
Compact Encoding of Non-adjacent Forms with
Applications to Elliptic Curve Cryptography�

Marc Joye1 and Christophe Tymen2

1 Gemplus Card International
Parc d’Activités de Gémenos, B.P. 100, 13881 Gémenos, France

marc.joye@gemplus.com
2 Gemplus Card International

34 rue Guynemer, 92447 Issy-les-Moulineaux, France
christophe.tymen@gemplus.com

Abstract. Techniques for fast exponentiation (multiplication) in vari-
ous groups have been extensively studied for use in cryptographic prim-
itives. Specifically, the coding of the exponent (multiplier) plays an im-
portant role in the performances of the algorithms used. The crucial
optimization relies in general on minimizing the Hamming weight of
the exponent (multiplier). This can be performed optimally with non-
adjacent representations. This paper introduces a compact encoding of
non-adjacent representations that allows to skip the exponent recoding
step. Furthermore, a straightforward technique for picking random num-
bers that already satisfy the non-adjacence property is proposed. Several
examples of application are given, in particular in the context of scalar
multiplication on elliptic curves.

Keywords. Public-key cryptography, non-adjacent forms, elliptic curves,
smart-cards.

1 Introduction

Most public-key cryptographic primitives rely on group exponentiations (or mul-
tiplications for additively written groups). We refer the reader to [3] for an ex-
cellent survey on exponentiation techniques. Many implementations are based
on the square-and-multiply methods or one of their numerous improvements, for
computing gx. One of these uses Reitwiesner’s recoding algorithm [11], which
requires the knowledge of g−1. This supposes that the value of g−1 is already
available (i.e., precomputed) or easily computable, as is the case for elliptic
curves [8].
Reitwiesner’s algorithm expresses exponent x with the set of digits {−1, 0, 1}.

Because of the sign “−”, each digit is usually encoded with two bits and so,
twice the size of the usual binary representation of x is needed to store its
Reitwiesner’s representation. That’s why it is suggested to compute it “on the
fly” when needed [4]. In this paper, we exploit the non-adjacency property of
� Some techniques presented in this paper are patent pending.

K. Kim (Ed.): PKC 2001, LNCS 1992, pp. 353–364, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

354 Marc Joye and Christophe Tymen

Reitwiesner’s representation to encode the exponent with the same efficiency
(up to 1 bit) as the binary representation.
Moreover, we present a straightforward method to pick a r-bit random num-

ber so that it already satisfies the non-adjacency property. In this case too,
NAF-recoding is thus useless. We prove that the numbers we generate in this
way are exactly the elements of {0, 1}r; there is therefore no loss of security for
cryptographic applications. We then extend our method to τ -NAF recoding for
use on Koblitz curves and conjecture, based on numerical evidences, that the
numbers we generate are almost perfectly distributed in the set {0, 1}r.

The rest of this paper is organized as follows. In Section 2, we briefly re-
view elliptic curves and Koblitz curves. Section 3 presents our new encoding
method. In Section 4, we explain how to pick a random number satisfying the
non-adjacency property. Section 5 highlights the benefits of our techniques in
a Diffie-Hellman key exchange and for ElGamal encryption on a smart-card
implementation. Finally, we conclude in Section 6.

2 Elliptic Curves

Up to a birational equivalence, an elliptic curve over a field K is a plane nonsin-
gular cubic curve with a K-rational point [12, Chapter III]. Elliptic curves are
often expressed in terms of Weierstraß equations:

E/K : y2 + a1xy + a3y = x3 + a2x2 + a4x+ a6 (1)

where a1, . . . , a6 ∈ K. In characteristic Char(K) �= 2, 3, the equation may be
simplified to y2 = x3+a4x+a6, and in characteristic Char(K) = 2 the equation
(for a non-supersingular curve) may be simplified to y2 + xy = x3 + a2x2 + a6.

2.1 Scalar Multiplication

Together with an extra point O, the points on an elliptic curve form an Abelian
group. We use the additive notation. The computation of

[k]P := P + P + · · ·+ P︸ ︷︷ ︸
k times

is usually carried out through the binary method. However, noting that if P =
(px, py) its inverse is given by −P = (px,−py − a1px − a3), we see that the
computation of an inverse is virtually free. So we can use a binary signed-digit
representation for k, i.e., (. . . , k2, k1, k0) with ki ∈ {0, 1,−1}. This speeds up the
scalar multiplication by a factor of 11.11% compared to the binary method [8]
(see also § 3.1), on average.

Title Suppressed Due to Excessive Length 355

2.2 Frobenius Expansions

In [6], Koblitz suggested the use of so-called anomalous binary curves. These are
elliptic curves over GF(2n) given by

En : y2 + xy = x3 + x2 + 1 or Ẽn : y2 + xy = x3 + x2 + 1 . (2)

The Frobenius map, ϕ : (x, y) 	→ ϕ(x, y) = (x2, y2), satisfies the characteristic
equation T 2 − T + 2 = 0 for En, and T 2 + T + 2 = 0 for Ẽn. It corresponds to
multiplication by τ = (1 +

√−7)/2 on En, and by −τ̄ = (−1 +√−7)/2 on Ẽn.
Since multiplication by τ is cheap (i.e., [τ](x, y) = (x2, y2)), it is advantageous

to write k in τ -adic expansion (i.e., k =
∑
ki τ

i) when computing [k](x, y) on
En. Note also that since τn = 1, we can first reduce k modulo (τn − 1) [7].
The advantage resides in that the norm of k, as an element of the Euclidean
domain Z[τ], is k2 = O(22n) and the norm of k mod (τn − 1) is smaller than
Norm(τn −1) = #En = O(2n) by Hasse Theorem [12, Theorem 1.1, Chapter V].
Consequently, k reduced modulo (τn − 1) has a τ -NAF representation of length
almost equal to the length of its binary representation.

3 How to Represent the Multiplier?

3.1 Non-adjacent Forms

A b-non-adjacent form (or b-NAF in short) of length n for an element x in a
ring A is a sequence of digits (dn−1 · · · d0) such that

x =
n−1∑
i=0

di b
i (3)

and

di · di+1 = 0, ∀i . (4)

Equation (4) captures the property of non-adjacency. In the sequel, a b-
NAF representation for x will be denoted by NAFb(x). Moreover, the integer
associated to a b-NAF, say d, will be denoted by ϑ(d); i.e., if d = (dn−1 · · · d0)
then ϑ(d) :=

∑n−1
i=0 di b

i.

Reitwiesner [11] proved that each integer has exactly one 2-NAF represen-
tation. More importantly, he proved that the 2-NAF minimizes the Hamming
weight amongst all the binary signed-digit representations. NAFs are thus par-
ticularly suitable for fast exponentiations [3]. See also [8,13] for applications to
elliptic curves. Another representation minimizing the Hamming weight is de-
scribed in [5].

356 Marc Joye and Christophe Tymen

3.2 New Compact Encoding

An r-bit integer has a 2-NAF representation of (r + 1) digits in {0, 1,−1} [11]
and hence needs 2(r+1) bits to be encoded, that is, twice more than the binary
representation. However, we can exploit the non-adjacency property (Eq. (4)),
that is, a ‘1’ or a ‘−1’ is always followed by a ‘0’. We therefore suggest the
following simple right-to-left encoding:1

R :


01 	→ 01
01̄ 	→ 11
0 	→ 0

, R−1 :



01 	→ 01
11 	→ 01̄
0 	→ 0

. (5)

With conversion R, a 2-NAF representation requires only one bit more than
the binary representation to be encoded. For example, by right-to-left apply-
ing R, NAF2(29) = (1001̄01) is encoded into 101101:

(1 0 01̄ 01) 	→ (1 0 11 01)
Moreover, the inverse right-to-left transformation, R−1, unambiguously gives
back the NAF representation.
It is also possible to design a left-to-right encoding. The previous encoding

implicitly assumes that the NAF begins with a ‘0’. For the left-to-right transfor-
mation, we add an artificial ending ‘0’, e.g., NAF2(29) = (1001̄01.0). Then we
left-to-right apply transformation


10↔ 10
1̄0↔ 11
0↔ 0

. (6)

(Note that if the last obtained digit is ‘0’, we may discard it.) Again with our
example, NAF2(29) is left-to-right encoded into 100111:

(10 0 1̄0 1.0) 	→ (10 0 11 1.0)
and the inverse transformation gives back the NAF representation.

3.3 Frobenius Expansions

On a Koblitz curve En (see Eq. (2)), it can be shown ([3, Theorems 5 and 6]) that
every (rational) integer 0 ≤ k < #En has a (non-unique) τ -NAF representation

k ≡
n+1∑
i=0

ki τ
i (mod (τn − 1)), ki ∈ {0, 1,−1} , (7)

and that this NAF representation has 1/3 of nonzero digits, on average. The
same also holds for the twisted curve Ẽn.
Consequently, the proposed encodings (5) and (6) can be used to efficiently

store k (or more exactly k mod (τn − 1)) in the computation of [k](x, y) on an
anomalous binary curve, as well.
1 For convenience, we write 1̄ for −1.

Title Suppressed Due to Excessive Length 357

4 How to Pick a Random Number?

4.1 Generating a Random Integer

Cryptographic applications frequently require random numbers of a given length.
We show here how to obtain an r-bit random number already in the non-adjacent
form. Our technique is based on transformation R−1 (cf. Eq. (5)).
First, pick a random number k in {0, 1}r. Next, right-to-left apply R−1 to

the binary representation of k. If the most significant digit of the resulting rep-
resentation is 1̄, pad the representation with ‘0’ until position (r− 1) and add a
‘1’ in position r. The representation resulting from the whole transformation is
referred to as the R∗-representation.
Here is an example to illustrate the technique. Let r = 3. So the set of

3-bit numbers, their 2-NAF representations and their R∗-representations are
respectively given by

k NAF2(k) R∗(k)

0 (0) (0)
1 (1) (1)
2 (10) (10)
3 (101̄) (1001̄)
4 (100) (100)
5 (101) (101)
6 (101̄0) (101̄0)
7 (1001̄) (101̄)

From this example, we see that:

Theorem 1. Transformation R∗ induces a permutation on the set
{
NAF2(k) |

k ∈ {0, 1}r
}
.

Proof. By construction, transformationR−1 uniquely maps the representation of
a r-bit number k to a binary signed-digit representation. When the leading digit
is 1̄, a ‘1’ is added in position r; the corresponding representations are the only
ones having exactly (r + 1) digits. Therefore, each r-bit binary representation
is transformed by R∗ into a different (r + 1)-digit representation. Noting that
all these R∗-representations verify the NAF property (Eq. (4)), are all different,
and represent numbers smaller than 2r , the theorem follows. ��

4.2 Generating a Random Multiplier on a Koblitz Curve

Solinas proposed in [13] an algorithm to compute a τ -NAF of length less than
n + 2 for a multiplier on a Koblitz curve (cf. Eq. (7)). This algorithm involves
two steps: an Euclidean division in the ring Z[τ] and the computation of the
τ -NAF itself. The idea here is simply to generate directly a random NAF of the
required length using transformation (5), and then to use the associated integer
as a multiplier.

358 Marc Joye and Christophe Tymen

Let P be a base-point on a Koblitz curve En. For some primes n, one has
#En = 2 · prime (or #Ẽn = 4 · prime) [6]. So w.l.o.g. we suppose that P has
prime order p and that p ≥ 2n−2.
Now, in order to randomly generate a multiplier for P we proceed as follows.

We pick a random x in {0, 1}n+3. Next, using transformation R−1 we set g :=
ϑ(R−1(x)) and use it as a random multiplier when computing [g]P on En. (Note
here that the length of x is chosen to be n+ 3 since the leading digit of R−1(x)
is always 0.) The arising question is to determine the distribution of g in [0, p).
First, it is clear thatR−1 generates all the NAF representations of length smaller
than or equal to n + 2. Hence, from the discussion in § 3.3, ϑ(R−1(x)) reaches
all the elements in {0, . . . , p− 1}; or equivalently

{0, . . . , p− 1} ⊆ {
g = ϑ(R−1(x)) | x ∈ {0, 1}n+3} .

To estimate the quality of g, we bound the statistical difference of ϑ(R−1(x))
where x is considered as a random variable uniformly distributed in {0, 1}n+3.
The following argument does not conclude but gives evidences to conjecture that
the distribution g is close to the uniform one.
The statistical difference of g is defined as

δ(g) :=
1
2

p−1∑
i=0

∣∣∣∣Pr(g = i)− 1p
∣∣∣∣ . (8)

The next lemmas respectively give a bound on the statistical difference in term
of exponential sums and a formula to approximate it numerically. Their proofs
are given in appendix. In the sequel, we let � denote the usual complex number
verifying �2 = −1, whereas i is merely used as an index.
Lemma 1. Let p be a prime and let X be a random variable in [0, . . . , p − 1].
Then,

δ(X) ≤ 1
2

√
p−1∑
i=1

|E[χ(iX)|2

where χ(x) = e
2�πx

p .

Lemma 2. E[χ(ig)] is equal to a0, where (a0, . . . , an+2) is the sequence recur-
sively defined by

aj =
1
2
[
aj+1 + cos(2iπτ j/p) aj+2

] ∀0 ≤ j ≤ n , (9)

with an+1 = 1
2 [cos(2iπτ/p) + 1] and an+2 = 1.

Letting f(i) = E[χ(ig)], Lemmas 1 and 2 imply that

δ(g) ≤ B :=

√
p−1∑
i=1

f(i)2 . (10)

Title Suppressed Due to Excessive Length 359

The numerical computation of this sum becomes untractable for large values
of p. Nevertheless, considering numerical experiments, we conjecture an esti-
mated bound for δ(g).

Theorem 2 (Conjectured). On a Koblitz curve En, for n ≥ 100, we have
δ(g) ≤ 2−n/5 .

Table 1 summarizes different values of Bsamp := p−1
Nsamp

√∑Nsamp
j=1 f(ij) for

random points ij . The values are obtained using various n and p corresponding
to Koblitz curves. The list of the primes used is given in appendix. We took
Nsamp = 10000. Of course, Nsamp is completely negligible compared to p, and
these experiments do not prove anything about the exact value of the bound.
Nevertheless, we remark that Bsamp ≤ 2−n/αn where αn seems to decrease as n
grows. This fact indicates that our conjecture seems reasonable.

Table 1. Estimated bounds for δ(g).

n �log2 Bsamp� αn

109 -23 4.7
113 -27 4.2
131 -39 3.6
163 -40 4.1
233 -75 3.1
239 -80 3.0
277 -93 3.0
283 -87 3.3
359 -120 3.0
409 -158 2.6
571 -196 3.0

5 Applications

This section gives a non-exhaustive list of practical applications of the new en-
codings (Eqs (5) and (6)), namely the Diffie-Hellman key exchange and the
ElGamal encryption. Finally, we discuss the implications for a smart-card im-
plementation.

5.1 Diffie-Hellman Key Exchange

Let E be an elliptic curve over Fq and let G be a base-point on E. To exchange
a key, Alice and Bob choose a random number xA and xB , respectively. Alice
computes YA = [xA]G and sends it Bob. Likewise, Bob computes YB = [xB]G

360 Marc Joye and Christophe Tymen

and sends it to Alice. Their common key is KAB = [xA · xB]G. Alice computes
it as [xA]YB and Bob as [xB]YA.
The advantage of using the proposed encodings is that randoms xA and

xB can be seen as NAF representations and so the computations are speeded
up since subtraction has the same cost as an addition over an elliptic curve.
Moreover, if uniformity is desired, Section 4 shows that the proposed encodings
can easily be adapted to meet this additional requirement (under a reasonable
conjecture for Koblitz curves).

5.2 ElGamal Encryption

Again, let E be an elliptic curve over Fq and let G be a point on E. The private
key of Alice is xA and her public key is YA = [xA]G. To encrypt a message m for
Alice, Bob first represents m as a point M ∈ E. Next, for a randomly chosen k,
he computes C1 = [k]G and C2 = [k]YA+M . The ciphertext is the pair {C1, C2}.
To decrypt {C1, C2}, using her private key, Alice recovers M = C2− [xA]C1 and
so message m.
Here too, the proposed encodings are advantageous since the NAFs do not

have to be computed. When computing multiples of points on E, Alice and Bob
just consider the binary expansion of the scalar multiplier as a representation
given by encoding (5) or (6). Note that since the mappings are 1-to-1, there is
no loss of security; moreover as before, if desired, uniformity can be achieved.

5.3 Smart-Card Implementation

The proposed methods are particularly suitable for smart-cards. A direct genera-
tion of the multiplier avoids the precomputations proposed in [13]. Furthermore,
the RAM space needed for the scalar multiplication is smaller, because the mul-
tiplier can be generated on the fly, and does not need to be stored beforehand.
Besides, the code space required for the routines that precompute the NAF is
quite large. Consequently, the proposed encodings enable to save a non-negligible
amount of space in ROM or EEPROM.

6 Conclusion

We proposed a new method to encode in a compact way the non-adjacent form
of an integer. We gave several applications of this encoding, including the gener-
ation of a random multiplier in the context of elliptic curves. For Koblitz curves,
we gave an argument to conjecture a bound on the distribution of this gener-
ator. Finally, we exposed practical examples of this encoding for some widely
used cryptographic schemes.

References

1. W. Diffie and M.E. Hellman, “New directions in cryptography,” IEEE Trans. on
Information Theory, vol. 22, pp. 644–654, 1976.

Title Suppressed Due to Excessive Length 361

2. T. ElGamal, “A public key cryptosystem and a signature scheme based on discrete
logarithms,” IEEE Trans. on Information Theory, vol. 31, pp. 469–472, 1985.

3. D.M. Gordon, “A survey of fast exponentiation methods,” J. Algorithms, vol. 27,
pp. 129–146, 1998.

4. IEEE Std P1363-2000, IEEE Standard Specifications for Public-Key Cryptogra-
phy, IEEE Computer Society, August 20, 2000.

5. M. Joye and S.-M. Yen, “Optimal left-to-right binary signed-digit recoding,” IEEE
Trans. Computers, vol. 49, pp. 740–748, 2000.

6. N. Koblitz, “CM-curves with good cryptographic properties,” Advances in Cryp-
tology – CRYPTO ’91, LNCS 576, pp. 279–287, Springer-Verlag, 1992.

7. W. Meier and O. Staffelbach, “Efficient multiplication on certain non-supersingu-
lar elliptic curves,” Advances in Cryptology – CRYPTO ’92, LNCS 740, pp. 333–
344, Springer-Verlag, 1993.

8. F. Morain and J. Olivos, “Speeding up the computations on an elliptic curve using
addition-subtraction chains,” Theoretical Informatics and Applications, vol. 24,
pp. 531–543, 1990.

9. P. Nguyen and J. Stern, “The hardness of the hidden subset sum problem and
its cryptographic implications,” Advances in Cryptology – CRYPTO ’99, LNCS
1666, pp. 31–46, Springer-Verlag, 1999.

10. A. Pinkus and S. Zafrany, Fourier Series and Integral Transforms, Cambridge
University Press, 1997.

11. G.W. Reitwiesner, “Binary arithmetic,” Advances in Computers, vol. 1, pp. 231–
308, 1960.

12. J. H. Silverman, The Arithmetic of Elliptic Curves, GTM 106, Springer-Verlag,
1986.

13. J. A. Solinas, “An improved algorithm for arithmetic on a family of ellip-
tic curves,” Advances in Cryptology – CRYPTO ’97, LNCS 1294, pp. 357–371,
Springer-Verlag, 1997.

14. J. H. van Lint, Introduction to Coding Theory, GTM 86, Springer-Verlag, 3rd
edition, 1999.

A Proof of Lemmas 1 and 2

Similarly to [9], we make use of the Fourier transform in our proofs. We first
recall some basic notions (see [10, Chapter 1]).
Let p be a natural number. For each m = 0, . . . , p− 1, we define a vector in

C
p by

um =
(
1, e

2π�m
p , e

4π�m
p , . . . , e

2(p−1)π�m
p

)
.

We also define em = um

‖um‖ =
um√

p . The system of vectors {em}p−1
m=0 is an or-

thonormal system in C
p with the standard inner product.2 So, for every vector

v ∈ C
p, we can write

v =
p−1∑
m=0

〈v, em〉em .

2 That is, 〈(a0, . . . , ap−1), (b0, . . . , bp−1)〉 = ∑p−1
j=0 aj bj .

362 Marc Joye and Christophe Tymen

For m = 0, . . . , p− 1, the coefficients FT (v)m := 〈v, em〉 are called the Fourier
coefficients of v. The sequence FT (v) = {FT (v)m}p−1

m=0 is called the transform
Fourier of v.

Lemma 1. Let p be a prime and let X be a random variable in [0, . . . , p − 1].
Then,

δ(X) ≤ 1
2

√
p−1∑
i=1

|E[χ(iX)|2

where χ(x) = e
2�πx

p .

Proof. We let a = (ai)1≤i≤p−1 and u = (ui)1≤i≤p−1 denote the sequences de-
fined by ai = Pr(X = i) and ui = 1

p , respectively. The Cauchy-Schwarz inequal-
ity yields

p−1∑
i=0

|(a − u)i(u)i| ≤
√

p−1∑
i=0

|(a − u)i|2
√

p−1∑
i=0

|(u)i|2

⇐⇒ δ(X) ≤
√
p

2

√
p−1∑
i=0

|(a − u)i|2 =
√

p−1∑
i=0

|FT (a − u)i|2 ,

by noting that the Fourier transform is an isometry when p is prime.
Furthermore, since FT (a)0 = 1√

p , FT (a)i =
1√
p

∑p−1
j=0 Pr(X = j)χ(ij) =

1√
pE[χ(iX)], and FT (u) = (

1√
p , 0, . . . , 0), we finally obtain

δ(X) ≤
√
p

2

√
p−1∑
i=1

|FT (a)i|2 = 12

√
p−1∑
i=1

|E[χ(iX)]|2 ,

as required. ��

Lemma 2. E[χ(ig)] is equal to a0, where (a0, . . . , an+2) is the sequence recur-
sively defined by

aj =
1
2
[
aj+1 + cos(2iπτ j/p) aj+2

] ∀0 ≤ j ≤ n ,

with an+1 = 1
2 [cos(2iπτ/p) + 1] and an+2 = 1.

Proof. Recall that g is obtained from x by right-to-left applying R−1 to x =
(xn+2 · · ·x0), that is, by right-to-left applying the rules


01 	→ 01
11 	→ 01̄
0 	→ 0

.

Title Suppressed Due to Excessive Length 363

If we denote by y = (dn+1 · · · d0) the result of this transformation, the inde-
pendence of the xi’s implies that for j > 0


Pr(dj = 0|dj−1 = 0) = Pr(xj = 0) = 1/2
Pr(dj = 1|dj−1 = 0) = Pr(xj = 1;xj+1 = 0) = 1/4
Pr(dj = 1̄|dj−1 = 0) = Pr(xj = 1;xj+1 = 1) = 1/4
Pr(dj = 0|dj−1 �= 0) = 1

,

and 

Pr(d0 = 0) = Pr(x0 = 0) = 1/2
Pr(d0 = 1) = Pr(x0 = 1;x1 = 0) = 1/4
Pr(d0 = 1̄) = Pr(x0 = 1;x1 = 1) = 1/4

.

In particular, the sequence of digits di forms a Markov chain. Now, for d ∈
{−1, 0, 1} and 1 ≤ j ≤ n+ 1, we define

xj,d = E
[
χ
(
i

n+1∑
l=j

dlτ
l
) ∣∣ dj−1 = d

]
.

By convention, we also define xn+2,0 = 1 and x0,0 = E[χ(ig)]. Using Bayes’s
formula and the definition of a Markov chain, we have

xj,0 =
∑

d′∈{1̄,0,1}
Pr(dj = d′|dj−1 = 0)χ(i τ jd′)E

[
χ
(
i

n+1∑
l=j+1

dlτ
l
) ∣∣ dj−1 = 0; dj = d′

]

=
∑

d′∈{1̄,0,1}
Pr(dj = d′|dj−1 = 0)χ(i τ jd′)xj+1,d′

=
1
4
(
xj+1,1̄ χ(−i τ j) + 2xj+1,0 + xj+1,1χ(i τ j)

)
.

Furthermore, xj,1 = xj,1̄ = xj+1,0 if j ≤ n, and xn+1,1 = xn+1,1̄ = 1 = xn+2,0
because of the non-adjacency property. Therefore, for 0 < j ≤ n,

xj,0 =
1
2
(
xj+2,0 cos(2iπτ j/p) + xj+1,0

)
. (11)

Bayes’s formula applied to χ(ig) yields

E[χ(ig)] = Pr(d0 = 1̄)χ(−i)x1,1̄ + Pr(d0 = 0)x1,0 + Pr(d0 = 1)χ(i)x1,1 .

Consequently, as x1,1 = x1,1̄ = x2,0, the recursion formula (11) holds for
all 0 ≤ j ≤ n. It remains to compute xn+1,0 = E[χ(i dn+1τ

n+1)|dn = 0]. By
definition of partial expectation, this is equal to

xn+1,0 = Pr(dn+1 = 1̄|dn = 0)χ(−iτn+1) + Pr(dn+1 = 0|dn = 0) +
Pr(dn+1 = 1|dn = 0)χ(iτn+1)

=
1
2
[cos(2iπτ/p) + 1] ,

as τn+1 ≡ τ (mod p). Thus, setting aj = xj,0 for all 0 ≤ j ≤ n + 2 concludes
the proof. ��

364 Marc Joye and Christophe Tymen

B Values of p and τ Used in Table 1

n p, τ
109 p = 324518553658426701487448656461467

τ = 138423345589698157369693034392981
113 p = 5192296858534827627896703833467507

τ = 3126605487954413221319732774018522
131 p = 680564733841876926932320129493409985129

τ = 196511074115861092422032515080945363956
233 p = 3450873173395281893717377931138512760570940988862252126328087024741343

τ = 2598851043790259083579160746211533789223151387669521214510026908255781
239 p = 220855883097298041197912187592864814948216561321709848887480219215362213

τ = 11282863073195994094887783155777768965281647003338630860570162193181852
277 p = 607084028820540334662331845882349658325751104987865087648841755618916221\

65064650683
τ = 353992045507433384574068525952839139632658201745749716048780945143046006\

18244376699
283 p = 388533778445145814183892381364703781328481173379306132429587499752981582\

9704422603873
τ = 162253735759432174230582978486606377514699833490883648184574795706225844\

1461142295062
359 p = 587135645693458306972370149197334256843920637227079966811081824609485917\

244124494882365172478748165648998663
τ = 162253735759432174230582978486606377514699833490883648184574795706225844\

1461142295062
359 p = 587135645693458306972370149197334256843920637227079966811081824609485917\

244124494882365172478748165648998663
τ = 180233645531928689293637781182435953315044566263288800836105166268336446\

405029570298350415645598109280911691
409 p = 330527984395124299475957654016385519914202341482140609642324395022880711\

289249191050673258457777458014096366590617731358671
τ = 953774549173500098520882611070108682320029172836475855985603040002899322\

91317179548226087991151495035569641628246841874340
571 p = 193226876150862917234767594546599367214946366485321749932861762572575957\

1144780212268133978522706711834706712800825351461273674974066617311929\
682421617092503555733685276673

τ = 173761715345266710045062065436101013657569621494943574842405832235085200\
3406707707278390660980311506772309793318508751262778482693856154191237\
912594889446307146732063445937

	Introduction
	Elliptic Curves
	Scalar Multiplication
	Frobenius Expansions

	How to Represent the Multiplier?
	Non-adjacent Forms
	New Compact Encoding
	Frobenius Expansions

	How to Pick a Random Number?
	Generating a Random Integer
	Generating a Random Multiplier on a Koblitz Curve

	Applications
	Diffie-Hellman Key Exchange
	Eltmspace +thinmuskip {.1667em}Gamal Encryption
	Smart-Card Implementation

	Conclusion
	Proof of Lemmas 1 and 2
	Values of p and tau Used in Table 1

