Cryptanalysis of Two Sparse Polynomial Based
Public Key Cryptosystems

Feng Bao', Robert H. Deng', Willi Geiselmann?, Claus Schnorr?,
Rainer Steinwandt?, and Hongjun Wu!

! Kent Ridge Digital Labs
21 Heng Mui Keng Terrace, Singapore 119613
{baofeng,deng,hongjun}@krdl.org.sg

2 Institut fiir Algorithmen und Kognitive Systeme
Arbeitsgruppen Computeralgebra & Systemsicherheit, Prof. Dr. Th. Beth,
Universitat Karlsruhe, Am Fasanengarten 5, 76 131 Karlsruhe, Germany

{geiselma,steinwan}@ira.uka.de
3 Department of Mathematics/Computer Science
Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
schnorr@cs.uni-frankfurt.de

Abstract. The application of sparse polynomials in cryptography has
been studied recently. A public key encryption scheme EnRoot [4] and
an identification scheme SPIFI [I] based on sparse polynomials were
proposed. In this paper, we show that both of them are insecure.

The designers of SPIFI proposed the modified SPIFI [2] after Schnorr
pointed out some weakness in its initial version. Unfortunately, the mod-
ified SPIFT is still insecure. The same holds for the generalization of
EnRoot proposed in [2].

1 Introduction

The commonly used public key cryptosystems today are based on either the fac-
torisation problem or the discrete logarithm [3[7[§]. Some public key cryptosys-
tems based on polynomials have been developed recently, such as the NTRU [6]
and PASS [5]. EnRoot [4] and SPIFI [I] are two public key cryptosystems based
on so-called sparse polynomials. The sparse polynomials used in EnRoot and
SPIFI are of very high degree (as large as 23! — 2) while most of the terms are
with zero coefficients.

EnRoot is a public key encryption scheme and is based on the difficulty of
finding a solution to a given system of sparse polynomial equations over certain
large rings. SPIFI is an identification scheme and is based on the difficulty of
finding a sparse polynomial with specified values at some given points.

In this paper, we break EnRoot and SPIFI. Without dealing with the em-
bedded hard problems, both cryptosytems could be broken easily: the plaintext
of the original EnRoot could be recovered (without knowing the private key)
faster than the decryption algorithm; the private key of the original SPIFT could

K. Kim (Ed.): PKC 2001, LNCS 1992, pp. 153-[164] 2001.
© Springer-Verlag Berlin Heidelberg 2001

154 Feng Bao et al.

be determined faster than the key generation process. We also break the modi-
fied SPIFI [2] in this paper. The modified SPIFI was proposed to eliminate the
weakness of the original SPIFI pointed out by Schnorr.

This paper is organized as follows. Section 2 introduces the identification
scheme SPIFI and the modified version. Section 3 gives the cryptanalysis of
the original SPIFI and the modified version. Section 4 describes the public key
encryption scheme EnRoot. The attack against EnRoot is given in Section 5.
This attack also covers the generalized EnRoot system described in [2]. Section 6
concludes this paper.

2 Description of the Identification Scheme

The original SPIFI [1] (Secure Polynomial IdentiFIcation) and the modified ver-
sion [2] are introduced in Subsections 2.1 and 2.2, respectively.

2.1 The Original SPIFI

We begin with the introduction of some terminology concerning polynomials.

Definitions. Given a finite field F; and a set S C F,, we use the following
terminology:

S-polynomial: a polynomial G(X) € F,[X] is an S-polynomial if every
coefficient of G belongs to S.

Essentially S-polynomial: a polynomial G(X) € F,[X] is an essentially
S-polynomial if G(X) — G(0) is an S-polynomial.

T-sparse: a polynomial G(X) € F,[X] is 7-sparse if it has at most 7
non-zero coefficients.

The system parameters of SPIFI include

F,: a large finite field (where ¢ is a large prime integer);
k: a small positive integer;
r, s, t: three small positive integers.

Key Generation. The key generation process consists of the following steps:

1. Randomly select k elements a; (i =0,1,... ,k — 1), where ecach a; € F,.

2. Randomly select a t-sparse {0,1}-polynomial ¢(X) € F, of degree at most

q—1.

Compute A = —p(ap), and let f(X) = p(X) + A.

Compute C; = f(a;) fori=1,2,... k—1.

5. The private key is the polynomial f, and the public key consists of the values
A, apg, a1y ... ,Ak—1 and Cl, 02, ce 7Ck—1-

-

Verification Protocol. It consists of the following steps:

1. The verifier selects at random an s-sparse essentially {0,1}-polynomial h(X)
from F,[X] with h(0) = B and sends h(X) to the prover.

Cryptanalysis of Two Sparse Polynomial Based Public Key Cryptosystems 155

2. The prover randomly selects an r-sparse {0,1}-polynomial g(X) € F4[X] of
degree at most ¢ — 1 with g(0) = 1.
3. The prover computes F(X) and D; (i =1,2,... ,k—1) as

F(X) = f(X)g(X)h(X) mod (X~ X)

Dj:g(ai) izl,...,k—l

Then F(X) and D; (i =1,... ,k— 1) are sent to the verifier.
4. The verifier computes

E; = h(a;), i=12 ... k-1
and verifies that F'(X) is an rst-sparse {0,1,A,B,AB}-polynomial that satis-
fies F(0) = AB, and
F(a;) = C;D,;E;, j=0,1,... . k—1
where Dy = Ey = 1,Cy = 0.
Eligibility of F

There is a negligible chance that the constructed polynomial F(X) is not a
{0,1, A, B, AB}-polynomial. However, if rst is substantially smaller than ¢, this
chance is extremely small. The sparser the polynomials are, the smaller is the
chance.

Recommended Parameters

It is claimed in [T] that parameters ¢ = 23! — 1, r = s =t =5, and k = 3
guarantee a security level of 29 and a fast signature.

Hard Problem

It is claimed that the identification protocol is based on the following hard
problem.

Given 2m arbitrary elements o, ... , Gy Y1, .. ,Ym and a set S CFy of
small cardinality, it is unfeasible to find a T-sparse S-polynomial G(X) €
F,[X] of degree deg(G) < q — 1 such that G(a;) =y forj=1,... ,m,
provided that q is of “medium” size relative to the choice of m > 1 and
T > 3.

This hard problem ensures that it is hard to compute the private key f(X) from
the public key (the values of f(X) at some given points).

2.2 The Modified SPIFI

We introduce only the modified SPIFI over the finite field F,. The general mod-
ified SPIFI can be found in [2]. The modified SPIFI differs from the original one
only at the key generation process and the first step of the verification protocol.

Modified Key Generation. The key generation process consists of the follow-
ing steps:

156 Feng Bao et al.

1. Randomly select k elements a; (¢ =0,1,... ,k — 1), where each a; € Fy.

2. Randomly select a -sparse {0,1}-polynomial fi(X) € Fy[X] of degree at
most ¢ — 1, f1(0) = 1.

3. Randomly select a %—sparse {0,1}-polynomial f2(X) € Fy[X] of degree at
most ¢ — 1, f2(0) =0, fa(ao) # 0 and f2(ao) # —f1(ao).

4. Compute A = —fa(ag)fi(ag)™t, and let f(X) = Afi(X) + f2(X). Then
f(X) is a t-sparse {0, 1, A}-polynomial with f(0) = A and f(ag) = 0.

5. Compute C; = f(a;) for i =1,2,... k— 1.

6. The private key is the polynomial f, and the public key consists of the values
A, ag, a1y ... A1 and Cl, CQ, NN ,Ckfl.

Only the first step of the verification protocol is modified. It is modified as:

The verifier selects at random an s-sparse {0, 1, B}-polynomial h(X) €
F,[X] with h(0) = B and sends h(X) to the prover.

Recommended Parameters

It is claimed in [2] that the parameters ¢ = 23 —1,r = s =t =25, and k = 3
guarantee a security level of 2°°. These recommended parameters are the same
as those in the original SPIFI.

3 Cryptanalysis of the Original SPIFI

We give two attacks to break the original SPIFI. One attack is to recover the
private key f(X) from F(X) (part of the identification transcript), another one
is to forge the identification transcript without knowing the secret key. They are
illustrated in Subsection 3.1 and 3.2. We show that the modified SPIFT is still
insecure in Subsection 3.3.

3.1 Recover the Private Key

In this subsection, we give an attack to recover the private key f(X) from the
identification transcript F(X). Our attack involves only computations over F,.
The direct computation over Fy[X] is too heavy for extremely large values of ¢
and is thus not used in our attack.

The attack begins with recovering the polynomial f(X)g(X) from F(X). Let
the polynomial h'(X) = h(X) — B, i.e., h'(X) is a {0,1}-polynomial. Then the
following relationship holds:

=
=
I
=
>
g
s
=
s
i

FX)g(X)N'(X) + f(X)g(X) - B.

Clearly, the product f(X)g(X)h'(X)is a {0,1,A}-polynomial while f(X)g(X)-B
is a {0,B,AB}-polynomial. It is thus straight forward to separate Bf(X)g(X)
from F(X). The product f(X)g(X) is obtained subsequently.

Cryptanalysis of Two Sparse Polynomial Based Public Key Cryptosystems 157

After knowing f(X)g(X), we tend to recover g(X). Denote the polynomial
f(X) = f(X)— A. Then

F(X)g(X) = F(X)g(X) + Ag(X).

f(X)g(X) is a {0,1}-polynomial while Ag(x) is a {0,A}-polynomial. The poly-
nomial g(X) could thus be obtained easily from f(X)g(X).

We proceed to recover f(X) from f(X)g(X). Denote the set of all the non-
zero-coefficient degrees of f/(X) as U = {uq,us,...,us}. Denote the set of all
the non-zero-coefficient degrees of f(X)g(X) as V = {v1,va,...,v.¢}. Let two
non-zero-coefficient degrees of g(X) be w; and wy. Then X ™1 f(X) and X™2 f(X)
are both in f(X)g(X). Denote U’ = U + w; as

U' = {w; +up,w; +ug,... ,wi +u}

where w; + u; is set as (w; +u; — ¢+ 1) if w; +u; > ¢q. And let U” =U + w,.
It is obvious that U’ C V and U” C V,ie, U C (V —wy) and U C (V — ws),
where v; — w; is set as (v; —w; + ¢ — 1) if v; — w; < 0. Due to the sparse
nature of the problem, it is not difficult to show that U = (V —w1) N (V — wo)
holds with large probability. f/(X) is thus determined and so is the private key
F(X) = f/(X) + A,

The amount of computation needed in the attack to recover the private key
is less than that required by the SPIFI key generation process.

3.2 Forge the Identification Transcript without the Private Key

The identification transcript of the SPIFI [I] could be forged without knowing
the private key. Let Catherine be an attacker who does not know the prover’s
private key. She forges the identification transcript as follows:

1. Catherine receives an s-sparse essentially {0,1}-polynomial h(X) (h(0) = B)
from the verifier.

2. Catherine gives an rt-sparse essentially {0,1,A}-polynomial e(X) € F,[X]
such that e(0) = A and e(ag) = 0. (The detail will be discussed later in this
subsection.)

3. Catherine computes F(X) = e(X)h(X) mod (X7 — X), sets D; = 1;521])
(Ej = h(a;)) for j=1,... ,k—1, and sends F(X) and D1,... ,Di_1 to the
verifier.

4. The verifier checks that F(X) is an rst-sparse {0,1, A, B, AB}-polynomial
with F/(0) = AB, and F(a;) = C;D;E; for j=1,... ,k—1 and F(ag) = 0.

5. Catherine successfully impersonates the prover.

In Step 2, Catherine needs to compute an rt¢-sparse essentially {0,1}-polynomial
e(X) € Fy[X] satistying e(0) = A and e(ag) = 0. This problem is easy to solve
as long as the value of ¢ is not very large, such as the recommended ¢ = 23! — 1.
Choose randomly an (rt — 2)-sparse essentially {0,1}-polynomial e’(X). The
required e(X) is given as

e(X) = X((X) + X¥) + A

158 Feng Bao et al.

where

1 A+ ape’(ag)
w = log,, <_ao> .
It is easy to compute the value of w over F, for ¢ = 23! — 1.

If the value of ¢ is too large, the attack in this subsection could not be ap-
plied. However, in that case, the SPIFI cryptosystem is based on the well-known
discrete logarithm, instead of the hard problem related to the sparse polynomi-
als. It is irrelevant for the attack how A and B appear in the polynomials. The
attack applies to S-polynomials for any S.

3.3 Cryptanalysis of the Modified SPIFI

The SPIFT is modified to resist the attack in Subsection 3.1, i.e., to prevent the
private key from being recovered from the identification transcript. However, our
attack given in Subsection 3.2 could be applied (with only slight modification)
to break the modified SPIFI, i.e., to forge the identification transcript without
the private key (the details to forge the identification transcripts are ignored in
this paper). Furthermore, we developed a new attack to recover the private key
of the modified SPIFI. Details of this new attack are given in the following.

Recover the Private Key

The modified SPIFT still fails to hide the private key in a secure way. An
extremely simple attack to recover the private key is given below.

Suppose now we obtained two identification transcripts. Denote these two
polynomials in the transcripts as F'(X) and F”(X), where

F'(X) = f(X)g' (X)W (X) mod (X9 — X) and

F'(X) = f(X)g"(X)h"(X) mod (X7 - X).

Let ¢’, ', ¢g",h"” be randomly chosen sparse polynomials, f(X) would be the
only common terms of F’ and F” (with different coefficients). Thus f(X) is
recovered with negligible amount of computation. The probability of success of
this attack would be very close to one due to the sparse nature of the involved
polynomials.

Remarks.

1. To prevent the verifier from gaining the private key information by choosing
certain special polynomials h, the SPIFI designers suggest to use two equiv-
alent private keys alternatively [2]. This approach has little effect on our
attack above. With at most three identification transcripts, we can recover
one of the equivalent private keys and thus break the system. Generally, if r
equivalent private keys are used, one of the keys could be determined with
at most r + 1 identification transcripts.

2. The attack above can be applied directly to recover the private key in the
original SPIFI. However, the attack in Subsection 3.1 requires only one iden-
tification transcript while the attack in this subsection requires two.

Cryptanalysis of Two Sparse Polynomial Based Public Key Cryptosystems 159

4 Description of the Encryption Scheme EnRoot

The sparse polynomial public key encryption scheme proposed in [4] is called
EnRoot. A generalized version of EnRoot is also considered in [2]. As the gen-
eralized system can be attacked in the same as the original one proposed in [4],
in the sequel we restrict our attention to the original system.

The system parameters of EnRoot include

F,: a large finite field (where ¢ is a large prime integer);

k: a small positive interger;

t: t = (t1,ta,... ,t;) where each ¢; is a small positive integer;
s: 8 =(81,82,...,8,) where each s; is a small positive integer.

Key Generation. The key generation process consists of the following steps:

1. Randomly choose k integers e; € Z/(¢ — 1)Z (i =1,2,... ,k).

2. Choose a random element ¥ € . Let a; = 9% fori=1,2,... k.

3. Select k random polynomials h; € Fg[X1,Xo,... , Xi] (i = 1,2,... k) of
degree at most ¢ — 1. Each h; contains at most ¢; — 1 monomials.

4. For i =1,2,... ,k compute

fi(Xl,Xg,... 7Xk:) = hi(Xl,Xg,. .. ,Xk) — hi<a1,a2,... ,ak) (1)

5. The secret key is a = (a1, as, ... ,ax). The public key is f = (f1, f2,- -, fx)-
Encryption. To encrypt a message m € F,

1. Select k random polynomials g; € Fy[X1, Xo,...,Xi] (i=1,2,... k). Each
g; contains at most s; monomials and has a non-zero constant coefficient.

2. Compute the reduction ¥ of the polynomial fi1g1 + fogs + ...+ frgr modulo
the ideal generated by (X{ — X1,..., X — X3).
3. The message m is encrypted as the polynomial @ = m + V.

Decryption. To decrypt the message, compute m = @(ay,as, ... ,ax).

Recommended Parameters. It is claimed in [4] that the parameter values
q=2%—1,k=23,s=t=(4,4,4) guarantee a security level of 27°.

Moreover, it is claimed in [4] that EnRoot is based on the following hard problem:

Given a system of sparse polynomial equations of high degree over certain
large rings, it is hard to find a solution to this system.

This means that the secret key a = (a1, aq, ... ,ar) cannot be recovered from the
public key f = (f1, f2,..., fx), where a is a common root of those polynomials
fi (i =1,2,... k). However, as is shown in the next section, EnRoot can be

broken without knowing the private key.

160 Feng Bao et al.

5 Decryption without Secret Key

First we note, that for decrypting a ciphertext

k
c=m+2fi-gi mod (X{ — X1,..., X! — Xy)
i=1
it is sufficient to reconstruct the constant coefficients g;(0) of Bob’s polynomials
gi: The absolute coefficient of ¢ is

k

c(0) =m+>_ fi(0)- gi(0),

=0

because of all non-constant monomials in the expression Zle fi - g; remaining
non-constant after reduction modulo (X{ — X1,... , X — X}). Hence, knowing
both Alice’s public polynomials f; and the constant coefficients g;(0) we can
reveal the plaintext m via

k

m = c(0) — Zfi(o) - 9i(0).

=0

How can we find the constant coefficients g;(0)? As there are ¢* — 1 different
non-constant terms (monic monomials) which are of degree < ¢ in each variable,
with high probability the public polynomials f; of Alice satisfy the condition

Terms(f;) ¢ () Terms(f;) (1 <i<k) (2)
i
(here Terms(f;) denotes the set of terms occuring in f; with non-zero coefficient).
In other words, for each f; we can find a term

k
XHi = H X ;" e Terms(f;)
j=1
such that X** does not occur in any polynomial f; with j # 4. Now let ¢ €
{1,...,k} be arbitrary but fixed, and denote by a,, the (non-zero) coefficient of
X*#iin f;. Then the coefficient of the term X*i in the ciphertext ¢ = Zle fi-gi
is with high probability equal to g;(0) - a,,: If this coefficient were different from
a,, we had
X*. XP=X" mod (X{ - Xy,..., X — Xy)

for some (X*, X?) € Terms(f;) x Terms(g;) with j € {1,...,k}. However, the
non-constant terms of the (sparse) polynomials f;, g; were chosen at random,
and as there are ¢* — 1 possible non-zero exponent vectors the chance of this to
happen is negligible. So in practice we can reveal g;(0) by simply reading off the
coefficient of X** in the ciphertext, followed by dividing this coeflicient by a,,.

To illustrate this astonishingly simple attack let us consider an example with
the parameters ¢ = 23! — 1 (a prime number), k = 3,81 =t; = ... = s3 = t3 = 4
considered in [4]:

Cryptanalysis of Two Sparse Polynomial Based Public Key Cryptosystems 161

Example 1. By means of the randpoly function of the computer algebra system
Maple V Realease 4 we derive the following public polynomials for Alice—the
secret common zero is

(21,22, 23) = (723264497, 1295378210, 230009212) :

fl = 349502340 - X1809446137 . X2956143141 . X§'600225079 +
313871617 - X'1779070143 . X2727160601 . X31344053701 4
1715097824 - X11172854581 . X2559420076 . X§39722691 4
116222600

f2 = 200180663 - X11823184387 . X21504204554 . X§L72267093 +
1678471703 - X1759656320 . X2273015567 . X31022563056 +
10188499 - X?2552998 A X21050663882 . X§71683973 =+
1218489385

f3 — 942412531 - X11346986246 . X21330841188 . X§657353576 +
539695881 - Xf32026853 . X2273278370 . X§260893325 +
1786359577 - Xfl)00024634 5 X2592601620 . X§82312333 +
931260911

For our attack we use the following terms (any other combination is possible as
well):

XM o.— X§09446137 . X§56143141 . X§600225079
XH2 .— X1823184387 . X1504204554 . X472267093
T 1 2 3
[2% S— 1346986246 1330841188 | 1657353576
Xt = X X! X!

Next, we encrypt the plaintext message 1234567890 € Fa31_; with the poly-
nomials g; below (these were also created by means of Maple V’s randpoly
function):

g1 = THT504042 - X 1902769822 1021006850 , x'1121824348
1024142914 - X 522845576 . x 176006881 _X§459236022 +
1452872129 - X 227645716 x'24530405 'X§104197961 +
1655562558

go = 109017912 - X 2009878524 500749267 . x'1358354210
394475909 - X 337441105 915805516 -X§71137190 +
497731252 . X 538044316 | 641808520 X§5031460 +
1158943955

g3 = 1552167047 - X1765919171 .X22067090688 . X§623699208 4
140676907 - X11867678520 ~X2717664997 A Xg03320394 4
478601450 - X?Q?OSSSO .X2707867631 . X§O47224198 +
1010407045

162 Feng Bao et al.

The constant coefficient of the resulting ciphertext ¢ is ¢(0) = 1881347037. Fur-
ther on, ¢ contains—among others—the monomials 1290226445- X#!, 463293963 -
X*#2and 1216948431 - X#3. Using these monomials we can reveal the constant
coefficients of the secret polynomials g; as described above:

g1(0) = 1290226445 - 349502340~ ! = 1655562558
g2(0) = 463293963 - 2001806631 = 1158943955
93(0) 1216948431 - 942412531~1 = 1010407045

Consequently, the plaintext m computes to

m = ¢(0) — f1(0) - g1(0) — f2(0) - g2(0) — f3(0) - g5(0) = 1234567890.

5.1 Modifying EnRoot

Grant et al. also mention the following modification of their public key cryp-
tosystem: instead of choosing the polynomials h; at random in the key generation
phase, each h; is chosen as an [-linear combination

z
hi = i, X"
=1

of a fixed set of (w.l. o.g. non-constant) terms X**,... X"=. The other parts
of the cryptosystem, in particular the encryption and decryption phase, remain
unaltered.

In this setting the above attack does not immediately apply, because we
cannot assume condition (@) to be fulfilled. However, the next section shows
that this modified scheme is insecure, too.

5.2 Decryption without Secret Key in the Modified System

W.L o.g. we may assume that the public polynomials f, ..., fi are linearly in-
dependent over F,.—In the contrary, it is sufficient to apply the attack described
subsequently to a maximal linearly independent subset of {fi,..., fx}, because
such a subset is in particular a generating set of the ideal (f1,..., fi) IF,[X].

As Bob chooses the polynomials g; at random, analogously as in Section
we see that the coefficient Cy, of X% (1 < j < z) in the ciphertext ¢ equals

Zle aiy; - gi(0) with high probability. In other words, we obtain the following
system of linear equations for the constant coefficients g;(0):

a’llll L) ak:lll gl (O) CVl
: : =1 : 3)
a1y, --. Qky, gr(0) Cu,
(From f1,. .., fi being linearly independent we can conclude that also hq, ... , kg

are linearly independent (cf. the defining equations ([II)). Therefore the coefficient

Cryptanalysis of Two Sparse Polynomial Based Public Key Cryptosystems 163

matrix on the left-hand side of Equation (B) is of rank k, and applying Gauf’
algorithm to this equation yields a unique solution for g;(0), ... , gx(0). Finally,
as in our attack on the original EnRoot cryptosystem the plaintext computes to

k

m = c(0) = > fi(0) - g:(0).

=0

Remarks.

1. One of the referees brought up the idea that the system might be resistent

to our attack, if Bob chooses the random polynomials so that some of the
resulting monomials of the ciphertext have an identical exponent vector, say
Bob chooses one term X? of his polynomials in such a way that X# =
X. XP where X* and X are terms of Alice’s public key.
In this case obviously we cannot reconstruct the plaintext with the above
mentioned procedure. But it is easy to detect the number of such “collisions”
of monomials just by counting the number of monomials in the ciphertext.
Thus in this case one of the randomly chosen terms has to be of the form
XP = X#~*mod (X{ — Xi,..., X} — X},) for some terms X", X of the
public key. Such a term X? can easily be disclosed, as (with high probability)
it is a term of the ciphertext, too. With the knowledge of the coefficient of
X# the above attack can be adapted appropriately and works again.

2. The secret k polynomials used in the encryption process could also be recov-
ered easily. The attack is similar to that in Section Bl The details of this
attack are ignored here.

6 Conclusions

In this paper we showed that the sparse polynomial based SPIFI (together with
the modified SPIFI) and EnRoot (as well as its generalization) are insecure.
Whether secure sparse polynomial based public key cryptosystems exist or not
is still an open problem.

References

1. W. Banks, D. Lieman and I. Shparlinski, “An Identification Scheme Based on
Sparse Polynomials”, in Proceedings of PKC’2000, LNCS 1751, Springer-Verlag,
pp. 68-74, 2000.

2. W. Banks, D. Lieman and I. Shparlinski, “Cryptographic Applications of Sparse
Polynomials over Finite Rings”, to appear in ICISC’2000.

3. T. ElGamal. “A Public Key Cryptosystem and a Signature Scheme based on Dis-
crete Logarithms”. IEEFE Transactions on Information Theory, 31 (1985), 469-472.

4. D. Grant, K. Krastev, D. Lieman and I. Shparlinski, “A Public Key Cryptosystem
Based on Sparse Polynomials”, in Proceedings of an International Conference on
Coding Theory, Cryptography and Related Areas, LNCS, Springer-Verlag, pp. 114—
121, 2000.

164 Feng Bao et al.

5. J. Hoffstein, D. Lieman and J.H. Silverman, “Polynomial Rings and Efficient Pub-
lic Key Authentication”, Proceedings of the International Workshop on Crypto-
graphic Techniques and E-Commerce, pp. 7-19, M. Blum and C. H. Lee, eds.,
July 5-8, 1999, Hong Kong. At the time of writing also available at the URL
http://www.ntru.com/technology/tech.technical.htm.

6. J. Hoffstein, J. Pipher and J.H. Silverman, “NTRU: A Ring Based Public Key
System”, Proceedings of ANTS III, Porland (1998), Springer-Verlag.

7. V. Miller, “Uses of Elliptic Curves in Cryptography”, in Advances in Cryptology—
Crypto’85, LNCS 218, Springer-Verlag, pp. 417-426, 1986.

8. R. L. Rivest, A. Shamir, and L. Adleman, “A method for Obtaining Digital Signa-
tures and Public-Key Cryptosystems”, Commun. ACM, vol. 21, no. 2, pp. 158-164,
Feb. 1978.

	Introduction
	Description of the Identification Scheme
	The Original SPIFI
	The Modified SPIFI

	Cryptanalysis of the Original SPIFI
	Recover the Private Key
	Forge the Identification Transcript without the Private Key
	Cryptanalysis of the Modified SPIFI

	Description of the Encryption Scheme EnRoot
	Decryption without Secret Key
	Modifying EnRoot
	Decryption without Secret Key in the Modified System

	Conclusions

