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Abstract. In this paper we propose a distributed symbolic algorithm for model
checking of propositional µ–calculus formulas. µ-calculus is a powerful formal-
ism and many problems like (fair) CTL and LTL model checking can be solved
using the µ–calculus model checking. Previous works on distributed symbolic
model checking were restricted to reachability analysis and safety properties.
This work thus significantly extends the scope of properties that can be verified
for very large designs.
The algorithm distributively evaluates subformulas. It results in sets of states
which are evenly distributed among the processes. We show that this algorithm
is scalable, and thus can be implemented on huge distributed clusters of comput-
ing nodes. In this way, the memory modules of the computing nodes collaborate
to create a very large store, thus enables the checking of much larger designs.
We formally prove the correctness of the parallel algorithm. We complement the
distribution of the state sets by showing how to distribute the transition relation.

1 Introduction

In the early 1980’s, model checking procedures have been suggested [5,15,12], which
could handle systems with few thousands states. In the early 1990’s, symbolic model
checking methods have been introduced. These methods, based on Binary Decision Di-
agrams (BDDs) [2], could verify systems with 1020 states and more [4]. This progress
has made model checking applicable to industrial designs of medium size. Significant
efforts have been made since to fight the state explosion problem. But the need in veri-
fying larger systems grows faster than the capacity of any newly developed method.

Recently, a new promising method for increasing the memory capacity was intro-
duced. The method uses the collective pool of memory modules in a network of pro-
cesses. In [10], distributed symbolic reachability analysis has been performed, for find-
ing the set of all states reachable from the initial states. In [1], a distributed symbolic
on-the-fly algorithm has been applied in order to model check properties written as
regular expression. Experimental results show that distributed methods can achieve an
average memory scale-up of 300 on 500 processes. Consequently, they find errors that
were not found by sequential tools.

This paper extends the scope of properties that can be verified for large designs, by
presenting a distributed symbolic model checking for the µ-calculus. The µ-calculus is
a powerful formalism for expressing properties of transition systems using fixpoint op-
erators. Many verification procedures can be solved by translating them into µ–calculus
model checking[4]. Such problems include (fair) CTL model checking, LTL model
checking, bisimulation equivalence and language containment of ω-regular automata.
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Many algorithms for µ-calculus model checking have been suggested [9,16,18,7,13].
In this work we parallelize a simple sequential algorithm, as presented in [6]. The algo-
rithm works bottom-up through the formula, evaluating each subformula based on the
evaluation of its own subformulas. A formula is interpreted as the set of states in which
it is true. Thus, for each µ–calculus operation, the algorithm receives a set (or sets) of
states and returns a new set of states.

The distributed algorithm follows the same lines as the sequential one, except that
each process runs its own copy of the algorithm and each set of states is stored distribu-
tively among the processes. Every process owns a slice of the set, so that the disjunction
of all slices contains the whole set. An operation is now performed on a set (or sets) of
slices and returns a set of slices. At no point in the distributed algorithm a whole set is
stored by a single process.

Distributed computation might be subtle for some operations. For instance, in order
to evaluate a formula of the form ¬g, the set of states satisfying g should be comple-
mented. It is impossible to carry this operation locally by each process. Rather, each
process sends the other processes the states they own, which are not in g to the best of
its knowledge. If none of the processes “knows” that a state is in g, then it is (distribu-
tively) decided to be in ¬g.

While performing an operation, a process may obtain states that are not owned
by it. For instance, when evaluating the formula EXf , a process will find the set of all
predecessor of states in its slice for f . However, some of these predecessors may belong
to the slice of another process. Therefore, the procedure exch is executed (in parallel)
by all processes, and each process sends its non-owned states to their respective owner.

Keeping the memory requirements low is done through frequent calls to a memory
balancing procedure. It ensures that each set is partitioned evenly among the processes.
This ensures that the memory requirements, commonly proportional to the size of the
manipulated set, are evenly distributed among the processes. However, this also re-
quires different slicing functions for different sets. As a result, we may need to apply
an operation to two sets that are sliced according to different partitions. In the case of
conjunction, for instance, first the two sets should be re-sliced according to the same
partition. Only then the processes apply conjunction to their individual slices.

Distributing the sets of states is only one facet of the problem. The transition rela-
tion also strongly influences the memory peaks that appear during the computation of
pre-image (EX) operations. The pre-image operation has one of the highest memory
requirements in model checking. Even when its final result is of tractable size, its inter-
mediate results might explode the memory. We propose a scalable distributed method
for the pre-image computation, including partitioning of the transition relation.

2 Preliminaries

2.1 The Propositional µ–Calculus

Below we define the propositional µ–calculus [11]. We will not distinguish between a
set of states and the boolean function that characterizes this set. By abuse of notation
we will apply both set operations and boolean operations on sets and boolean functions.
Let AP be a set of atomic propositions and let V AR = {Q, Q1, Q2, . . .} be a set of
relational variables. The µ–calculus formulas are defined as follows: if p ∈ AP , then p
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is a formula; a relational variable Q ∈ V AR is a formula; if f and g are formulas, then
¬f, f ∧ g, f ∨ g, EX f are formulas; if Q ∈ V AR and f is a formula, then µQ.f and
νQ.f are formulas. µ–calculus consists of the set of closed formulas, in which every
relational variable Q is within the scope of µQ or νQ.

Formulas of the µ–calculus are interpreted with respect to a transition system M =
(St, R, L) where St is a nonempty and finite set of states; R ⊆ St×St is the transition
relation, and L : St → 2AP is the labelling function that maps each state to the set of
atomic propositions true in that state.

In order to define the semantics of µ–calculus formulas, we use an environment
e : V AR→ 2St, which associates with each relational variable a set of states from M .

Given a transition system M and an environment e, the semantics of a formula f ,
denoted [[f]]Me, is the set of states in which f is true. We denote by e[Q←W ] a new
environment that is the same as e except that e[Q ← W ](Q) = W . The set [[f ]]Me is
defined recursively as follows (where M is omitted when clear from the context).

• [[p]]e = {s | p ∈ L(s)} • [[g1 ∧ g2]]e = [[g1]]e ∩ [[g2]]e
• [[Q]]e = e(Q) • [[g1 ∨ g2]]e = [[g1]]e ∪ [[g2]]e
• [[¬g]]e = St \ [[g]]e • [[EXg]]e = {s | ∃t [(s, t) ∈ R and t ∈ [[g]]e] }
• [[µQ.g]]e and [[νQ.g]]e are the least and greatest fixpoints, respectively, of the
predicate transformer τ : 2St → 2St defined by: τ (W ) = [[g]]e[Q←W ]

Tarski [17] showed that least and greatest fixpoints always exist if τ is monotone. If
τ is also continuous, then the least and greatest fixpoints of τ can be computed by
∪iτ

i(False) and ∩iτ
i(True), respectively. In [6] it is shown that if M is finite then

any monotone τ is also continuous.
In this paper we consider only monotone formulas. Since we consider only finite

transition systems, they are also continuous. The function fixpt on the right-hand-
side of Figure 1 describes an algorithm for computing the least or greatest fixpoint,
depending on the initialization of Qval. If the parameter I is False then the least fix-
point is computed. Otherwise, if I = True, then the greatest fixpoint is computed.

Given a transition system M , an environment e, and a formula f of the µ–calculus,
the model checking algorithm for µ–calculus finds the set of states in M that satisfy f .
Figure 1 presents a sequential recursive algorithm for evaluating µ–calculus formulas.
For closed µ–calculus formulas, the initial environment is irrelevant. The necessary
environments are constructed during recursive applications of the ev function.

2.2 Elements of Distributed Symbolic Model Checking

Our distributed algorithm involves several basic elements that were developed in [10].
For completeness, we briefly mention these elements in this subsection.

intermediate results, are represented by BDDs. the algorithm execution, the sets of
states obtained are partitioned among the processes. A set of window functions is used
to define the partitioning, determining the slice that is stored (we say: owned) by each
process.

Definition 1. [Complete Set of Window Functions] A window function is a boolean
function that characterizes a subset of the state space. A set of window functions
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1 function ev(f, e) 1 function fixpt(Q, g, e, I)
2 case 2 Qval = I
3 f = p: res = {s | p ∈ L(s)} 3 repeat
4 f = Q: res = e(Q) 4 Qold = Qval

5 f = ¬g: res = ¬ev(g, e) 5 Qval =ev(g, e[Q← Qold])
6 f = g1∨g2: res =ev(g1 , e)∨ev(g2, e) 6 until (Qval = Qold)
7 f = g1∧g2: res =ev(g1 , e)∧ev(g2, e) 7 return Qval

8 f =EXg: res = {s | ∃t[sRt ∧ t ∈ev(g, e)]} 8 end function
9 f = µQ.g: res =fixpt(Q, g, e,False)
10 f = νQ.g: res =fixpt(Q, g, e,True)
11 endcase
12 return(res)
13 end function

Fig. 1. Pseudo–code for Sequential µ–Calculus Model Checking.

W1, . . . , Wk is complete if and only if for every 1 ≤ i, j ≤ k, i 6= j, Wi ∧Wj = 0 and∨k
i=1 Wi = 1.

Unless otherwise stated, we assume that all sets of window functions are complete.
We use the slicing algorithm, as described in [10] to get a set of window functions.

The objective of this algorithm is to distribute a given set evenly among the nodes. Its
input is a set of states, and its output is a set of window functions. These functions slices
the input set into subsets that are approximately of the same size.

Maintaining balanced memory requirement by the processes is done by means of a
memory balance algorithm, as described in [10]. When this algorithm is applied at an
already sliced set of states, a new partitioning is computed, one that will balance the
size of the subsets. The new partitioning is computed by pairing large slice of the set
with small one and re-slicing their union. This algorithm defines a new set of window
functions that will be used to produce further intermediate results.

During the memory balance algorithm, as well as during other parts of the dis-
tributed model checking algorithm, BDDs are shipped between the processes. The com-
munication uses a compact and universal BDD representation, as described in [10].
Different variable order is allowed in the different processes.

3 Distributed Model Checking for µ–Calculus.

The general idea of the distributed algorithm is as follows. The algorithm consists of
two phases. The initial phase starts as the sequential algorithm, described in Section 2.1.
It terminates when the memory requirement reaches a given threshold. At this point, the
distributed phase begins. In order to distribute the work among the processes, the state
space is partitioned into several parts, using a slicing procedure. Throughout the dis-
tributed phase, each process owns one part of the state space for every set of states
associated with a certain subformula. When computation of a subformula produces
states owned by other processes, these states are sent out to the respective processes.
A memory balancing mechanism is used to repartition imbalance sets of states which
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are produced during the computation. Distributed termination algorithm is used to an-
nounce global termination. In the rest of this section, we describe elements used by this
algorithm.

3.1 Switching from Initial to Distributed Computation

When the initial phase terminates, several subformulas have already been evaluated and
the sets of states associated with them are stored. In order to start the distributed phase,
we slice the sets of states found so far and distribute the slices among the processes.

Each set of states is represented by a BDD and its size is measured by the number of
BDD nodes. All sets are managed by the same BDD manager, where parts of the BDDs
that are used by several sets are shared and stored only once. Thus, when partitioning
the sets, there are two factors involved: the required storage space for the sets, and the
space needed to manipulate them. In order to keep the first factor small, it is best to
partition the sets so that the space used by the BDD manager for all sets in each process
is small. To keep the second factor small, observe that the memory used in performing
an operation is proportional to the size of the set it is applied to, thus the part of each
set in each process should be small.

In model checking, the most acute peaks in memory requirement usually occur
while operations are performed. Thus, it is more important to reduce the second fac-
tor. Indeed, rather than minimizing the total size of each process, our algorithm slices
each set in a way that reduces the size of its parts. It is important to note that as a result
the slicing criterion may differ for different sets.

We use a slicing algorithm[10] described generally in Section 2.2. In order to slice
all the sets that where already evaluated at the point of phase switching, slicing is ap-
plied to each one of them.

While the slicing algorithm works it updates two tables: InitEval and InitSet.
InitEval keeps track of which sets have been evaluated by the initial phase of the
algorithm. InitEval(f) is True if and only if f has been evaluated by the initial algo-
rithm. Each process id has the table InitSet that for each formula f , holds the subset of
the set of states satisfying f and owned by this process. Formally, for each process id,
InitSet(f) = f ∧Wid. The distributed phase will start by sending the tables InitEval
and InitSet and the list of slices Wi to all the processes.

3.2 The Distributed Phase

The distributed version of the model checking algorithm for the µ–calculus is given in
Figure 2. While the sequential algorithm finds the set of states in a given model that
satisfy a formula of the µ–calculus logic, in the distributed algorithm each process finds
the part of this set that the process owns. Intuitively, the distributed algorithm works
as follows: given a set of slices Wi, a formula f , and an environment e, the process id
finds the set of states ev(f, e) ∧Wid.

In fact, a weaker property is required in order to guarantee the correctness of the al-
gorithm. We only need to know that when evaluating a formula f , every state satisfying
f is collected by at least one of the processes. For efficiency, however, we require in
addition that every state is collected by exactly one process.
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Given a formula f the algorithm first checks if the initial phase has already evaluated
it by checking if InitEval(f) = True. If so, it uses the result stored in InitSet(f).
Otherwise, it evaluates the formula recursively. Each recursive application associates a
set of states with some subformula.

Preserving the work load is an inherent problem in distributed computation. If the
memory requirement in one of the processes is significantly larger than the others, then
the effectiveness of the distributed system is destroyed. To avoid this situation, when-
ever a new set of states is created a memory balance procedure is invoked to keep a
balanced memory requirement by the new set. The memory balance procedure changes
the slices Wi and updates the parts of the new set in each of the processes accordingly.
Each process in the distributed algorithm evaluates each subformula f as follow (see
Figure 2):
A propositional formula p ∈ AP : evaluated by collecting all the states s that satisfy two
conditions: p is in the labelling L(s) of s and in addition s is owned by this process.
A relational variable Q: evaluated using the local environment of the process. Since
only closed µ–calculus formulas are evaluated, the environment must have a value for
Q (computed in a previous step).
A subformula of the form ¬g: evaluated by first evaluating g, and then using the special
functionexchnot. Given a set of states S and a partition S1, . . . , Sk of S, each process
i runs the procedure exchnot on Si . The process reports all other processes of the
states that do not belong to S “as far as it knows”. Since each state in S belongs to
some process, if none of the processes knows that s is in S, then s is in ¬S.

Since each process holds only the states of ¬S that it owns, the processes actually
send each other only states that owned by the receiver. This reduces communication.
A subformula of the form g1 ∨ g2: evaluated by first evaluating g1 and g2, possibly with
different slicing functions. This means that a process can hold a part of g1 with respect
to one slicing and a part of g2 with respect to another slicing. Nevertheless, since each
state of g1 and of g2 belongs to one of the processes, each state of g1 ∨ g2 now belongs
to one of the processes. Applying the function exch results in a correct distribution of
the states among the processes, according to the current slicing.
A subformula of the form g1 ∧ g2 can be translated using De Morgan’s laws to
¬(¬g1∨¬g2). However, evaluating the translated formula requires four communication
phases (via exch and exchnot). Instead, such a formula is evaluated by first evaluat-
ing g1 and g2. As in the previous case, they might be evaluated with respect to different
window functions. Here, however, the slicing of the two formulas should agree before a
conjunction can be applied. This is achieved by applying exch twice, thus the overall
communication is reduced to only two rounds.
A subformula of the form EXg: evaluated by first evaluating g and then computing the
pre-image using the transition relation R. Since every state of g belongs to one of the
processes, every state of the pre-image also belongs to one. In fact, a state may be com-
puted by more than one process if it is obtained as a pre-image of two parts. Applying
exch completes the evaluation correctly.
Subformulas of the form µQ.g and νQ.g (the least fixpoint and greatest fixpoint, re-
spectively): evaluated using a special function fixpt that iterates until a fixpoint is
found. The computations for the formulas differ only in the initialization which isFalse
for µQ.g and the current window functions for νQ.g.
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1 function pev(f, e)
2 case
3 InitEval(f) : return(InitSet(f))
4 f = p : res = {s | p ∈ L(s)} ∧Wid

5 f = Q : return (e(Q))
6 f = ¬g : res =exchnot(pev(g, e))
7 f = g1 ∨ g2 : res =exch(pev(g1 , e)∨pev(g2 , e))
8 f = g1 ∧ g2 : res1 =pev(g1 , e) res2 =pev(g2 , e)
9 res =exch(res1)∧exch(res2)
10 f =EXg : res =exch({s | ∃t[sRt ∧ t ∈pev(g, e)]})
11 f = µQ.g : res =fixpt(Q, g, e, False)
12 f = νQ.g : res =fixpt(Q, g, e, Wid)
13 endcase
14 ldBlnc(res) /* balances W; updates res accordingly */
15 return(res)
16 end function

1 function fixpt(Q, g, e, init)
2 Qval = init
3 repeat
4 Qold = Qval

5 Qval = pev(g, e[Q← Qold])
6 until (parterm(exch(Qval) =exch(Qold)))
7 return Qval

8 end function

1 function exch(S) 1 function exchnot(S)
2 res = S ∧Wid 2 res = (¬S) ∧Wid

3 for each process i 6= id 3 for each process i 6= id
4 sendto(i, S ∧Wi) 4 sendto(i, (¬S) ∧Wi)
5 for each process i 6= id 5 for each process i 6= id
6 res = res∨ receivefrom(i) 6 res = res∧ receivefrom(i)
7 return res 7 return res
8 end function 8 end function

Fig. 2. Pseudo–code for a Process id in the Distributed Model Checking

3.3 Sources of Scalability

The efficiency of a parallelization approach is determined by the ratio between compu-
tation complexity, normalized by computation speed, and communication complexity,
normalized by communication bandwidth. In our parallel model checking algorithm,
this ratio (excluding normalization, which is dependent on the underlying platform) can
be estimated by observing that peak memory requirement for a single µ-calculus opera-
tion of a symbolic computation is a lower bound on the computation complexity of this
operation. On average, in the distributed setup, the size of BDD structures that are sent
(received) by a process is a fraction of its BDD manager size at the end of the operation
(after memory balance). Thus, roughly speaking, for a single operation computation,
peak memory utilization bounds from below the computation complexity, whereas the
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size of the BDD manager represents the communication complexity. General wisdom
holds that the ratio between peak and manager sizes reaches 2 or 3 orders of magni-
tudes, which, for current computing platforms is sufficient to keep the processor and
communication subsystems equally busy. Indeed, our experiments with previous paral-
lel symbolic computations in a distributed setup consisting of a slow network confirmed
the efficiency of this approach [10,1].

Scalability of a parallel system is the ability to include more processes in order to
handle larger inputs of higher complexity. Linear scalability is used to describe a par-
allel system that does not loose performance while scaling up. Recall that the volume
of communication performed by a single process in our algorithm during a single op-
eration, may be represented on average by a fraction of its BDD manager size at the
end of the operation. Also, the corresponding peak memory that is used by the pro-
cess during that operation is bounded by the size of its memory module (otherwise the
operation overflows). By the above mentioned ratio between the sizes of the peak and
the BDD manager, the manager size (in between operations) is also bounded. Thus,
using our effective slicing procedure, the local BDD manager size does not increase
when the system is scaled up globally in order to check larger models using more pro-
cesses. Thus, the ratio between computation and communication for each process does
not vary substantially when the system scales up, implying almost linear scalability of
our distributed model checking algorithm.

Finally, we note that a higher ratio of peak to BDD manager sizes, which may result
from a larger transition system in larger models, will enhance the scalability of our
parallel approach. Since the size of memory module limits the peak size, a higher ratio
implies smaller BDD manager, which, in turn, implies lower communication volumes.
Thus, when the checked models grow, the method may exhibit super-linear scalability.

4 Correctness

In this section we prove the correctness of the distributed algorithm, assuming the se-
quential algorithm is correct. The sequential algorithm evaluates a formula by comput-
ing the set of states satisfying this formula. In the distributed algorithm every such set
is partitioned among the processes. The union over all the partitions for a given subfor-
mula is called the global set. In the proof we show that, for every µ–calculus formula,
the set of states computed by the sequential algorithm is identical to the global set com-
puted by the distributed algorithm. Note that, the global set is never actually computed
and is introduced only for the sake of the correctness proof. In the proof that follows
we need the following definition.

Definition 2. [Well Partitioned Environment] An environment e is well partitioned by
parts e1, . . . , ek if and only if, for every Q ∈ V AR, e(Q) =

∨k
i=1 ei(Q).

The procedures exch are applied by all processes with a set of non-disjoint subsets
Si that cover a set res. Given a set of window functions, the procedures exchange non-
owned parts so that at termination each process has all the states from res it owns. The
set of window functions do not change.
Let f be a µ–calculus formula, eid be the environment in process id. pevid(f, eid)
denotes the set of states returned by procedure pev, when run by process id on f and
eid.
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Theorem 1 defines the relationship between the outputs of the sequential and the dis-
tributed algorithms.

Theorem 1 (Correctness). Let f be a µ–calculus formula, e be a well partitioned en-
vironment by e1, . . . ek , e′ be the environment when ev(f, e) terminates and for all
i = 1, . . . , k, e′i be the environment when pevi(f, ei) terminates. Then, e′ is well par-
titioned by e′1, . . . e′k and ev(f, e)=

∨k
i=1pevi(f, ei).

Proof: We prove the theorem by induction on the structure of f . In all but the last two
cases of the induction step the environments are not changed and therefore e′ is well
partitioned by e′1, . . . e

′
k . Due to lack of space we only consider several of the more

interesting cases.
Base: f = p for p ∈ AP – Immediate.
Induction:
f = Q, where Q ∈ V AR is a relational variable:

∨k
i=1pevi(Q, ei) =

∨k
i=1 ei(Q).

Since e is well partitioned, e(Q) =
∨k

i=1 ei(Q), which is equal to ev(f, e).
f = ¬g: pevid(¬g, eid) first applies pevid(g, eid) which results with Sid. It then runs
the procedure exchnot(Sid) that returns the result resid.

resid = ((¬Sid) ∧Wid) ∧
∧

j 6=id

((¬Sj) ∧Wid) =
k∧

j=1

((¬Sj) ∧Wid).

When exchnot terminates in all processes, the global set computed by all processes
is (recall that

∨k
i=1 Wi = 1):

k∨
i=1




k∧
j=1

((¬Sj) ∧Wi)


 =

k∧
j=1

(¬Sj) ∧
k∨

i=1

Wi =
k∧

j=1

(¬Sj) = ¬
k∨

j=1

Sj .

Since Si = pevi(g, ei), ¬
∨k

j=1 Sj = ¬∨k
j=1pevi(g, ei), which by the induction

hypothesis is identical to ¬ ev(g, e). This, in turn, is identical to ev(¬g, e). Applying
ldBlnc at the end of pev, repartitions the subsets between the processes, however,
their disjunction remains the same. Thus, ev(¬g, e)=

∨k
i=1pevi(¬g, ei).

f = g1 ∨ g2: pevid(f, eid) first computes pevid(g1, eid) ∨ pevid(g2, eid). At the end
of this computation, the global set is:

k∨
i=1

(pevi(g1, ei) ∨ pevi(g2, ei)) =
k∨

i=1

pevi(g1, ei) ∨
k∨

i=1

pevi(g2, ei).

By the induction hypothesis, this is identical to ev(g1, e) ∨ ev(g2, e) which is identical
to ev(g1 ∨ g2, e). Applying the procedures exch and ldBlnc change the partition of
the sets among the processes, but not the global set.
f = µQ.g, a least fixpoint formula: As in previous cases, we would like to prove that∨k

i=1 pevi(µQ.g, ei) = ev(µQ.g, e). Since ldBlnc does not change the correctness
of this claim, we only need to prove that

∨k
i=1 fixpti(Q, g, ei, F alse)) =

fixpt(Q, g, e, False)). In addition, we need to show that the environment remains
well partitioned when the computation terminates. The following lemma proves stronger
requirements. The lemma uses the following property of procedure parterm.
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Property 1. Procedure parterm is invoked by each of the processes with a boolean
parameter. If all parameters are True, then parterm returns True to all processes.
Otherwise, it returns False to all processes.

Lemma 1. Let Qj , be the value of Qval in iteration j of the sequential fixpoint algo-
rithm. Similarly, let Qj

id be the value of Qval in iteration j of the distributed fixpoint
algorithm in process id. Q0 is the initialization of the sequential algorithm; Q0

id is the
initialization of the distributed algorithm. Then, • In every iteration, e is well parti-
tioned by e1, . . . , ek. • For every j: Qj =

∨k
i=1 Qj

i . • If the sequential fixpt algo-
rithm terminates after i0 iterations then so does the distributed fixpoint algorithm.

Proof: We prove the lemma by induction on the number j of iterations in the loop of
the sequential function fixpt.
Base: j = 0:
• At iteration 0, e is well partitioned based on the induction hypothesis of Theorem 1.
• In case f = µQ.g, the initialization of the sequential algorithm, as well as the dis-
tributed algorithm is False. Hence, Q0 = Q0

id = False which implies Q0 =
∨k

i=1 Q0
i .

• Both algorithms perform at least one iteration, so they do not terminate at iteration 0.
Induction: Assume Lemma 1 holds for iteration j. We prove it for iteration j + 1.
• Let e′, e′1, . . . , e′k be the environments at the end of iteration j + 1, and assume that
e is well partitioned by e1, . . . , ek at the end of iteration j. The only changes to the
environments in iteration j + 1 may occur in line 5 of the distributed and sequential
algorithms. In the sequential algorithme may be changed in two ways: e(Q) is assigned
a new value Qj , or a recursive call to ev may change e. Similarly, in the distributed
algorithm two changes may occur: eid(Q) is assigned a new value Qj

id, or a recursive
call to pevid may change eid.

By the induction hypothesis of Lemma 1 we know that Qj =
∨k

i=1 Qj
i , hence

e[Q ← Qj](Q) =
∨k

i=1 ei[Q ← Qj
i ](Q). Since no other change has been made to

the environments, and since e is well partitioned, we conclude that e[Q ← Qj] is well
partitioned by e1[Q← Qj

1], . . . , ek[Q← Qj
k].

In iteration j + 1, ev in now invoked with an environment that is well partitioned
by the environments pevid is invoked with. The induction hypothesis of Theorem 1
therefore guarantees that e′ is well partitioned by e′1, . . . , e′k .
• Qj+1 = ev(g, e[Q← Qj]) (line 5 of the sequential algorithm) and Qj+1

id =
pevid(g, e[Q← Qj

id]) (line 5 of the distributed algorithm).
By the first bullet above, e[Q ← Qj] is well partitioned. Thus, the induction hy-

pothesis of Theorem 1 is applicable and implies that ev(g, e[Q← Qj]) =∨k
i=1 pevi(g, e[Q← Qj

i ]). Hence, Qj+1 =
∨k

i=1 Qj+1
i .

• The sequential fixpt procedure terminates at iteration j + 1 if Qj = Qj+1. We
prove that this holds if and only if for every process id, exch(Qj

id) = exch(Qj+1
id ) and

therefore parterm returns True to all processes.
Let W1, . . . , Wk be the current window functions. By the second bullet above, Qj =∨k

i=1 Qj
i and Qj+1 =

∨k
i=1 Qj+1

i .

∀id[exch(Qj
id) = exch(Qj+1

id )] ⇔ ∀id[
k∨

i=1

Qj
i ∧Wid =

k∨
i=1

Qj+1
i ∧Wid] ⇔
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∀id[Qj ∧Wid = Qj+1 ∧Wid] ⇔ Qj = Qj+1.

The last equality is implied by the previous one since the window functions are com-
plete. This complete the proof of the lemma and also the proof of the theorem. Q.E.D.

The above theorem can be extended to state that when all procedures pevid(f, eid)
terminate, the subsets owned by each of the processes are disjoint. This is important in
order to avoid duplication of work. However, it is not necessary for the correctness of
the model checking algorithm.

5 Scalable Distributed Pre-image Computation

The main goal of our distributed algorithm is to reduce the memory requirement. In
symbolic model checking, pre-image is one of the operations with the highest memory
requirement. Given a set of states S, pre-image computes pred(S) (also denoted by
EX S in µ-calculus), which is the set of all predecessors of states in S. The pre-image
operation can be described by the formula pred(S) = ∃s′[R(s, s′) ∧ S(s′)]. It is easy
to see that the memory requirement of this operation grows with the sizes of the transi-
tion relation R and the set S. Furthermore, intermediate results sometimes exceed the
memory capacity even when pred(S) can be held in memory.

Our distributed algorithm reduces memory requirements by slicing each of the com-
puted sets of states. This takes care of the S parameter of pre-image, but not of R. In
order to make our method scalable for very large models, we need to reduce the size of
the transition relation as well.

The transition relation consists of pairs of states. We distinguish between the source
states and the target states by refer to the latter as St′ . Thus, R ⊆ St × St′ .

A reduction of the second parameter of R, St′ , can be achieved by applying the
well-known restriction operator [8]: Prior to any application of pre-image, a process
that owns a slice Si of S reduces its copy of R by restricting St′ to Si . This reduction is
dynamic since pre-image operations are applied to different sets during model checking.

We further reduce R by adding a static slicing of St according to (possibly different)
window functions U1, . . . , Um. The slicing algorithm of Section 2.2 can be used to
produce U1, . . . , Um, so that R is partitioned to m slices of similar size. Each slice
Rj is a subset of (St ∩ Uj) × St′. Since R does not change during the computation,
U1, . . . , Um do not change as well.

Having k window functions W1, . . . , Wk for S and m window functions U1, . . . , Um

for R, we use k groups of m processes each. All processes in the same group have
the same Wi, and hence own the same Si = S ∩Wi. However, each process in the
group has a different Uj . Process (i, j) with Wi and Uj computes pre-image of Si by
predj(Si) = ∃s′[Rj(s, s′) ∧ Si(s′)]. Since U1, . . . , Um is a complete set of window
functions,

∨m
j=1 predj(Si) = pred(Si). Thus, the group with window function Wi

computes the same set as process i in the algorithm of Section 3.
Once the computation is completed, procedure exch is applied to exchange non-

owned states (according to Wi). Procedure ldBlnc is used to update the Wi window
functions in order to balance the memory load. Both procedures are defined as before.
However, when ldBlnc changes the window functions, all members in each of the
groups should agree on the new window function.
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The Figure above demonstrates a pre-image computation using sliced transition re-
lation with k = 2 and m = 3. Given a set S sliced into S1, S2 according to W1, W2

respectively, the pre-image of S1 is computed by three processes. Each process uses a
different slice of the transition relation, R1, R2 and R3, according to U1, U2 and U3.

The method suggested in this section applies slicing to the full transition relation
in case it can be held in memory, but is too large to enable a successful completion of
the pre-image operation. However, often the transition relation is given partitioned, i.e.,
given as a set of small relations Nl, each defining the value of variable vl in the next
states. The size of the partitioned transition relation is usually small, therefore can be
constructed by one process and then be sliced using the algorithm suggested in [14]. In
this case the model checking is done directly with the partitioned transition relation [3].

5.1 Distributed Construction of the Sliced Full Transition Relation

The full transition relation R is a conjunction of all Nl. Here we consider cases where
either R or its construction cannot fit into the memory of a single process.

Our goal is to construct slices Rj of R, with none of the processes ever holding R.
Each process starts constructing by gradually conjuncting partitions Nl, until a thresh-
old is reached. The current (partial) transition relation is then partitioned among the
processes, using the slicing algorithm. Each process continues to conjunct the partitions
that have not been handled yet, until all partitions are conjuncted. During conjunction,
further slicing or balancing are applied so that the final slices will be balanced.
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