradicts that {Rn} is semi-random.
Thus we have only to consider the case x 	= x̃.

Since {Rn} is semi-random, for any polynomial p′(·) such that p(n) < p′(n),∣∣∣∣ Pr
G;r′∈U Tn

[
Dn(G1(1n), EG1(1n)(x; r′)) = 1

]

− Pr
G;r∈U Rn

[
Dn(EG1(1n)(x; r)) = 1

]∣∣∣∣ <
1

p′(n)
.

Therefore, there exists a polynomial p′′(·) such that∣∣∣∣ Pr
G;r∈U Rn

[
Dn(G1(1n), EG1(1n)(x; r)) = 1

]

− Pr
G;r∈U Rn

[
Dn(G1(1n), EG1(1n)(x̃; r)) = 1

]∣∣∣∣ >
1

p(n)
− 1

p′(n)
>

1
p′′(n)

.

This contradicts the hypothesis that the scheme has indistinguishable encryp-
tions. ��

Theorem 4. Suppose that 〈(G, M, E, D), {Rn}〉 ∈ INDqq. If {Rn} is sam-
plable, then 〈(G, M, E, D), {Rn}〉 ∈ SSq.

The above theorem says that if the combination of the encryption scheme and
quasi-randomness sequences as random inputs to the encryption algorithm has
indistinguishable encryptions then the combined encryption scheme is seman-
tically secure in the quasi-randomness framework. Namely, the above theorem
offers us another way to show that the encryption scheme is semantically secure
(in the quasi-randomness framework). The above theorem also says that the
property of “semi-randomness” for random inputs to the encryption algorithm
is not essential. It is open to further discussion whether or not the combined
encryption schemes are semantically secure in the quasi-randomness framework
even though the quasi-random sequences are not semi-random or even though
the quasi-random sequences have not been proved to be semi-random yet.
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Proof. We show that if (G, M, E, D) w.r.t. q(n)-QRSF {Rn} has indistinguish-
able encryptions and {Rn} is samplable then (G, M, E, D) w.r.t. q(n)-QRSF
{Rn} is semantically secure.

Now, we assume that, for any transformation T , there exist a polynomial-size
circuit family {Cn}, a polynomial p(·), and polynomially-bounded functions f, h
such that for infinitely many n,

Pr
G;x∈Xn Mn

r∈U Rn

[
Cn(G1(1n), EG1(1n)(x; r), 1n, h(x)) = f(x)

]

− Pr
T,G;x∈Xn Mn

r∈U Rn

[
C ′n(G1(1n), 1n, h(x)) = f(x)

]
>

1
p(n)

,

where C ′n = T (Cn). Now, we consider the following circuit C ′n,r′ . C ′n,r′ feeds Cn

with input (e, Ee(1n; r)) and outputs a value that Cn outputs. Since {Rn} is
samplable, r ∈ Rn is samplable in polynomial time using the truly random r′.
Thus it is easy to transform Cn to C ′n,r′ in probabilistic polynomial time. Then

Pr
G;x∈Xn Mn

r∈U Rn

[
Cn(G1(1n), EG1(1n)(x; r), h(x)) = f(x)

]

− Pr
G;x∈Xn Mn

r′∈U{0,1}q(n);r←Sn(r′)

[
Cn(G1(1n), EG1(1n)(1n; r), h(x)) = f(x)

]
>

1
p(n)

,

where Sn is the sampling circuit. Since the statistical difference between {Sn(r)}
and the uniform distribution on Rn is less than 1/4p(n) (actually it is less than
1/p′(n) for any polynomial p′(·)), we have,

Pr
G;x∈Xn Mn

r∈U Rn

[
Cn(G1(1n), EG1(1n)(x; r), 1n, h(x)) = f(x)

]

− Pr
G;x∈Xn Mn

r∈U Rn

[
Cn(G1(1n), EG1(1n)(1n; r), 1n, h(x)) = f(x)

]

> Pr
G;x∈Xn Mn

r′∈U{0,1}q(n);r←Sn(r′)

[
Cn(G1(1n), EG1(1n)(1n; r), 1n, h(x)) = f(x)

]

− Pr
G;x∈Xn Mn

r∈U Rn

[
Cn(G1(1n), EG1(1n)(1n; r), 1n, h(x)) = f(x)

]
+

1
p(n)

>
1

p(n)
−

∑
r

(
Pr

G;x∈Xn Mn

[
Cn(G1(1n), EG1(1n)(1n; r), 1n, h(x)) = f(x)

]·
∣∣∣Pr[r ← Sn(r′)]− Pr[r ∈U Rn]

∣∣∣
)

>
1

p(n)
−

∑
r

∣∣∣Pr[r ← Sn(r′)]− Pr[r ∈U Rn]
∣∣∣

=
1

p(n)
− 2 ·max

A

{∣∣∣ Pr
r′∈U{0,1}q(n)

[
Sn(r′) ∈ A

]− Pr
r∈U Rn

[
r ∈ A

]∣∣∣
}

>
1

2p(n)
.

Let xn be a string for which the difference above is maximum over Xn. Using
this xn, we construct a new circuit Dn as follows. On input (e, Ee(α; r)), Dn
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feeds Cn with input (e, Ee(α; r), 1n, h(xn)) and outputs 1 if Cn outputs f(xn);
otherwise Dn outputs 0. Then

Pr
G;r∈U Rn

[
Dn(G1(1n), EG1(1n)(xn; r)) = 1

]

− Pr
G;r∈U Tn

[
Dn(G1(1n), EG1(1n)(1n; r)) = 1

]
>

1
2p(n)

.

This contradicts the hypothesis that the scheme has indistinguishable encryp-
tions. ��

As a corollary, we have the following. The below gives us a better sufficient
condition for the equivalence between semantic security and indistinguishability.

Corollary 1. Suppose that {Rn} is semi-random or samplable. Then 〈(G, M, E,
D), {Rn}〉 ∈ INDqq if and only if 〈(G, M, E, D), {Rn}〉 ∈ SSq.

Theorem 5. There exists 〈(G, M, E, D), {Rn}〉 ∈ INDqt such that {Rn} is not
semi-random.

Although we have a better sufficient condition for the equivalence between
semantic security and indistinguishability, the condition is not necessary for the
equivalence. The above theorem actually says that neither semi-randomness nor
polynomial-time pseudo-randomness is necessary for the equivalence.

Proof. Suppose that 〈(G, M, E, D), {Tn}〉 ∈ INDqt, where {Tn} is q(n)-TRSF.
Then there exists an encryption scheme (G, M, E′, D′) such that 〈(G, M, E′, D′),
{T ′n}〉 ∈ INDqt, where {T ′n} is (q(n) + 1)-TRSF, E′e(α; r) = Ee(α; r1), D′d(β) =
Dd(β), r = r1r2 and |r2| = 1. We consider a QRSF {Rn} = {{0, 1}q(n)1}. It
is easy to see that 〈(G, M, E′, D′), {Rn}〉 ∈ INDqt, because the last bit of the
supplementary random input is not used in encrypting.

On the other hand, it is easy to see that {Rn} and {T ′n} are distinguishable.
In other words, {Rn} is not semi-random. ��

5 Concluding Remarks

We have introduced a framework in which we can uniformly and comprehen-
sively discuss security notions of public-key encryption schemes even for the
case where some weak generator producing seemingly random sequences is used
to encrypt plaintext messages. Since the new framework separates chosen plain-
text attack and ciphertext only attack, we consider the security under the COA
model in the framework. We have proved that indistinguishability and seman-
tic security are not equivalent in general. On the other hand, we have derived
some sufficient condition for the equivalence and shown that polynomial-time
pseudo-randomness is not always necessary for the equivalence.

The discussion has been restricted on the case of ciphertext only attack, so
we will consider the case of chosen plaintext attack and chosen ciphertext attack.
We will also consider non-malleability [8] in the new framework.
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