Using Timestamping and History Variables to
Verify Sequential Consistency™

Tamarah Arons

The John von Neumann Minerva Center for Verification of Reactive Systems
Weizmann Institute of Science, Rehovot, Israel
tamarah@wisdom.weizmann.ac.il

Abstract. In this paper we propose a methodology for verifying the se-
quential consistency of caching algorithms. The scheme combines times-
tamping and an auxiliary history table to construct a serial execution
‘matching’ any given execution of the algorithm. We believe that this
approach is applicable to an interesting class of sequentially consistent
algorithms in which the buffering of cache updates allows stale values to
be read from cache. We illustrate this methodology by verifying the high
level specifications of the lazy caching and ring algorithms.

In shared memory multiprocessor systems a memory consistency model speci-
fies how memory operations will appear to execute to the programmer. The closer
the memory consistency model forces the shared memory to behave as a serial
memory system — a system in which all operations are performed atomically di-
rectly on memory with no buffering or caching (Figure[ll(a)) — the easier it is for
the programmer to write correct code for the system. However, the stricter the
memory model the more hardware and compiler optimizations are disallowed.
Sequential consistency is an intuitive memory model, in which, “the result of
any execution is the same as if the [memory] operations of all the processors
were executed in some sequential order, and the operations of each individual
processor appear in this sequence in the order specified by the program”[24].
Sequential consistency is a relatively restrictive model when compared with the
more relaxed memory models (such as partial or total store ordering, or release
consistency) which are supported by some commercially available architectures
(e.g. PowerPC, SPARC, Digital Alpha)[i].

Many sequentially consistent models implement coherence, an even stricter
consistency model. Whereas an execution is sequentially consistent if all of the
processors’ local views can be interleaved to form a single serial behavior, regard-
less of the relative ordering of events at different processors, coherence requires
that the events, as ordered globally, be a trace of serial memory [2].

To prove sequential consistency of a proposed memory implementation M
it suffices to construct, for every ojs, an execution of M, a matching serial
execution og such that all operations in g read and write the same values as in
oy - However, the creation of such a “witness” serial execution may require that a

* Research supported in part by a grant from the German-Israel bi-national GIF foun-

dation and a gift from Intel.

G. Berry, H. Comon, and A. Finkel (Eds.): CAV 2001, LNCS 2102, pp. 423-F35] 2001.
© Springer-Verlag Berlin Heidelberg 2001

424 Tamarah Arons

- ‘ ‘ "

(a) (b)

Fig. 1. Architecture of (a) a serial memory and (b) the lazy caching algorithm.

potentially unbounded number of operations be re-ordered. In fact, the problem
of verifying sequential consistency is known to be undecidable [3]. Thus, unlike
coherence which can often be verified quite easily, sequential consistency does not
comfortably fit the pattern of standard refinement techniques (trace inclusion,
bisimulation, testing preorder). The non-coherent lazy caching algorithm was
therefore proposed by Rob Gerth as an example on which different refinement
methods can be tried [15], and in 1999 a special edition of Distributed Computing
was devoted to this project [13].

In this paper we present a proof methodology which involves timestamping
the cache reads and shared memory updates of an execution and placing them
in a history table. Intuitively, every processor P; has a cache C; which contains a
subset of the values in the shared memory at some time ¢; < tg, where tg is the
global system time. All writes to memory occurring in the interval (¢;,tg| have
not yet been applied to C;. The local time t; is precisely the time at which the
global memory had contents consistent with C;. We timestamp instructions with
the local time (and other information, in order to create a total ordering between
instructions executing at the same local time) and place them in a history table
ordered by timestamp. The information in the history table contains sufficient
information for a matching serial execution to be built, and the algorithm to be
proved sequentially consistent.

We believe that this methodology is suitable for the verification of the se-
quential consistency of many non-coherent memory models, as demonstrated by
our applying this proof method, using the PVS [27] theorem prover, to two ex-
amples, lazy caching [215] and a ring algorithm [GE While this methodology
is theoretically applicable to coherent snoopy protocols, we believe that it is
more complicated than is required for such algorithms. Current work considers
increasing the automation of deductive proofs, and we hope later to consider the
application of the methodology to other classes of caching algorithms.

The paper is structured as follows: In Section [[] we describe the lazy caching
algorithm. In Section Blwe explain how timestamping and the history table are

! The PVS files are available at [4].

Using Timestamping and History Variables to Verify Sequential Consistency 425

Event Enabling conditions Action
Ri(a,d) Instruction pe; is “READ a” pe; = pe; + 1
NC;(a).valid A Ci(a).data = d
A no starred entries in In;

ANOut; = {}
Wi(a,d) Instruction pe; is “WRITE a, d” Out; := push(Outs, (a,d)) A pe; := pe; + 1
MW;(a,d) head(Out;) = (a,d) Memla] := d A Out; := tail(Out;)
AVksi Ing == push(Ing, (a,d))
AIn; := push(In;, (a,d, *))
MR;i(a) Ci(a).valid = false In; := push(Ins, (a, Memlal))
cu;(a,d) head(In;) = (a,d)V In; := tail(In;) A Ci(a).data := d
head(In;) = (a,d,*) ACji(a).valid := true
cL(a) Ci(a).valid = true Ci(a).valid := false

1; (idle)

Fig. 2. Lazy Caching Transitions.

used to derive a serial execution. In Section Bl we define the ring algorithm and
describe how it fitted into our methodology. Section [discusses related works
and in Section Bl we summarize our conclusions.

1 Lazy Caching

The “lazy cache algorithm” [2] is a sequentially consistent protocol in which cache
updates can be postponed, and writes are buffered, allowing processors to access
stale cache data.

As illustrated in Figure [(b), the system consists of n processors, P, ..., P,
with each P; owning a cache C;, and FIFO in- and out-queues In; and Out;,
respectively. We have further associated with each processor an unbounded in-
struction list, containing instruction of the form “READ a” and “WRITE a, d”.
Instructions in the instruction list are executed sequentially, with a program
counter, pc;, pointing to the next instruction.

A processor P; initiates a write event W; by placing a record recording the
instruction address and new value at the tail of Out;. When this record reaches
the top of Out; it can be popped off and the memory write MW; occurs. That
is, the shared memory is updated, and a new record recording the address and
value is placed in the in-queue In; of all processors P;. The copy placed in In;
is starred. When the entry at the head of I'n; is popped off a cache update cu;
occurs, and C; is updated with the value recorded in the In; entry.

A read event R; can be performed if the address a requested is in the cache,
Out; is empty and In; does not contain any starred entries. The value read is
that in the cache. We note that this value may differ from that in the memory if a
write to a is buffered in In;. Locations (which are not currently in cache) can be
brought into the cache by placing the memory value in the in queue in a memory
read (MR;) action, and can be summarily evicted by cache invalidation (c1).

426 Tamarah Arons
Pl W1 (6) MW1 (6)

Ps R3 (O) CU3(8) R3(8)

Py CU4(8) cu4(6) Ra(6)

Ps Rs (O)
Memla] 0 0 8 8 6 6 6 6 6 6 6

R3(0) R5(0) MW2(8) R3(8) MW1(6) R4(6)
(b)

Fig. 3. (a) A partial execution of the lazy caching algorithm. All transitions refer
to address a. Time increases from left to right. (b) A matching serial execution,
where “read” and “write” instructions correspond to R and MW events.

In our interleaving model at any step a processor can either initiate a read
or write (if one is enabled), pop an entry off its in- or out-queue if they are non-
empty, initiate a cache update, invalidate a cache entry, or idle (1). The system
is parameterized by the number of processors and there is no restriction on the
maximum size of the queues, the address space, or the set of memory values. Our
model, summarized in Figure 2], very closely resembles that of Gerth [I5]. The
reader is referred to this paper, or our PVS source files [4], for more information.

An Example Execution Fragment. In Figure Bla) we consider a very small
execution sequence which illustrates the non-coherent nature of the lazy caching
algorithm. We assume that address a has initial value 0. Process P, initiates a
write of 6 to a, placing the tuple (a, 6) on its out-queue. Process P, then initiates
a write of 8 to a. Process P> pops (a, 8) off Outs, in a memory write MWo action,
pushing the (address, data) tuple onto the in-queues of all processors. Sometime
thereafter action MW also occurs. Process Ps reads the value of 0 for a, updates
its cache with 8, and then reads 8 as the value of a, while the write of 6 is
buffered. Process Py updates its cache with both values before reading reading
a as 6; process P5 reads a as 0.

We note that the memory is updated in the opposite order to which the writes
were initiated, and thus a has the final value of 6. Furthermore, processors P;
and Ps5 read stale values for a after Py has read the new value.

2 Creating a Serial Execution

To prove an algorithm sequentially consistent we show that each of its execu-
tions has an equivalent serial execution. In the serial execution all operations
are executed directly on memory, in some sequential order, and the operations
of each individual processor are in program order, where “read” and “write”
instructions correspond to R and MW events. It is shown that reads in the two

Using Timestamping and History Variables to Verify Sequential Consistency 427

executions return the same value, and the final memory values are identical. Fig-
ure BI(b) gives the serial execution corresponding to the lazy caching execution
of Figure Bla).

2.1 Logical Time

Each processor has a view of memory which is consistent with the values memory
had at some time in the past: It sees the memory as it was before it was modified
by the last = writes, these being the writes which are buffered in the in-queue.

The global time tg is determined by an auxiliary global clock, and is initially
zero. Every time a memory write occurs the global time is incremented by one.

Each processor has an auxiliary local clock which counts the number of writes
which have been applied to its cache. This clock gives its local time. It is updated
each time a process performs a cache update which was initiated by a memory
write. These cache updates are termed countable. (In order to distinguish count-
able cache updates from those initiated by memory reads, we add an auxiliary
processor id field to in-queue records. An entry is the result of a memory read
exactly if the processor id in the record is that of the processor and the record is
not starred.) The processor has a view of memory consistent with the values that
memory held when the global time was the current local time of the processor.

Every read (R) or memory write (MW) event in the system is given a unique
timestamp when it occurs. The timestamp is a tuple (¢, r, id), where ¢ is the local
time at which the event occurs, r is the numbers of reads which this processor
has performed since the last counted cached update, and id is the identifier of
the processor that initiated the read/write. On a read R;(a,d) we add to the
history table H an entry R;(a,d), its timestamp (¢;,7; + 1,7) and the current
program counter, pc; of P;. The local read counter, r;, is incremented by 1. On
a memory write MW (a, d) we add to the history table H an entry Mw;(a, d), its
timestamp (t¢ + 1,0,7) and pc; and we set tg := t¢ + 1. On a counted cache
update CUy we set t :=t + 1,7 := 0.

The timestamps induce a strict order on memory events:
(tl,’l“l,idl) =< (tz,’l“g,idg) St <taViti =t A (7“1 <roVry=ry /\idl < ng)

Time 0 is the time given to all reads of the initial, unmodified memory. For
every t; > 0 the “smallest” timestamp with time ¢; will always be a memory
write (MW), as the reads field of a timestamp is zero exactly when it represents
a memory write operation. Since the local clocks are incremented every time
that a cache update is performed, there is only one memory write at time ¢; and
all other operations timestamped with ¢ = ¢; are reads. As they are all reads
from the same memory, with no intervening writes, they will return the same
value irrespective of the ordering between them. However, it is desirable that the
program order of each processor be maintained, and this is done by the reads
field of the timestamp. The id field of the timestamp is used to order operations
at the same local time by different processors. The relative ordering of these
operations is unimportant, and ours in one of a number of possibilities.

These counters and timestamps are variants of Lamport clocks [23]. However,
in our system each processor updates its clock independently, without reading
the timestamps on incoming messages.

428 Tamarah Arons

Instruction Action Timestamp P P, P; Pis Ps Global Memory

(ty,ryid) tartartartartar Time a
000000000000000 O 0
Py:a:=6 wi(a,6) 0oooo00000000000 O 0
P, :a:=8 wsz(a,8) 000000000000000 O 0
Mwa2(a,8) (1,0,2) 000000000000000 1 8
Ps:read a Rs(a,0) (0,1,3) 000000001000000 1 8
Mwi(a,6) (2,0,1) 000000001000000 2 6
(a) cUa(a, 8) 000000001180000 2 6
CU4(a, 6) 000000001260000 2 6
Pi:read a Ra(a,6) (2,1,4) 000000001261000 2 6
cus(a,8) 000000180261000 2 6
Ps:read a Rs(a,0) (0,1,5) 000000180261000 2 6
Ps:read a Rs(a,8) (1,1,3) 000000181261001 2 6
Index Timestamp Operation pc Instruction Mem|a]

1 (0,1,3) Rs(a,0) 1 Py:reada 0

2 (0,1,5) Rs(a,0) 1 Ps:reada 0

3 (1,0,2) Mwa(a,8) 1 Pyia:=8 8§

(b) 4 (1,1,3) Rs(a,8) 2 (¢) Ps:reada 8

5 (2,0,1) MWl(a 6) 1 Piia:=6 6

6 (2,1,4) Ra(a,6) 1 Py:reada 6

Fig. 4. An execution of the lazy caching algorithm with history table and match-
ing serial execution. (a) Building the history table. (b) The history table ordered
by timestamp. (c) A serial execution.

2.2 Extracting a Serial Execution from the History Table

The history table is an ordered list of entries sorted in non-decreasing order
of timestamp. Since memory writes always have a greater timestamp than any
other elements in the table at the time they occur they are appended to its end.
Reads, however, may be inserted in the middle of the history table. The function
size(H) returns the number of entries in H. For every x < size(H), H|[z] refers
to the xz’th entry of H.

In Figure Ml(a) we revisit the example of Section [, showing how the history
table would be constructed. For each processor the table records its local time t,
the value it stores for a, and r, the number of reads it has performed since the
last countable cache update. The timestamp column indicates the timestamp of
the entry which is added to the history table at the step in which it is added.
Time progresses from top to bottom in the table.

A serial execution can be derived from the history table such that the i’th
entry in the history table corresponds to the ¢’th operation in the serial execution.
It is proved that in this serial execution every processor issues its instructions
in the same order as in the original execution, all reads return the same values
as in the lazy caching execution, and the final memory values are the same as
in the original execution.

Using Timestamping and History Variables to Verify Sequential Consistency 429

Type Definition Field Type
TIME N t TIME
PROCID 1...njforn>1la r N
system parameter id PROC ID

ADDRESS N operation {R, MW} Field Type
VALUE R address ADDRESS memory MEMORY
PC RANGE N7 data VALUE id PROC D
MEMORY ADDRESS — VALUE pcC PC RANGE pc PC RANGE

Basic types Entries of the history table, H FEntries of memHist
Field Type Field Type
cache ADDRESS — [valid : BOOLEAN, data : VALUE] address ADDRESS
pc PC RANGE star BOOLEAN
inQueue, outQueue QUEUE data VALUE
t TIME t TIME
readCounter N pc PC RANGE
read Values PC RANGE +— VALUE id PROC ID

Processors of the lazy caching system Queue entries

Fig. 5. Some of the data structures. Auxiliary variables in the processor and
queue structures are italicized.

In Figure @ b) we present the history table built in the example of Figure[d(a),
with entries ordered by timestamp. The table illustrates all the fields in the
history table. Figured(c) illustrates the serial execution which is derived.

2.3 The Proof

The auxiliary history (H) list and memHist array and read Values arrays are in-
trinsic to the presented proof. Each processor has a read Values array which maps
instruction indices to values. Every time a read operation occurs the value read
is stored in the relevant entry of the readValues array. This array is later used to
insure that the lazy caching and serial executions return identical values for every
read. The memHist array is a history of memory contents, where memHist[t]
is a copy of the shared memory at global time t. In addition, memHist also
stores for every time ¢ the processor id and program counter for the instruction
that updated memory from memHist[t — 1] to memHist[t]. We also found it
useful to add auxiliary fields to the in- and out-queue entries: in addition to the
address, value and “*” fields, we added auxiliary fields recording the processor
id and program counter of the related instruction, and the global time at which
the related event occurs. We note that this time field is not used to update the
processors local clocks, or any other variables. Some of the data structures are
detailed in Figure Bl

In order to construct the serial execution we prove a one to one relationship
between executed operations and history table entries. The bulk of the proof ef-
fort involved manually defining properties of the lazy caching algorithm and then

430 Tamarah Arons

proving their invariance in the PVS[27] system. We list some of the invariants
used in the proof.

For every two entries H[z] and HJy| of history table H with timestamps
(tz, Tz, 9dy) and (ty,ry,idy) respectively, and x,y < size(H):

— If & # y then (t;, s, ids) # (ty, ry, idy). (Distinct entries have distinct times-
tamps).

-z <yiff (tz,rs,ids) < (ty,ry,idy). (H is ordered by timestamp).

— Entry HJ[z] corresponds to a memory write operation iff r, = 0.

- Ift, =t, and 7, = 0 then r, # 0. (At most one memory write at any global
time).

— For all 0 < ¢ < tg there is an index z < size(H) such that H|[z] is times-
tamped (¢, 0, id) for some id. (Every time period greater than zero is initiated
by a memory write).

— For all 0 < 7 < ry, there is an entry H|[z], z < z timestamped (¢,,r,id;) in
H. (Reads are counted sequentially, with no gaps in the counting).

— The time t, is not greater than the global time ¢t and if ¢, is greater than
the local time t;4, then there is an entry in In;q, corresponding to H|[z].

— The contents of memHist for the current global time equal the current
memory. That is, memHist[tg] = Mem.

— For every address a and processor P; with cache C; and local time ¢;,
Ci(a).walid — C;(a).data = memHist[t;](a). The values of locations in the
cache match the memHist values for the processor’s local time.

— For every occupied entry In;[k] of In;, t; < In;[k].t < tg and if t; = In;[k].t
then In;[k] records a non-countable cache update. Intuitively, for every ¢
such that t; < t < tg there is an In;-entry which will be used to update ;.

— The program counter H|[x].pc is less than pe;q, .

— For every value pc less than the program counter pc; of P; either there is an
entry H|[z],z < size(H) with timestamp (¢, r.,7) such that H[z].pc = pe,
or there is an entry of Out; corresponding to this instruction.

— The value P;q, .readValues[H[x].pc] = memHist[t,](a) where a is the ad-
dress in the pc’th instruction of Piq,. (The values in the readValues array
match the memHist values for the time of the transition.)

The serial execution is inductively built in a list S where S[z].mem and
S[z].procs give the global memory and processor states in the serial system
after x execution steps. Intuitively, the x’th entry of S corresponds to the z’th
entry of H, for all z < size(H). That is, in the serial execution transitions occur
in the order in which they appear in the history table.

We now define predicate o which describes the relationship between the lazy
caching data structures L and S. For clarity we prefix data structures in the lazy
caching algorithm with L where confusion could arise.

1. The first entry, S[0], fulfills the initial conditions of the serial system.

2. Forevery 0 < z < size[H], pserial(S[z], S[x+1]). That is, there is a transition
in the serial system from S[x] to S[z + 1].

3. For every 0 < z < size[H|, S[x].mem = L.memHist[H|[z].t]. That is, the
global memory at the x’th entry in S matches the memory recorded in
L.memHist for time H|[z].t.

Using Timestamping and History Variables to Verify Sequential Consistency 431

2 \
\)
\ \ \ \ \ \ \ \
P, write read write P write read P
0 [Return Return)| Return) 1 Request|| Return) 2
to = tg t1 =tg — 2 to =tg — 2

Fig. 6. An Example Configuration in the Ring Algorithm.

4. For every processor P; and program index p, if the p’th instruction of P;
is a read instruction then S[size[H]|.readValues[i,p] = L.readValues[i,p].
That is, every read in the two systems returns the same value.

5. The program counter of processor P; at the end of the sequential execu-
tion, S[size(H)].pc;, is equal to L.pc; if L.Out; is empty, and the (auxiliary)
program counter field in the top L.Out; entry, otherwise.

We prove inductively that for every reachable lazy caching state L there is an
S such that «(L,S): We first prove that predicate « holds for the initial states
of the two systems, and then that if a(L,S) holds, then for any L’ such that
Plazy(L, L") is a lazy caching transition, we can build an S’ such that a(L’,5").

From parts (1) and (2) of a S records a legal serial execution. Given that
L.memHist[tg] is proved to equal L.Mem, the currently lazy caching memory,
from (3) we can deduce that the memory values in the two systems agree. From
(4) we prove that both systems return the same value for every read.

We complete the proof by showing that the lazy caching system can always
progress meaningfully.

3 The Ring Algorithm

In order to test the applicability of our methodology we applied it also to a
model based on Collier’s ring algorithm [6]:

Processors Py, ..., P,_1 are connected in a ring, with P; sending messages
only to its successor, Pj+1modn- The channels between every two successive pro-
cessors are FIFO queues of messages. Processor Py is designated the supervisor.
If processor P;,i # 0 wants to perform a write of value v to address a it sends to
its successor a WriteRequest(a, v) message and enters a waiting state. This write
request is passed around the ring until it reaches the supervisor. The supervisor
updates memory with this address and value, and then sends a WriteReturn(a,
v) message. On receiving a WriteReturn message all processors update their
caches, and then pass it on to their successor. Process P; also releases itself from
its waiting state and can proceed. When the write return reaches the supervisor,
it is removed from the system.

A processor can execute a read instruction if the address is in its cache. Oth-
erwise it sends a ReadRequest, which the supervisor answers with a ReadReturn.
After thus bringing the address into the cache, the read can be executed.

432 Tamarah Arons

The supervisor accesses memory directly (its local cache is the “shared mem-
ory”) and never issues ReadRequest or WriteRequest messages. On performing a
write it sends a WriteReturn message so that all other caches can be updated.

This model fits neatly into our framework. As in the lazy caching example,
cache reads and updates to the shared memory are entered into the history
table when they occur. (In this algorithm the memory update occurs when a
WriteReturn in initiated by the supervisor.) The supervisor increments its local
clock when it sends a WriteReturn, and all other processors increment their
local clocks on receiving the WriteReturn. The local time of the supervisor is the
global system time. The local time ¢; of P; is the global time minus the number
of writeReturns on channels between Py and P;. An example configuration is
given in Figure

4 Related Works

Various methodologies, ranging from CSP [5l9], to abstraction [16] and model
checking [19] have been used to verify lazy caching. The primary difficulty in
verifying lazy caching seems to be that at the time that a memory is updated
by a write in the lazy caching system, it is not known how many reads reading
the stale value will still occur. That is, nondeterministic choices in the abstract
(serial) system occur earlier than in the concrete (lazy caching) system. One
solution is to input the computation of the concrete system into a transducer,
which queues segments of the concrete computation until they can be matched
with an abstract execution [2I]. Similarly, [I9] propose a finite state observer
that observes and re-orders the memory operations, while [22] use an auxiliary
queue to record writes which have updated memory but have not yet updated the
cache. Step-wise refinement, in which the lazy caching system is transformed in a
number of steps to a serial system, is used in [5] and [22]. Composition [20] and
abstraction [I6] are two other methodologies proposed, while in [9] decomposition
is coupled with the use of CSP to prove trace inclusion.

The paper introducing lazy caching [2] presents a semantic proof that it is
sequentially consistent. A WriteCounter is used to assign a sequence numbers
to updates of the shared memory. Reads are assigned numbers according to the
last write which the processor has popped off its in-queue. An auxiliary Hist
variable is used, with semantics similar to that of our memHist variable.

Of the above mentioned verification efforts only [I9] has been mechanized
at all. The model-checking verification in [19] is of a restricted system in which
there is no out-queue and the in-queue is of size at most one. Given the problems
of state explosion, it is unclear how a more detailed system could be verified. It
is claimed that the type of abstractions that are used in [16] could be computed
algorithmically, thus partially mechanizing this proof.

Timestamping, using variants of logical Lamport clocks [23], has been used
to verify various memory consistency models [7I8]. The algorithms are verified
at a lower level than we have considered, including message passing protocols.
Timestamping is used to divide logical time into coherence epochs, intervals of
logical time in which a node has read-only or read-write access to a block of data.

Using Timestamping and History Variables to Verify Sequential Consistency 433

Thus, it is possible for one epoch to contain multiple, or no, stores. Furthermore
the same write can be given different timestamps when it is used to update dif-
ferent caches. In contrast, in our timestamping each memory update is identified
with an epoch and has a unique timestamp. This underscores a difference in our
approaches to memory consistency — whether block control or memory contents
are the primary concern. The difference in emphasis is appropriate given the dif-
ferent levels (high level versus message passing) at which verification occurs, and
the different algorithms considered. The proofs presented are entirely manual.

Theorem proving has been used by Park and Dill [TT/I2] and Stoy et al [28§]
to verify cache coherence protocols at the message passing level. Park and Dill
aggregate the steps of each transaction in the implementation into a single atomic
transition in the specification. A commit point is identified, for each transition,
and the aggregation function intuitively is a function completing committed
instructions. This methodology has been used to effectively verify a detailed
model of the complex FLASH protocol. However, it is unclear how it could
be used in our examples, where instructions may commit out of order (a read
instruction may return an older value than a previous read, by another processor,
for the same address). In [28] a PVS [27] implementation of Lamport’s TLA [25]
is used. Queues are drained to empty them of messages, and an abstraction
function used to show refinement between two protocols.

A lot of research has been done on using model checking to verify cache
coherence protocols. However, due to the difficulties of verifying large systems
many of these methodologies are restricted. E.g., the ‘test model-checking’ of [17]
in incomplete, the work by Delzanno, Pong and Dubois [T0J14] based on FSMs is
only appropriate to coherent algorithms. Lazic [26] shows that data independence
theorems can be used to make model checking of cache protocols more tractable.

Our construction of a serial execution is reminiscent of work by Glusman
and Katz [I8]. They allow independent operations to be re-ordered to create
a convenient computation. Our “convenient” serial execution is not only a re-
ordering of the events, but also a change in the nature of the occurring events.

There are more points of similarity between our work and those mentioned
above. The auxiliary variables in [22IT9] perform some of the functions of our
history table. While timestamping has been used previously in verifying cache
consistency protocols [§], the similarities between this work and ours are in
the terminology more than the semantics. Our timestamping is closer in mean-
ing to the WriteCounter variable in [2]. Their Hist variable is also similar to
our memHist variable. However, the proof in [2] is ‘on a semantical level and
not grounded in a refinement methodology’[I5]. By creating a full timestamp-
ing scheme, and using a history table, we have developed a formal verification
framework which allows mechanical verification, and can easily be applied to
different verification problems.

The centrality of the history table, and the method in which it is coupled with
timestamping is new, and provides a relatively simple proof which is amenable to
mechanical verification. We believe that mechanical verification provides a higher
degree of confidence than pen and paper proofs, and testifies to a relatively simple
and natural methodology.

434 Tamarah Arons
5 Conclusion

In this paper we present a refinement methodology for the verification of sequen-
tial consistency. Given that the general problem is known to be undecidable, our
proof method cannot be complete. However, we believe that there is a class
of ‘difficult’, non-coherent algorithms, to which this methodology is suited, as
illustrated by the successful verification of the lazy caching and ring algorithms.

We take cache reads and shared memory updates to be the important events
to be recorded, and show that a correct ordering of these events allow the con-
struction of a matching serial execution. While the idea of using timestamps (or,
more generally, Lamport clocks) to order events is far from new, the timestamp-
ing that we have devised is particularly well suited to sequential consistency. It
allows us to give a relative order (timestamp) to an “important event”, when it
occurs, relative to all past and possible future such events in the system. The
history table provides a means of dynamically ordering these events, so that a
serial execution can be extracted.

The methodology is sound — when it is applied a corresponding serial execu-
tion can be built. Since all steps are mechanically verified in the PVS theorem
prover, this gives a very solid proof of sequential consistency.

The major drawback of this methodology is the large amount of human ef-
fort required (several person-weeks), devoted primarily to deriving the invaraint
properties and directing the theorem prover. We are currently researching tech-
niques to increase the automation of the proofs, and hope later to consider the
extension of our methodology to other classes of algorithms.

Acknowledgements

Prof. Amir Pnueli, my supervisor, provided invaluable criticsims and suggestions;
Jirgen Niehaus suggested the ring algorithm.

References

1. S. V. Adve and K. Gharachorloo. Shared memory consistency models: A tutorial.
Technical Report 9512, Rice University, 1995.

2. Y. Afek, G. Brown, and M. Merrit. Lazy caching. ACM Transactions on Program-
ming Languages and Systems, 15(1):182-205, 1993.

3. R. Alur, K. L. McMillan, and D. Peled. Model checking of correctness conditions

for concurrent objects. In MICS’96:219-228, 1996.

T. Arons. Homepage. http://www.wisdom.weizmann.ac.il/ tamarah/caching/!

E. Brinksma. Cache consistency by design. Dist. Comp., 12:61-74, 1999.

W. W. Collier. Reasoning about Parallel Architectures. Prentice Hall, 1992.

A. E. Condon, M. D. Hill, M. Plakal, and D. J. Sorin. Lamport clocks: Reasoning

about shared-memory correctness. Technical Report CS-TR-1367, University of

Wisconsin, Madison, 1998.

8. A. E. Condon, M. D. Hill, M. Plakal, and D. J. Sorin. Lamport clocks: Verifying a
directory cache-coherence protocol. In Proc. 10th ACM Symp. Parallel Algorithms
and Architectures (SPAA), 1998.

NS otk

http://www.wisdom.weizmann.ac.il/~tamarah/caching/

Using Timestamping and History Variables to Verify Sequential Consistency 435

9.

10.

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

J. Davies and G. Lowe. Using CSP to verify sequential consistency. Dist. Comp.,
12:91-103, 1999.

G. Delzanno. Automatic verification of parametrized cache coherence protocols.
CAV’00:53-68, 2000.

D. L. Dill and S. Park. Verification of FLASH cache coherence protocol by aggre-
gation of distributed transactions. In SPAA’96:288-296, 1996.

D. L. Dill and S. Park. Verification of cache coherence protocols by aggregation of
distributed transactions. In Theory of Computing Systems. 1998.

Distributed Computing, Volume 12 Number 2/3, 1999.

M. Dubois and F. Pong. Verification techniques for cache coherence protocols.
ACM Computing Surveys, 29(1):82-126, 1997.

R. Gerth. Sequential consistency and the lazy caching algorithm. Dist. Comp.,
12:57-59, 1999.

S. Graf. Characterization of a sequentially consistent memory and verification of
a cache memory by abstraction. Dist. Comp., 12:75-90, 1999.

R. Ghughal, G. Gopalakrishnan, A. Mokkedem, and R. Nalumasu. The ‘test model-
checking’ approach to the verification of formal memory models of multiprocessors.
CAV’98:464-376, 1998.

M. Glusman and S. Katz. Mechanizing proofs of computation equivalence.
CAV’99:354-367, 1999.

T. Henzinger, S. Qadeer, and S. K. Rajamani. Verifying sequential consistency on
shared-memory multiprocessor systems. CAV’99:301-315, 1999.

W. Janssen, M. Poel, and J. Zwiers. The compositional approach to sequential
consistency and lazy caching. Dist. Comp., 12:105-127, 1999.

R. Jonsson, A. Pnueli, and C. Rump. Proving refinement using transduction. Dist.
Comp., 12:129-149, 1999.

P. Ladkin, L. Lamport, B. Olivier, and D. Roegel. Lazy caching in TLA. Dist.
Comp., 12:151-174, 1999.

L. Lamport. Time, clocks and the ordering of events. Communications of the
ACM, 21(7):558-565, 1978.

L. Lamport. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Transactions on Computers, C-82(9):690-691, 1979.
L. Lamport. The temporal logic of actions. ACM Trans. Prog. Lang. Sys.,
16(3):872-923, May 1994.

R. S. Lazic. A Sematic Study of Data Independed with Appliations to Model Check-
ing. PhD thesis, Oxford University Computing Laboratory, 1999.

S. Owre, J. M. Rushby, N. Shankar, and M. K. Srivas. A tutorial on using PVS
for hardware verification. TPCD‘94:258-279, 1994.

J. Stoy, X. Shen, and Arvind. Proofs of correctness of cache-coherence protocols.
In Formal Methods Europe, FMFE’01, Springer-Verlag, 2001.

	Lazy Caching
	Creating a Serial Execution
	Logical Time
	Extracting a Serial Execution from the History Table
	The Proof

	The Ring Algorithm
	Related Works
	Conclusion

