
Binary Reachability Analysis of
Pushdown Timed Automata with Dense Clocks

Zhe Dang

School of Electrical Engineering and Computer Science
Washington State University, Pullman, WA 99164, USA

zdang@eecs.wsu.edu

Abstract. We consider pushdown timed automata (PTAs) that are timed au-
tomata (with dense clocks) augmented with a pushdown stack. A configuration of
a PTA includes a control state, dense clock values and a stack word. By using the
pattern technique, we give a decidable characterization of the binary reachability
(i.e., the set of all pairs of configurations such that one can reach the other) of
a PTA. Since a timed automaton can be treated as a PTA without the pushdown
stack, we can show that the binary reachability of a timed automaton is definable
in the additive theory of reals and integers. The results can be used to verify a
class of properties containing linear relations over both dense variables and un-
bounded discrete variables. The properties previously could not be verified using
the classic region technique nor expressed by timed temporal logics for timed
automata and CTL∗ for pushdown systems.

1 Introduction

A timed automaton [3] can be considered as a finite automaton augmented with a num-
ber of dense (either real or rational) clocks. Due to their ability to model and analyze
a wide range of real-time systems, timed automata have been extensively studied in
recent years (see [1,29] for recent surveys). In particular, by using the standard region
technique, it has been shown that region reachability for timed automata is decidable
[3]. This fundamental result and the technique help researchers, both theoretically and
practically, in formulating various timed temporal logics [2,4,5,6,22,25,26,27] and de-
veloping verification tools [21,28,24].

Region reachability is useful but has intrinsic limitations. In many real-world ap-
plications [11], we might also want to know whether a timed automaton satisfies a
non-region (e.g., Presburger) property. Recently, Comon and Jurski [13] have shown
that the binary reachability of a timed automaton is definable in the additive theory of
reals, by flattening a timed automaton into a real-valued counter machine without nested
cycles [12]. The result immediately paves the way for automatic verification of a class
of non-region properties that previously were not possible using the region technique.

In this paper, inspired by Comon and Jurski’s result [13], we consider pushdown
timed automata (PTAs) that are obtained by augmenting timed automata with a push-
down stack. The main result in this paper gives a decidable binary reachability charac-
terization for PTAs such that a class of non-region properties can be verified. A possible
way to show this result to look at the flattening technique of Comon and Jurski’s to see

G. Berry, H. Comon, and A. Finkel (Eds.): CAV 2001, LNCS 2102, pp. 506–517, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



Binary Reachability Analysis of Pushdown Timed Automata with Dense Clocks 507

whether the technique can be adapted by adding a pushdown stack. However, this ap-
proach has an inherent difficulty: the flattening technique, as pointed out in their paper,
destroys the structure of the original timed automaton, and thus, the sequences of stack
operations can not be maintained after flattening.

In this paper, we introduce a new technique, called the pattern technique, by sep-
arating a dense clock into an integral part and a fractional part. For a pair (v0, v1)
of two tuples of clock values, we define an ordering, called the pattern of (v0, v1),
on the fractional parts of v0 and v1. An equivalent relation “≈” is defined such that
(v0, v1)≈(v′

0, v
′
1) iff v0 and v′

0 (v1 and v′
1 will also) have the same integral parts, and

both (v0, v1) and (v′
0, v

′
1) have the same pattern. “≈” preserves the binary reachability:

v0 can reach v1 by a sequence of transitions iff v′
0 can reach v′

1 by the (almost) same
sequence of transitions. Therefore, by preserving the (almost) same control structure,
a PTA can be transformed into a discrete transition system (called the pattern graph)
containing discrete clocks (for the integral parts of the dense clocks) and a finite vari-
able over patterns. The pattern graph can be further reduced to a discrete PTA, whose
binary reachability is decidable and can be accepted by a nondeterministic pushdown
automaton augmented with reversal-bounded counters (NPCM) [15]. By translating a
pattern back to a relation over the fractional parts of the clocks, the decidable binary
reachability characterization (namely, (D + NPCM)-definable) for PTAs can be de-
rived. Given this characterization, it can be shown that the particular class of safety
properties that contain mixed linear relations over both dense variables (e.g., clock val-
ues) and discrete variables (e.g., word counts) can be automatically verified for PTAs.
In this extended abstract, all the proofs are omitted. For a complete exposition see [14].

2 Preliminaries

A nondeterministic multicounter machine is a nondeterministic machine with a finite
number of states, a one-way input tape, and a finite number of integer counters. Each
counter can be incremented by 1, decremented by 1, or stay unchanged. Besides, a
counter can be tested against 0. A reversal-bounded nondeterministic multicounter
machine (NCM) is a nondeterministic multicounter machine in which each counter is
reversal-bounded (i.e., it changes mode between nondecreasing and nonincreasing for
some bounded number of times). A reversal-bounded nondeterministic pushdown mul-
ticounter machine (NPCM) is an NCM augmented with a pushdown stack. It is known
that the emptiness problem for NPCMs (and hence NCMs) is decidable [23].

Let N be integers, D = Q (rationals) or R (reals), Γ be an alphabet. We use N+

and D+ to denote non-negative values in N and D, respectively. Each value v ∈ D
can be uniquely expressed as the sum of dve + bvc, where dve ∈ N is the integral
part of v, and 0 ≤ bvc < 1 is the fractional part of v. Given m ≥ 1. Let xi, yi,
and wi be a dense variable over D, an integer variable over N, and a word variable
Γ ∗, for each 1 ≤ i ≤ m, respectively. We use #a(wi) to denote a count variable
representing the number of symbol a ∈ Γ in wi. A linear term t is defined as follows:
t ::= n | xi | yi | #a(wi) | t − t | t + t, where n ∈ N, a ∈ Γ . A mixed linear
relation l is defined as follows: l ::= t > 0 | t = 0 | tdiscr mod n = 0 | ¬l | l ∧ l,
where 0 6= n ∈ N and tdiscr is a linear term not containing dense variables. A dense



508 Zhe Dang

linear relation is a linear relation that contains dense variables only. A discrete linear
relation is a linear relation that does not contain dense variables.

A tuple of integers and words can be encoded as a string by concatenating the unary
representations of each integer and each of the words, with a separator # 6∈ Γ . The do-
main of H , a predicate over integer variables and word variables, is the set of tuples of
integers and words that satisfy H . H is an NPCM predicate (or simply NPCM) if there
is an NPCM accepting the domain (encoded as a set of strings, i.e., a language) of H . A
(D + NPCM)-formula f is defined as follows: f ::= ldense∧H | ldense∨H | f∨f,
where ldense is a dense linear relation and H is an NPCM predicate. Given p, q, r ≥ 0.
A predicate A on tuples in Dp × Nq × (Γ ∗)r is (D + NPCM)-definable if there
is a (D + NPCM)-formula f with p dense variables, p + q integer variables, and r
word variables, such that, for all x1, · · · , xp ∈ D, y1, · · · , yq ∈ N, and w1, · · · , wr ∈
Γ ∗, (x1, · · · , xp, y1, · · · , yq, w1, · · · , wr) ∈ A iff f(bx1c, · · · , bxpc, dx1e, · · · , dxpe,
y1, · · · , yq, w1, · · · , wr) holds.

Lemma 1. (1). Both ldiscrete ∧ H and ldiscrete ∨ H are NPCM predicates, if ldiscrete

is a discrete linear relation and H is an NPCM predicate. (2). NPCM predicates are
closed under existential quantifications (over integer variables and word variables).
(3). If A is (D + NPCM)-definable and l is a mixed linear relation, then both l ∧ A
and l ∨A are (D + NPCM)-definable. (4). The emptiness (satisfiability) problem for
(D + NPCM)-definable predicates is decidable.

3 Clock Patterns and Their Changes

A dense clock is simply a dense variable on D+. Fix a k > 0 and consider k +1 clocks
x = x0, · · · , xk. For technical reasons, x0 is an auxiliary clock indicating the current
time now. Denote K = {0, · · · , k} and K+ = {1, · · · , k}. A subset K ′ of K is abused
as a set of clocks; i.e., we say xi ∈ K ′ if i ∈ K ′. A (clock) valuation v is a function
K → D+ that assigns a value in D+ to each clock in K . A discrete (clock) valuation
u is a function K → N+ that assigns a value in N+ to each clock in K . For each
valuation v and δ ∈ D+, dve, bvc and v + δ are valuations satisfying dve(i) = dv(i)e,
bvc(i) = bv(i)c and (v + δ)(i) = v(i)+ δ for each i ∈ K . The relative representation
v̂ of a valuation v is a valuation satisfying: (1). dv̂e = dve, (2). bv̂c(0) = b1 − bvc(0)c,
(3). bv̂c(i) = bbvc(i) + bv̂c(0)c, for each i ∈ K+. A valuation v0 is initial if clock
x0 has value 0, i.e., v0(0) = 0.

We distinguish two disjoint sets, K0 = {00, · · · , k0} and K1 = {01, · · · , k1}, of
indices. A pattern η is a sequence p0, · · · , pn, for some 0 ≤ n < 2(k+1), of nonempty
and disjoint subsets of K0 ∪ K1 such that 00 ∈ p0 and ∪0≤i≤npi = K0 ∪ K1. pi

is called the i-position. A pair of valuations (v0, v1) is initialized if v0 is initial. An
initialized pair (v0, v1) has pattern η = p0, · · · , pn, written (v0, v1) ∈ η, if, for each

0 ≤ m, m′ ≤ n, each b, b′ ∈ {0, 1}, and each i, i′ ∈ K , ib ∈ pm and i′b
′ ∈ pm′ imply

that
bv̂bc(i) = bv̂b′c(i′) (resp. <) iff m = m′ (resp. m < m′).

Φ denotes the set of all the patterns (|Φ| ≤ 26(k+1)2 ). The now-position of η is pi,
for some i, with 01 ∈ pi. A pattern is regulated if the now-position of η is p0. A pattern



Binary Reachability Analysis of Pushdown Timed Automata with Dense Clocks 509

is initial if it is the pattern of (v0, v0) for some initial valuation v0. If η is the pattern
of (v0, v1), we use init(η) to denote the pattern of (v0, v0). init(η) is unique for each
η. A pattern is a merge-pattern if the now-position is a singleton set (i.e., 01 is the only
element). A pattern is a split-pattern if it is not a merge-pattern, i.e., the now-position
contains more than one element. A valuation v1 has pattern η if η is the pattern of
(v0, v1) for some v0. A pattern of v1 tells the fractional orderings between bv1c(i)
and bv1c(j) and between bv1c(i) and 0, for all i, j ∈ K+. Given two initialized pairs
(v1

0, v1) and (v2
0, v2), we write (v1

0, v1)≈(v2
0, v2), if (v1

0, v1) and (v2
0, v2) have the

same pattern, and have the same integral parts (i.e., dv1
0e = dv2

0e, dv1e = dv2e).

Example 1. Let v0 = (000 , 5.510 , 2.320) and v1 = (1.601 , 2.911, 3.121), where sub-
scripts are indices. Note that v̂0 = (000 , 5.510, 2.320) and v̂1 = (1.401 , 2.311, 3.521).
The pattern η of (v0, v1) can be drawn by collecting the fractional parts in v̂0 and v̂1

from small to large while writing down the indices; i.e., {00}, {20, 11}, {01}, {10, 21}.
η is a merge-pattern. Take v2 = v1 + .1 and compute v̂2 = (1.301 , 3.311, 3.521).
Observe that the fractional parts (except for the first component) are the same in v̂2

and v̂1. The pattern η′ of (v0, v2) can be drawn similarly: {00}, {20, 11, 01}, {10, 21},
which is the result of merging 01 to its previous position in η. η′ is a split-pattern. Take
v3 = v2 + .05. We can verify the pattern of (v0, v3) is {00}, {01}, {20, 11}, {10, 21},
which is the result of splitting 01 from the now-position of η′. This procedure can go
on while incrementing v3: merge 01 to the 0-position {00}, and then split 01 from it
(by appending {01} at the end), and so on. Eventually, the pattern will repeat when 01

returns to the original position in η (e.g., after a total increment of 1 from v1).

For each 0 < δ ∈ D+, v + δ is the result of a clock progress from v by an amount
of δ. Function next : Φ× (N+)k+1 → Φ× (N+)k+1 describes how a pattern changes
after a clock progress. Given any discrete valuation u and pattern η = p0, · · · , pn with
the now-position being pi for some i, next(η, u) is defined to be (η′, u′) such that,

– (the case when η is a merge-pattern) if i > 0 and |pi| = 1 (that is, pi = {01}),
then η′ is p0, · · · , pi−1 ∪ {01}, pi+1, · · · , pn (that is, η′ is the result of merging the
now-position to the previous position), and for each j ∈ K+, if j1 ∈ pi−1, then
u′(j) = u(j) + 1 else u′(j) = u(j). Besides, if i = 1 (i.e., the now-position is
merged to p0; in this case, η′ is a regulated pattern), then u′(0) = u(0) + 1 else
u′(0) = u(0),

– (the case when η is a split pattern) if i ≥ 0 and |pi| > 1, then η′ is the result of
splitting 01 from the now-position. That is, if i > 0, η′ is p0, · · · , pi−1, {01}, pi −
{01}, pi+1, · · · , pn. However, if i = 0, η′ is p0 − {01}, p1, · · · , pn, {01}. In either
case, u′ = u.

If next(η, u) = (η′, u′), η′ is called the next pattern of η, written Next(η).
According to Example 1, we visualize a pattern η as a circle. Applications of Next

can be regarded as moving 01 along the circle, by performing merge-operations and
split-operations alternatively. After enough number of applications of Next, 01 will re-
turn to the original now-position after moving through the entire circle. That is, for each
pattern η, Nextm(η) = η, where m = 2n (resp. m = 2(n + 1)) if η is a merge-pattern
(resp. split-pattern). The sequence η, Next(η), · · · , Nextm(η) is called a pattern ring.



510 Zhe Dang

Notice that nextm(η, u) = (η, u+1) for each u. On a pattern ring, merge-patterns and
split-patterns appear alternately.

Beside clock progresses, clock resets are the other form of clock behaviors.

Example 2. Take v0 and v1 as in Example 1. Consider v′
1 = (1.601 , 011 , 3.121) that is

the result of resetting x1 in v1. The pattern of (v0, v
′
1) is {00}, {20}, {01, 11}, {10, 21},

which is the result of moving 11 (the index of x1 in v1) into the now-position {01} of
the pattern η of (v0, v1) (see Example 1).

Let r ⊆ K+ be (a set of) clock resets. Denote v ↓r to be the result of resetting each
clock xi ∈ r (i.e., i ∈ r). That is, for each i ∈ K , if i ∈ r, then (v ↓r)(i) = 0 else
(v ↓r)(i) = v(i). Functions resetr : Φ × (N+)k+1 → Φ × (N+)k+1 for r ⊆ K+

describe how a pattern changes after clock resets. Given any discrete valuation u and
any pattern η = p0, · · · , pn with the now-position being pi for some i, resetr(η, u) is
defined to be (η′, u′) such that,

– η′ is p0 − r1, · · · , pi−1 − r1, pi ∪ r1, pi+1 − r1, · · · , pn − r1, where r1 = {j1 :
j ∈ r} ⊆ K1. Therefore, η′ is the result of bringing every index in r1 into the
now-position. Notice that some of positions pm − r1 may be empty after moving
indices in r1 out of pm, for m 6= i. In this case, these positions are removed from
η′ (to guarantee that η′ is well defined.),

– for each j ∈ K , if j ∈ r, then u′(j) = 0 else u′(j) = u(j).

If resetr(η, u) = (η′, u′), η′ is written as Resetr(η).
Given an initialized pair (v0, v) and 0 < δ ∈ D+. Assume the patterns of (v0, v)

and (v0, v + δ) are η and η′, respectively. We say v has no pattern change for δ if, for
all 0 ≤ δ′ ≤ δ, (v0, v + δ′) has the same pattern. We say v has one pattern change
for δ if Next(η) = η′ (recall Next(η) 6= η) and, for all 0 < δ′ < δ, (v0, v + δ′) has
pattern η, or, for all 0 < δ′ < δ, (v0, v + δ′) has pattern η′. We say v has n pattern
changes for δ with n ≥ 1, if there are positive δ1, · · · , δn in D+ with Σ1≤i≤nδi = δ
such that v + Σ1≤i≤jδi has one pattern change for δj+1, for each j = 0, · · · , n − 1.
The following lemma states that both next and resetr are “correct”.

Lemma 2. For all patterns η and η′, for all r ⊆ K+, and for all discrete valuations u
and u′, the following (1) and (2) hold:

(1). (correctness of next) next(η, u) = (η′, u′) iff there exist an initialized pair
(v0, v) and 0 < δ ∈ D+ such that

(1.1). η is the pattern of (v0, v) and η′ is the pattern of (v0, v + δ),
(1.2). u = dve and u′ = dv + δe,
(1.3). v has one pattern change for δ. In particular, if η is a merge-pattern, then for

all 0 ≤ δ′ < δ, η is the pattern of (v0, v + δ′). If, however, η is a split-pattern, then for
all 0 < δ′ ≤ δ, η′ is the pattern of (v0, v + δ′),

(2). (correctness of resetr) resetr(η, u) = (η′, u′) iff there exist an initialized pair
(v0, v) such that

(2.1). η is the pattern of (v0, v) and η′ is the pattern of (v0, v ↓r),
(2.2). u = dve and u′ = dv ↓re.



Binary Reachability Analysis of Pushdown Timed Automata with Dense Clocks 511

(3). For any fixed initialized pair (v0, v) and fixed 0 < δ ∈ D+, there is a unique
finite number n such that v has n pattern changes for δ. In particular, when δ = 1, the
number n is exactly the length of the pattern ring starting from the pattern of (v0, v).

(4). The number n in (3) can be uniformly bounded for each δ. That is, for any fixed
δ ∈ D+, there is a finite number m such that, for any initialized pair (v0, v), v has at
most m pattern changes for δ.

(5). For any fixed initialized pair (v0, v), the pattern of (v0, v) is a merge-pattern
iff there is a 0 < δ ∈ D+ such that v has no pattern change for δ.

4 Clock Constraints and Patterns

An atomic clock constraint (over clocks x1, · · · , xk, excluding x0) is a formula in the
form of xi − xj#d or xi#d where 0 ≤ d ∈ N+ and # stands for <, >,≤,≥, =. A
clock constraint c is a Boolean combination of atomic clock constraints. Denote C to be
the set of all clock constraint (over clocks x1, · · · , xk). We say v ∈ c if clock valuation
v (for x0, · · · , xk) satisfies clock constraint c.

Any clock constraint c can be written as a Boolean combination I(c) of clock con-
straints over discrete clocks dx1e, · · · , dxke and fractional orderings bxic#bxjc and
bxic#0. Therefore, testing v ∈ c is equivalent to testing dve and the fractional order-
ings on bvc satisfying I(c).

Assume v has pattern η. We use cη to denote the result of replacing fractional or-
derings in I(c) by the truth values given by η. cη is a clock constraint (over discrete
clocks). The following lemma can be observed.

Lemma 3. (1). For any initialized pair (v0, v), any pattern η ∈ Φ, if (v0, v) has pat-
tern η, then, for any clock constraint c ∈ C, v ∈ c iff dve ∈ cη. (2). For any initialized
pair (v0, v) and any 0 < δ ∈ D+, if v has at most one pattern change for δ, then, for
any clock constraint c ∈ C, ∀0 ≤ δ′ ≤ δ(v + δ′ ∈ c) iff v ∈ c and v + δ ∈ c. (3). For
any initialized pairs (v1

0, v1) and (v2
0, v2), if (v1

0, v1)≈(v2
0, v2), then, for any c ∈ C,

v1 ∈ c iff v2 ∈ c.

Consider two initialized pairs (v1
0, v1) and (v2

0, v2) such that (v1
0, v1)≈(v2

0, v2).
¿From Lemma 3(3), any test c ∈ C will not tell the difference between v1 and v2.
Assume v1 can be reached from a valuation v1 via a clock progress by an amount of
δ1, i.e., v1 + δ1 = v1. We would like to know whether v2 can be reached from some
valuation v2 also via a clock progress but probably by a slightly different amount of δ2

such that (v1
0, v

1) and (v2
0, v

2) are still equivalent(≈). We also expect that for any test
c, if during the progress of v1, c is consistently satisfied, then so is c for the progress
of v2. The following lemma concludes that these, as well as the parallel case for clock
resets, can be done. This result can be used later to show that if v1 is reached from v1

0

by a sequence of transitions that repeatedly perform clock progresses and clock resets,
then v2 can be also reached from v2

0 via a very similar sequence such that no test c can
tell the difference on the two sequences.

Lemma 4. For any initialized pairs (v1
0, v1) and (v2

0, v2) with (v1
0, v1)≈(v2

0, v2),
(1). for any 0 ≤ δ1 ∈ D+, for any clock valuation v1, if v1 + δ1 = v1, then

there exist 0 ≤ δ2 ∈ D+ and clock valuation v2 such that (1.1). v2 + δ2 = v2 and



512 Zhe Dang

(v1
0, v

1)≈(v2
0, v

2), (1.2). v1 is initial iff v2 is initial, v1 = v1
0 iff v2 = v2

0, and for any
c ∈ C, v1 ∈ c (resp. v1 ∈ c) iff v2 ∈ c (resp. v2 ∈ c), (1.3). for any clock constraint
c ∈ C, ∀0 ≤ δ′ ≤ δ1(v1 + δ ∈ c) iff ∀0 ≤ δ′ ≤ δ2(v2 + δ ∈ c).

(2). for any r ⊆ K+, for any clock valuation v1, if v1 ↓r= v1, then there exists a
valuation v2 such that (2.1). v2 ↓r= v2 and (v1

0, v
1)≈(v2

0, v
2), (2.2). same as (1.2).

5 Pushdown Timed Automata

A pushdown timed automaton (PTA) A is a tuple 〈S, {x1, · · · , xk}, Inv, R, Γ, PD〉,
where S is a finite set of states, x1, · · · , xk are (dense) clocks. Inv : S → C assigns
a clock constraint over clocks x1, · · · , xk, called an invariant, to each state. R : S ×
S → C × 2{x1,···,xk} assigns a clock constraint over clocks x1, · · · , xk , called a reset
condition, and a subset of clocks, called clock resets, to a (directed) edge in S ×S. Γ is
the stack alphabet. PD : S×S → Γ ×Γ ∗ assigns a pair (a, γ) with a ∈ Γ and γ ∈ Γ ∗,
called a stack operation, to each edge in S × S. A stack operation (a, γ) replaces the
top symbol a of the stack with a string (possibly empty) in Γ ∗. A timed automaton is a
PTA without the pushdown stack.

The semantics of A is defined as follows. A configuration is a triple (s, v, w) of a
state s, a clock valuation v on x0, · · · , xk (where x0 is the auxiliary clock), and a stack
word w ∈ Γ ∗. (s1, v1, w1) →A (s2, v2, w2) denotes a one-step transition of A if one
of the following conditions is satisfied:

– (a progress transition) s1 = s2, w1 = w2, and ∃0 < δ ∈ D+, v2 = v1 + δ and for
all δ′ satisfying 0 ≤ δ′ ≤ δ, v1 +δ′ ∈ Inv(s1). That is, a progress transition makes
all the clocks synchronously progress by amount δ > 0, during which the invariant
is consistently satisfied, while the state and the stack content remain unchanged.

– (a reset transition) v1 ∈ Inv(s1) ∧ c, v1 ↓r= v2 ∈ Inv(s2), and w1 = aw, w2 =
γw for some w ∈ Γ ∗, where R(s1, s2) = (c, r) for some clock constraint c and
clock resets r, and PD(s1, s2) = (a, γ) for some stack symbol a ∈ Γ and string
γ ∈ Γ ∗. That is, a reset transition, by moving from state s1 to state s2, resets
every clock in r to 0 and keeps all the other clocks unchanged. The stack content
is modified according to the stack operation (a, γ) given on edge (s1, s2). Clock
values before the transition satisfy the invariant Inv(s1) and the reset condition c;
clock values after the transition satisfy the invariant Inv(s2).

We write →∗
A to be the transitive closure of →A. Given two valuations v1

0 and v1,
two states s0 and s1, and two stack words w0 and w1, assume the auxiliary clock x0

starts from 0, i.e., v1
0 is initial. The following result is surprising. It states that, for any

initialized pair (v2
0, v2) with (v1

0, v1)≈(v2
0, v2), (s0, v

1
0, w0) →∗

A (s1, v1, w1) if and
only if (s0, v

2
0, w0) →∗

A (s1, v2, w1). This result implies that, from the definition of ≈,
for any fixed s0, s1, w0 and w1, the pattern of (bv1

0c, bv1c) (instead of the actual values
of bv1

0c and bv1c), the integral values dv1
0e, and the integral values dv1e are sufficient to

determine whether (s0, v
1
0, w0) can reach (s1, v1, w1) in A. The proof is an induction

on the length of (s0, v
1
0, w0) →∗

A (s1, v1, w1) using Lemma 4 and Lemma 3.

Lemma 5. Let A be a PTA. For any states s0 and s1, any two initial clock valua-
tions v1

0 and v2
0, any two clock valuations v1 and v2, and any two stack words w0



Binary Reachability Analysis of Pushdown Timed Automata with Dense Clocks 513

and w1, if (v1
0, v1)≈(v2

0, v2), then, (s0, v
1
0, w0) →∗

A (s1, v1, w1) iff (s0, v
2
0, w0) →∗

A
(s1, v2, w1).

Example 3. It is the time to show an example to convince the reader that Lemma 5 in-
deed works. Consider a timed automatonA shown in Figure 1. Let v1

0 = (0, 4.98, 2.52),

s1
s2

x1-x2>2
/\  x2<5

x2-x1>4
/\  x1<3

x1-x2<3

{x1}

Fig. 1. An Example Timed Automaton A.

v1
3 = (5.36, 2.89, 7.88). (s1, v

1
0) →∗

A (s2, v
1
3) is witnessed by: (s1, v

1
0) →A (progress

by 2.47 at s1) (s1, v
1
1) →A (reset x1 and transit to s2) (s2, v

1
2) →A (progress by 2.89

at s2) (s2, v
1
3). Take a new pair v2

0 = (0, 4.89, 2.11), v2
3 = (5.28, 2.77, 7.39). It is easy

to check (v1
0, v

1
3)≈(v2

0, v
2
3). ¿From Lemma 5, (s1, v

2
0) →∗

A (s2, v
2
3). Indeed, this is

witnessed by (s1, v
2
0) →A (progress by 2.51 at s1) (s1, v

2
1) →A (reset x1 and transit to

s2) (s2, v
2
2) →A (progress by 2.77 at s2) (s2, v

2
3). These two witnesses differ slightly

(2.47 and 2.89, vs. 2.51 and 2.77). We choose 2.77 and 2.51 by looking at the first wit-
ness backwardly. That is, v2

2 is picked such that (v2
0, v

2
2)≈(v1

0, v
1
2). Then, v2

1 is picked
such that (v2

0, v
2
1)≈(v1

0, v
1
1). The existence of v2

2 and v2
1 is guaranteed by Lemma 4.

Finally, according to Lemma 4 again, v2
1 is able to go back to v2

0. This is because v1
1

goes back to v1
0 through a one-step transition and v1

0 is initial.

Now, we express →∗
A in a form that treating the integral parts and the fractional

parts of clock values separately. Given a pattern η ∈ Φ, for any discrete valuations u0

and u1, and any stack words w0 and w1, define (s0, u0, w0) →∗
A,η (s1, u1, w1) to be

∃v0∃v1(v0(0) = 0 ∧ dv0e = u0 ∧ dv1e = u1 ∧ (v0, v1) ∈ η ∧ (s0, v0, w0) →∗
A

(s1, v1, w1)).

Lemma 6. Let A be a PTA. For any states s0 and s1, any initialized pair (v0, v1),
and any stack words w0 and w1, (s0, v0, w0) →∗

A (s1, v1, w1) iff ∨η∈Φ(v0(0) = 0 ∧
(bv0c, bv1c) ∈ η ∧ (s0, dv0e, w0) →∗

A,η (s1, dv1e, w1)).

Once we give a characterization of →∗
A,η, Lemma 6 immediately gives a character-

ization for →∗
A. A decidable characterization of →∗

A,η is shown in the next section.

6 The Pattern Graph of a Timed Pushdown Automaton

Let A = 〈S, {x1, · · · , xk}, Inv, R, Γ, PD〉 be a PTA specified in the previous section.
The pattern graph G of A is a tuple 〈S×Φ, {y0, · · · , yk}, E, Γ 〉 where S is the states in
A, Φ is the set of all patterns. A node is an element in S×Φ. Discrete clocks y0, · · · , yk

are the integral parts of the clocks x0, · · · , xk in A. E is a finite set of (directed) edges
that connect pairs of nodes. An edge can be a progress edge, a stay edge, or a reset edge.



514 Zhe Dang

A progress edge corresponds to progress transitions in A that cause one pattern change.
A stay edge corresponds to progress transitions in A that cause no pattern change. Since
a progress transition can cause no pattern change only from a merge-pattern, a stay edge
connects a merge-pattern to itself. A reset edge corresponds to a reset transition in A.
Formally, a progress edge es,η,η′ that connects node (s, η) to node (s, η′) is in the form
of 〈(s, η), c, (s, η′)〉 such that c = Inv(s), η′ = Next(η) (thus η 6= η′). A stay edge
es,η,η, with η being a merge-pattern, that connects node (s, η) to itself is in the form
of 〈(s, η), c, (s, η)〉 such that c = Inv(s). A reset edge es,s′,r,(a,γ) that connects node
(s, η) to node (s′, η′) is in the form of 〈(s, η), c, r, a, γ, (s′, η′)〉 where R(s, s′) = (c, r)
and PD(s, s′) = (a, γ). E is the set of all progress edges, stay edges, and reset edges
wrt A. Obviously, E is finite.

A configuration of G is a tuple (s, η, u, w) of state s ∈ S, pattern η ∈ Φ, discrete
valuation u ∈ (N+)k+1 and stack word w ∈ Γ ∗. (s, η, u, w) →e (s′, η′, u′, w′) de-
notes a one-step transition through edge e of G if the following conditions are satisfied:

– if e is a progress edge, then e takes the form 〈(s, η), c, (s, η′)〉 and s′ = s, u ∈ cη,
u′ ∈ cη′

, next(η, u) = (η′, u′) and w = w′. Here cη and cη′
are called the pre-

and the post- (progress) tests on edge e, respectively.
– if e is a stay edge, then e takes the form 〈(s, η), c, (s, η)〉 and s = s′, u ∈ cη, u =

u′, η = η′ and w = w′. Here cη is called the pre- and the post- (stay ) tests on edge
e.

– if e is a reset edge, then e takes the form 〈(s, η), c, r, a, γ, (s′, η′)〉 and u ∈ (c ∧
Inv(s))η , u′ ∈ Inv(s′)η′

, resetr(η, u) = (η′, u′) and w = aw′′, w′ = γw′′

for some w′′ ∈ Γ ∗ (i.e., w changes to w′ according to the stack operation). Here

(c ∧ Inv(s))η and Inv(s′)η′
are called the pre- and the post- (reset) tests on edge

e, respectively.

We write (s, η, u, w) →G (s′, η′, u′, w′) if (s, η, u, w) →e (s′, η′, u′, w′) for some e.
The binary reachability →∗

G of G is the transitive closure of →G.
The pattern graph G simulates A in a way that the integral parts of the dense clocks

are kept but the fractional parts are abstracted as a pattern. Edges in G indicates how
the pattern and the discrete clocks change when a clock progress or a clock reset occur
in A. However, a progress transition in A could cause more than one pattern change.
In this case, this big progress transition is treated as a sequence of small progress tran-
sitions such that each causes one pattern change (and therefore, each small progress
transition in A can be simulated by a progress edge in G). We first show that the bi-
nary reachability →∗

G of G is NPCM. Observe that discrete clocks y0, · · · , yk are the
integral values of dense clocks x0, · · · , xk. Even though the dense clocks progress syn-
chronously, the discrete clocks may not be synchronous (i.e., that one discrete clock is
incremented by 1 does not necessarily cause all the other discrete clocks incremented
by the same amount.). The proof has two parts. In the first part of the proof, a technique
is used to translate y0, · · · , yk into another array of discrete clocks that are synchronous.
In the second part of the proof, G can be treated as a discrete PTA [15] by replacing
y0, · · · , yk with the synchronous discrete clocks. Therefore, Lemma 7 follows by the
fact [15] that the binary reachability of discrete PTA is NPCM.



Binary Reachability Analysis of Pushdown Timed Automata with Dense Clocks 515

Lemma 7. For any PTA A, the binary reachability →∗
G of the pattern graph G of A

is NPCM. In particular, if A is a timed automaton, then the binary reachability →∗
G is

Presburger.

The following lemma states that G faithfully simulates A when the fractional parts
of dense clocks are abstracted away by a pattern. The if-part of the lemma uses Lemma
2. The only-if-part of the lemma is based upon the argument that a one-step transition
of A, when the pattern abstraction is used, can be simulated by a sequence of transitions
of G.

Lemma 8. Let A be a PTA with pattern graph G. For any s0, s1 ∈ S, η ∈ Φ, w0, w1 ∈
Γ ∗, and (u0, u1) with u0(0) = 0, (s0, u0, w0) →∗

A,η (s1, u1, w1) iff (s0, init(η),
u0, w0) →∗

G (s1, η, u1, w1).

Now, we conclude this section by claiming that →∗
A,η is NPCM by combining

Lemma 7 and Lemma 8.

Lemma 9. For any PTA A and any fixed pattern η ∈ Φ, →∗
A,η is NPCM. In particular,

if A is a timed automaton, then →∗
A,η is Presburger.

7 A Decidable Binary Reachability Characterization and
Automatic Verification

Recall that PTA A actually has clocks x1, · · · , xk . x0 is the auxiliary clock. The binary
reachability ;∗B

A of A is the set of tuples 〈s, v1, · · · , vk, w, s′, v′1, · · · , v′k, w′〉 such that
there exist v0 = 0, v′0 ∈ D+ satisfying (s, v0, · · · , vk, w) ;∗

A (s′, v′0, · · · , v′k, w′). The
main theorem of this paper gives a decidable characterization for the binary reachability
as follows. The proof uses Lemma 6 and Lemma 9.

Theorem 1. The binary reachability ;∗B
A of a PTA A is (D + NPCM)-definable.

In particular, if A is a timed automaton, then the binary reachability ;∗B
A can be

expressed in the additive theory of reals (or rationals) and integers.

The importance of the above characterization for ;∗B
A is that, from Lemma 1, the

emptiness of (D + NPCM)-definable predicates is decidable. ¿From Theorem 1 and
Lemma 1 (3)(4), we have,

Theorem 2. The emptiness of l ∩ ;∗B
A with respect to a PTA A for any mixed linear

relation l is decidable.

The emptiness of l ∩ ;∗B
A is called a mixed linear property of A. Many interesting

safety properties (or their negations) for PTAs can be expressed as a mixed linear prop-
erty. For instance, consider the following property of a PTA A:

“for any two configurations α and β with α ;∗B
A β, if the difference between βx3

(the value of clock x3 in β) and αx1 +αx2 (the sum of clocks x1 and x2 in α) is greater
than the difference between #a(αw) (the number of symbol a appearing in the stack
word in α) and #b(βw) (the number of symbol b appearing in the stack word in β),
then #a(αw) − 2#b(βw) is greater than 5.”



516 Zhe Dang

The negation of this property can be expressed in the form required by Theorem 2.
Thus, this property can be automatically verified. Notice that this property can not be
verified by using results in [8] and (even when clocks are ignored) in [7,18]. When A
is a timed automaton, by Theorem 1, the binary reachability ;∗B

A can be expressed in
the additive theory of reals (or rationals) and integers. Notice that this characterization
is essentially equivalent to the one given by Comon and Jurski [13] in which ;∗B

A can
be expressed in the additive theory of reals augmented with a predicate telling whether
a term is an integer. Because the additive theory of reals and integers is decidable (see
[10] for a procedure), we have,

Theorem 3. The truth value for any closed formula expressible in the (first-order) ad-
ditive theory of reals (or rationals) augmented with a predicate ;∗B

A for a timed au-
tomaton A is decidable. (also shown in [13])

8 Conclusions

In this paper, we consider PTAs that are timed automata augmented with a pushdown
stack. By introducing the concept of a clock pattern and using an automata-theoretic
approach, we give a decidable characterization of the binary reachability of a PTA. The
results can be used to verify a class of safety properties containing linear relations over
both dense variables and unbounded discrete variables.

The results in this paper can be extended to PTAs augmented with reversal-bounded
counters. A future research issue is to investigate whether the liveness results in [17] and
the approximation techniques in [16] can be extended to dense clocks. Another issue is
on the complexity analysis of the decision procedure presented in this paper. However,
the complexity for the emptiness problem of NPCMs is still unknown, though it is
believed that it can be derived along Gurari and Ibarra [19]. The results in this paper
can be used to implement a model-checker for a subset of the real-time specification
language ASTRAL [11] as well as for a class of real-time programming language with
procedure calls (such as a timed version of Boolean programs [9]).

Acknowledgment

The author would like to thank H. Comon and O. H. Ibarra for discussions on the topic
of dense timed pushdown automata during CAV’00 in Chicago, B. Boigelot, P. San
Pietro and J. Su for recent discussions on [10], and F. Sheldon for reading an earlier
draft of this paper. Thanks also go to anonymous reviewers for many useful suggestions.

References

1. R. Alur, “Timed automata”, CAV’99, LNCS 1633, pp. 8-22
2. R. Alur, C. Courcoibetis, and D. Dill, “Model-checking in dense real time,” Information and

Computation, 104 (1993) 2-34
3. R. Alur and D. Dill, “A theory of timed automata,” Theoretical Computer Science, 126 (1994)

183-236



Binary Reachability Analysis of Pushdown Timed Automata with Dense Clocks 517

4. R. Alur, T. Feder, and T. A. Henzinger, “The benefits of relaxing punctuality,” J. ACM, 43
(1996) 116-146

5. R. Alur, T. A. Henzinger, “Real-time logics: complexity and expressiveness,” Information
and Computation, 104 (1993) 35-77

6. R. Alur, T. A. Henzinger, “A really temporal logic,” J. ACM, 41 (1994) 181-204
7. A. Bouajjani, J. Esparza, and O. Maler, “Reachability Analysis of Pushdown Automata:

Application to Model-Checking,”, CONCUR’97, LNCS 1243, pp. 135-150
8. A. Bouajjani, R. Echahed, and R. Robbana, “On the Automatic Verification of Systems with

Continuous Variables and Unbounded Discrete Data Structures,” Hybrid System II, LNCS
999, 1995, pp. 64-85

9. T. Ball and S. K. Rajamani, “Bebop: A Symbolic Model-checker for Boolean Programs,”
Spin Workshop’00, LNCS 1885, pp. 113-130.

10. B. Boigelot, S. Rassart and P. Wolper, “On the expressiveness of real and integer arithmetic
automata,” ICALP’98, LNCS 1443, pp. 152-163

11. A. Coen-Porisini, C. Ghezzi and R. Kemmerer, “Specification of real-time systems using
ASTRAL,” IEEE Transactions on Software Engineering, 23 (1997) 572-598

12. H. Comon and Y. Jurski, “Multiple counters automata, safety analysis and Presburger arith-
metic,” CAV’98, LNCS 1427, pp. 268-279.

13. H. Comon and Y. Jurski, “Timed Automata and the Theory of Real Numbers,” CONCUR’99,
LNCS 1664, pp. 242-257

14. Z. Dang, http://www.eecs.wsu.edu/˜zdang, the full version of this paper
15. Z. Dang, O. H. Ibarra, T. Bultan, R. A. Kemmerer, and J. Su, “Binary reachability analysis

of discrete pushdown timed automata,” CAV’00, LNCS 1855, pp. 69-84
16. Z. Dang, O. H. Ibarra and R. A. Kemmerer, “Decidable Approximations on Generalized and

Parameterized Discrete Timed Automata,” COCOON’01, LNCS (to appear)
17. Z. Dang, P. San Pietro and R. A. Kemmerer, “On Presburger Liveness of Discrete Timed

Automata,” STACS’01, LNCS 2010, pp. 132-143
18. A. Finkel, B. Willems and P. Wolper, “A direct symbolic approach to model checking push-

down systems,” INFINITY’97.
19. E. Gurari and O. Ibarra, “The Complexity of Decision Problems for Finite-Turn Multicounter

Machines,” J. Computer and System Sciences, 22 (1981) 220-229
20. T. A. Henzinger, Z. Manna, and A. Pnueli, “What good are digital clocks?,” ICALP’92,

LNCS 623, pp. 545-558
21. T. A. Henzinger and Pei-Hsin Ho, “HyTech: the Cornell hybrid technology tool,” Hybrid

Systems II, LNCS 999, pp. 265-294
22. T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. “Symbolic Model Checking for Real-

time Systems,” Information and Computation, 111 (1994) 193-244
23. O. H. Ibarra, “Reversal-bounded multicounter machines and their decision problems,” J.

ACM, 25 (1978) 116-133
24. K. G. Larsen, P. Pattersson, and W. Yi, “UPPAAL in a nutshell,” International Journal on

Software Tools for Technology Transfer, 1 (1997): 134-152
25. F. Laroussinie, K. G. Larsen, and C. Weise, “From timed automata to logic - and back,”

MFCS’95, LNCS 969, pp. 529-539
26. J. Raskin and P. Schobben, “State clock logic: a decidable real-time logic,” HART’97, LNCS

1201, pp. 33-47
27. T. Wilke, “Specifying timed state sequences in powerful decidable logics and timed au-

tomata,” LNCS 863, pp. 694-715, 1994
28. S. Yovine, “A verification tool for real-time systems,” International Journal on Software

Tools for Technology Transfer, 1 (1997): 123-133
29. S. Yovine, “Model checking timed automata,” Embedded Systems’98, LNCS 1494, pp. 114-

152

http://www.eecs.wsu.edu/~zdang

	 Introduction
	Preliminaries
	Clock Patterns and Their Changes 
	Clock Constraints and Patterns
	Pushdown Timed Automata
	The Pattern Graph of a Timed Pushdown Automaton
	A Decidable Binary Reachability Characterization and Automatic Verification
	Conclusions

