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Abstract. We propose a new symbolic model checking algorithm for
parameterized concurrent systems modeled as (Lossy) Petri Nets, and
(Lossy) Vector Addition Systems, based on the following ingredients: a
rich assertional language based on the graph-based symbolic represen-
tation of upward-closed sets introduced in [DRO0], the combination of
the backward reachability algorithm of [ACITI6] lifted to the symbolic
setting with a new heuristic rule based on structural properties of Petri
Nets. We evaluate the method on several Petri Nets and parameterized
systems taken from the literature [ABCT95EMO0IFin93/MC99], and we
compare the results with other finite and infinite-state verification tools.

1 Introduction

The theory of well-structured systems [ACJT96/FS01] gives us decision pro-
cedures to verify safety properties of parameterized systems modeled as Petri
Nets [ACJT96/FS01], Lossy Vector Addition Systems [BM99], and Broadcast
Protocols [EFM99]. The decision procedures are based on backward reachability
algorithms like the one proposed in [ACJT96], whose termination (for Petri Nets
and their extensions) is guaranteed by Dickson’s lemma. It is important to recall
that forward approaches like Karp-Miller’s coverability tree are not robust when
applied to extensions of Petri Nets like Broadcast protocols [EFM99].
Differently from the finite-state case, in parameterized verification symbolic
representations are ineluctable in order to make the approach effective: we need
to finitely represent infinite collections of states. In the backward approach of
[ACITI6FSO1] we need to represent infinite, upward-closed sets of markings,
when we restrict our attention to Petri Nets. Two examples of symbolic repre-
sentations for upward-closed sets of marking are collections of minimal points
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[ACJTO0], and linear arithmetic constraints [DEP99]. The complexity of the al-
gorithm of [ACJT96] is non-elementary. For this reason, naive implementations
of the backward approach suffer from the symbolic state explosion problem: the
number of minimal points or the size of the constraints become unmanageable
after few iterations. Symbolic state explosion is the counterpart of the state
explosion problem we known from finite-state verification.

In our previous work [DRO0] we proposed a new rich assertional language, in
the terminology of [KMM™97], for representing compactly upward-closed sets of
markings. Our data structure, we will call here Covering Sharing Trees (CSTs),
are directed graphs in which we store the minimal points of an upward-closed set
as a collection of tuples, and for which we allow the maximal sharing of prefixes
and suffixes. To obtain efficient operations, it is crucial to avoid enumerating
the paths of a CST. Working on the graph structure of CSTs, we defined all
operations needed for lifting the backward reachability algorithm of [ACIT96]
to the symbolic level. In the preliminary results given in [DR00], we managed to
prove properties of Petri Nets (of small size) that could not be managed from
other infinite-state model checkers (working backwards) like HyTech [HHW97].

Following our line of research, the conceptual contribution of this paper is a
new heuristic rule for attacking symbolic state explosion based on the combi-
nation of CSTs and well known techniques for the static analysis of Petri Nets.
More precisely, the heuristic rule is based on structural properties [STCI8] of
Petri Nets, i.e., on a fully automatic static analysis, whose results can be used
during the backward reachability algorithm to significantly cut the search space.
As the other techniques presented in [DR0O(], our structural heuristic works in
polynomial time on the graph structure of CSTs. When combined with our CST's-
symbolic representation, the heuristic rule allow us to scale up the dimension of
the case-studies of one order of magnitude.

As practical contribution, we describe a set of benchmarks we obtained with
an optimized implementation of the CST-library, integrated with the above men-
tioned structural heuristic. We have applied the resulting model checking algo-
rithm to a large set of examples of parameterized verification problems that
can be solved using decision procedures for coverability of Petri Nets (e.g. mu-
tual exclusion for the parametric models like the Mesh and Multipoll examples
of [ABCT95JMC99], and semi-liveness for the PNCSA protocol of [Fin93]). We
have also applied our method to verify safety properties of finite-state systems
(e.g. some of the above mentioned examples for fixed values of the parameter).
For these examples, we have compared our results with the results obtained with
the specialized tool GreatSPN [CEGRI5] for computing the reachability set of
Petri Nets. As foreseen by Bultan in [Bul(0)], in most of the cases proving a pa-
rameterized property turns out to be more efficient than proving its finite-state
instances.

Before entering in more details, in Section 2 we will briefly recall the main
ideas behind the connection between parameterized systems, Petri Nets, back-
ward reachability, and in Section 3 the basics of CSTs. The new heuristic rule is
presented in Section 4. The new symbolic algorithm is presented in Section 5;
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Fig. 1. An example of Petri Net with parametric initial marking (K, 1,1,0,0),
K>1.

its practical evaluation is presented in Section 6. We finish the paper discussing
related works and drawing some conclusions.

2 Petri Nets and Verification of Safety Properties

Following |GS92], asynchronous concurrent systems (possibly with internal states
modeled via Boolean variables [BCRO1]|) can be naturally represented as Petri
Nets in which places and transitions are used to model local states, internal ac-
tions and communication via rendez-vous. At this level of abstraction, processes
can be viewed as undistinguishable black tokens. A marking m = (my,...,my,),
a mapping from places to non-negative integers, can be viewed as an abstraction
of a global system state in which we only keep track of the number of processes in
every state. The number of processes in the system is determined by the initial
marking mq. The backward reachability approach for verification of safety prop-
erties of Petri Nets is based on the following notions, taken from [ACJT96/FS01].
Given m = (mq,...,my) and m’ = (m/,...,m)), we say that m < m’ (m’ is
subsumed by m) if and only if m; < m/ for i :1,...,n. A set of markings U is
upward-closed if for any m € U and any m/ such that m < m’, we have that
m’ € U. Any upward-closed sets in N can be finitely represented by its finite
set of minimal points, we will call gen(U).

The relation < is a well-quasi ordering. This property ensures the termination
of backward reachability, whenever the starting point of the exploration is an
upward-closed set of markings. As an example, consider the Petri Net of Fig.[l, a
monitor for a parameterized system with two mutually exclusive critical sections
(cs1 and cs9). Initially, all K processes are in p;. To enter csi, a process tests
for the presence of processes in ¢sy using pa, and locks ¢s; using p3 (transition
t1), and vice versa. Processes leave the critical section using transitions ¢3 and
t4. Note that the set U of violations to mutual exclusion is the upward-closed set
generated by the minimal violations (0,0,0,2,0), (0,0,0,0,2), and (0,0,0,1,1)
(at least 2 tokens in py+ps). To prove that the protocol guarantees mutual exclu-
sion for any value of K it is enough to show that no admissible initial marking
is in the set of predecessor markings Pre*(U) of U (Pre is the operator that re-
turns the set of markings that reach some marking in U by firing a transition).
To compute Pre*(U), we iterate the application of the predecessor operator Pre
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Unsafe States (0,0,0,1,1) (0,0,0,2,0) (0,0,0,0,2)
t1 t1
Iteration 1 (1,1,1,0,1) (1,1,1,1,0)
Violate Inv Violate Inv
to t1
Iteration 2 (2,2,1,0,0) (2,1,2,0,0)
I P
Iteration 3 (1,2,0,1,0) (1,0,2,0,1)

Fig. 2. Backward Reachability Graph.

until we reach a fixpoint. During the computation, every newly generated mark-
ing is stored only if it is not subsumed by an already visited one. The backward
reachability graph of our example is given in Fig.[2l (ignore the annotations for
the moment). In Fig. 2l we have omitted all redundant markings (about 30). As
mentioned in the introduction, the symbolic backward approach based on the
enumeration of minimal points of sets of markings suffers from the symbolic state
explosion problem. More sophisticated data structures are necessary to make the
approach feasible in practice.

3 The Assertional Language: Covering Sharing Trees

In [DRO0O], we studied the mathematical foundations of Covering Sharing Trees
(CSTs), a new data structure to symbolically manipulate upward-closed sets.
CSTs are based on the Sharing Trees of [ZL94]. A k-sharing tree S is a rooted
acyclic graph with nodes partitioned in k-layers (apart from the special root and
end nodes) N = {root}UN; U...UN,U{end}, successor relation succ : N ~» 2V,
and labeling function val : N ~ Z U {T, L}, such that: (1) all nodes of layer ¢
have successors in the layer i+ 1; (2) a node cannot have two successors with the
same label; (3) two nodes with the same label in the same layer do not have the
same set of successors. The flat denotation of a sharing tree is defined as follows

elem(S) = {{val(ny),...,val(ng)) | (T,n1,...,nk, L) is a path of S}.

Conditions (2) and (3) ensure the maximal sharing of prefixes and suffixes among
the tuples of the flat denotation of a sharing tree. The size of a sharing tree
is the number of nodes and edges. The number of tuples in elem(S) can be
exponentially larger than the size of S. As shown in [Z1.94], given a set of tuples
A of size k, there exists a unique (modulo isomorphisms of graphs) sharing
tree such that elem(S4) = A. A CST is a sharing tree obtained by lifting the
denotation of a sharing tree from the flat one of [ZL94] to the following rich one

cones(S) ={m | n < m, n € elem(S)}.

Given an upward closed set of markings U, we define the CST Sy as the k-
sharing tree such that elem(Sy) = gen(U). Thus, Sy can be used to compactly
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Fig. 3. An Example of CST.

represent gen(U), and to finitely represent U. In the best case the size of Sy is
logarithmic in the size of gen(U). A CST Sy can also be viewed as a compact
representation of the formula: Vi,ceiems,) (21 > m1 A ... Az > my). As
an example, the CST S that symbolically represents the set of violations of
our example is given in Fig. Bl Let us note that any S’, such that gen(U) C
elem(S’) and such that all additional elements are redundant (i.e., are subsumed
by elements in gen(U)) can still be used to represent U. We will call such a CST
redundant. In the following we will show that it is often more efficient to work
with redundant CSTs. In [DRO0], we have defined the operations needed to
implement a CST-based backward reachability procedure. The operations work
on the graph structure of CSTs. In the following we will use Unioncst (S, T) to
indicate the CST whose denotation is cones(S) U cones(T), and Precsr(S,t) to
indicate the CST whose denotation is cones(Pre(cones(S),t)) for some transition
t. Checking subsumption between CSTs, namely whether cones(S) C cones(T)
holds, the complexity of this test is CO-NP hard (event if the two CSTs are
not redundant). In [DRO0|, we have defined a set of polynomial time sufficient
conditions (with different precision) to check subsumption for CSTs, based on
simulation relations between nodes of the corresponding sharing trees. Formally,
a node n in the i-th layer of S is forward-simulated by node m in the i-th
layer of T if and only if val(n) > wval(m) and for every successor node n’ of
n there exists a successor m’ of m that forward-simulates n’. If the the root
node of S is forward simulated by the root node of T than S is subsumed T.
Similar definitions and properties can be given for backward and mixed forward-
backward simulations. The operations Precsr and Unioncst do not guarantee
to generate CSTs that contain only the minimal points. However, removing all
redundancies is cO-NP hard. As shown in [DRO0], simulation relations helped
us again to obtain polynomial algorithms to partially eliminate redundancies.
(As a technical remark, we point out that these techniques allow us to remove
tuples of a given CST that are subsumed either by tuples of another CST or by
tuples of the same CST.) Unfortunately, CST and simulation-based heuristics
are not enough to mitigate symbolic state explosion. New heuristics for pruning
backward search seem necessary in order to handle large examples.

4 Structural Heuristic

In the backward reachability approach, every place of a Petri Net is initially
considered as unbounded (in fact, unsafe states are expressed via constraints like
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1 > c1, etc.). In many practical cases however, some places are bounded for
any value of the parameters in the initial configuration. The Structural Theory of
Petri Nets [STC9I8| can help us to distinguish between bounded and unbounded
places. Let N be a Petri Net with n places, m transitions, and token flow matriz
C (C describes how tokens are moved in the net by the transitions; rows cor-
responds to places, and columns to transitions). Furthermore, let - denote the
vector product a” - b = a1by + ...anb,, where a” indicates the transpose of
vector a. Place invariants [STCI8| are one of the possible informations we can
compute via a static analysis of N. A place invariant (also called P-semiflow) is
a vector p = (p1,...,Pn) (non-negative) solution of the equation

' . C =0, x>0,

where x is a vector of variables of dimension n. Given an initial marking my,
and a place invariant p, the set O(mgo,p) = {m | pT - m = pT - me} over-
approximates the reachability set of the Petri Net. This property follows from
the definition of place invariant, and from the state equation m = mg + C - o
that characterizes a generic marking m reachable from mg via the sequence of
transitions represented by the firing vector o (see [STC9§]). As a consequence,
the equation
PT L= PT * Mo

for some place invariant p gives us a structural invariant we can use to analyze
the net. Let us consider our running example. The three following equations are
invariants of the net in Fig. [[] with the parametric initial marking (K, 1,1,0,0):
(i) za + x5 = 1, (ii) 23 + x4 = 1, (ili) 1 + 24 + 25 = K. Unfortunately, the
invariants are not sufficient to prove our mutual exclusion property z4 + x5 < 1.
Still the invariants contain information that we can exploit during the backward
search. A possible way to use the structural analysis would be to make what
is usually called program specialization, i.e., we can replace the subnet involv-
ing places linked by structural invariants (e.g. pa,ps for xo + x5 = 1) with a
control part (a finite-state automata). This way however, the net resulting from
the specialization may become of unmanageable size. As an alternative, we pro-
pose to use the structural invariants directly as heuristics for efficient backward
reachability.

4.1 Pruning the Backward Search Space

Let U be an upward-closed set of markings denoting unsafe states, and let U’ =
U N O(myg,p) for some place invariant p. We first note that if U’ = (), then
we can immediately infer that the net is safe. However, as in our example,
invariants might not be sufficient to directly verify the property. We will use
them to prune the backward search as follows. Let us consider again our running
example and the backward reachability graph of fig. Bl After the first iteration,
two generators (1,1,1,0,1) and (1,1,1,1,0) that are not subsumed by previous
elements are computed. The first generator defines a set of markings that has
no intersection with the set of markings defined by the invariant zo + z5 = 1,
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Fig.4. The CST S denoting Precsr(S), where S is given in Fig. Bl

while the second generator defines a set of markings that have no intersection
with the set of markings defined by the invariant x3 + x4 = 1. As a consequence,
we deduce that no markings defined by those two generators can be reached
from an instance of the parametrized initial marking (recall that the markings
satisfying the invariant over-approximate the set of reachable markings.) As a
consequence, we can stop the backward search after the first iteration instead of
having to consider 3 iterations as in the naive search. Let us now examine how
we can incorporate this idea in our CST-based backward search. Since U’ is not
upward-closed, it cannot be used as the starting point of our symbolic backward
search. The following theorem however gives us indications on how to proceed.

Theorem 1. Given a Petri Net N with initial marking mo, a place invariant
p, and an upward-closed set of markings U represented by a CST S, suppose
cone(m) N O(mg,p) = O for some m € elem(S). Furthermore, let S’ be the
CST such that elem(S") = elem(S) \ {m}, and mg be any instance of my.
Then,

my, € Pre*(cones(S)) iff my € Pre”(cones(S')).

The theorem shows that during the computation of Pre*(U) we can prune the
search space by safely removing all elements m € elem(Sy) (redundant or not)
such that cone(m) has empty intersection with the set of markings defined by a
structural invariant. We call such elements useless. To prune the space efficiently,
we must avoid the explicit enumeration of all elements stored in a CST. In fact,
the number of those elements is potentially exponential in the size of the CST.
Instead of trying to remove all the useless elements for a give invariant p, we use
an heuristic rule that works directly on the graph structure of the CST and does
not enumerate its paths. To describe the heuristic rule, we need the following
definitions. Let S be a CST , and let e = (v, w) be an edge of S connecting nodes
of two adjacent layers. We define elem.(S) as the set of tuples from elem(S)
denoted by paths of S passing through e. Formally, m = (val(v1),...,val(vy,)) €
elem,(S) iff there exists a path (T,vy,...,v,w,...,v,, L) in S such that e =
(v,w). Consider now a structural invariant, say Z, having the form p? - x =
pT - mg, where p is a place invariant (hence, p = 0) and, such that pT - myg
is an integer, i.e., pT - mg does not contain occurrences of the parameters (e.g.
we keep x2 + x5 = 1 and z3 + x4 = 1, and discharge z1 + x4 + 25 = K). Our
heuristic rule works by removing an edge e of S, whenever we can prove that
the elements in elem.(S) denote cones that do not intersect with the structural
invariant Z. To check this condition on the edge e connecting a node of layer i
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and a node of layer i + 1, we first compute the two values min~(e) and min, (e)
defined as follows: min(e) is the minimal value of prefizes (mq, ..., m;) of tuples
in elem.(S) evaluated on the function & ~ p? - x; symmetrically, min, (e) is
computed for suffizes (miy1,...,my). Specifically, we define

min<(e) = min { pT - (m1,...,m;,0,...,0) | (m1,...,m,) € elem(S)},
min. (e) = min { pT - (0,...,0,miz1,...,my) | (m1,...,m,) € elem(S)}.

The following two properties characterize our heuristic rule.

Theorem 2. Given the initial marking mg, the CST S, the structural property
p’ -z =pT -myg, and the edge e of S, if min<(e) +miny (e) > pT -myg, then

cone(m) N O(mo,p) =0 for any m € elem.(S)

Theorem 3. Given a CST S, an edge e, and the invariant p* - € = pT - myg
such that pT - mg € Z, there exists a polynomial time algorithm that computes
the values min(e) and min. (e).

Based on the previous property, we can devise a procedure to heuristically cut
the CSTs produced during the backward search. As an example of application
of the structural heuristic, consider the CST of fig. @l The CST S contains the
elements obtained at iteration 1, the pairs of values on the arcs are the values
min<(e) and miny (e) for the place invariant xs + x5 = 1, the dashed edges can
be removed and thus the useless element (1,1, 1,0, 1) is removed from the CST.
Note that if we use the invariant x3 + x4 = 1 then the last element can also be
eliminated. The heuristic rule simply traverses a CST layer by layer, removing
all edges that satisfy the hypothesis of Theorem [J. To complete the scenario,
we need to compute automatically the structural invariants. This can be done
using specialized libraries to compute place invariants like the one available with
GreatSPN [CEGR95].

5 Symbolic Backward Reachability

The three main problems we had to solve to obtain an efficient CST-based back-
ward reachability algorithms were: (1) avoid to generate too many redundant
elements during the fixpoint computation; (2) use an efficient fixpoint test us-
ing sufficient conditions for CST-subsumption; (3) remove useless elements (ele-
ments that cannot be reached from the given initial state). As a practical solu-
tion to those problems, we propose the algorithm of Fig. Bl The algorithm uses
simulation-based heuristics to remove redundancies and for testing subsumption
between CSTs, in combination with the heuristic rule proposed in the previous
section. Let us give some more detail on the algorithm of Fig. Bl The variable S
stores the current frontier of the breadth-first performed by the algorithm. The
variable T stores the set of visited generators. Before entering the main loop,
we need to test subsumption between S and T. For this purpose, the following
heuristic seems to work well in practice. We first compute the forward and back-
ward simulation relations between the nodes of S and the nodes of T. If the root
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Proc Pretgr(Su : CST)
S :=Sy; T := emptycsr;
while not(Subsumescsr(T,S)) do
T := Unioncst(T,S); R :=emptycsr;
for each transition t do
N := PreCST(SJ);
structural reductioncst(N);
remove redundanciescst(N, R, T);

minimizecst(N);
R := Unioncst (N, R);
S :=R,;
return T;

Fig.5. The CST-Based Symbolic Model Checking Algorithm.

of S is forward simulated by the root of T or if the end node of S is backward
simulated by the end node of T, then we know that all the generators of S are
subsumed by some generators of T (see [DR0O0]), thus the fixpoint is reached. If
the test fails, we perform a depth-first, top-down visit of the CST S in order to
compare its tuples with those of T'. During the depth-first visit, we use however
the information previously computed via the forward simulation as follows. Each
time we reach a node n that is forward simulated by a node of T, we stop the
exploration: all the elements in the subtree rooted at m will be subsumed by
elements of T. In the main loop, we compute the new frontier N transition by
transition via the symbolic operator Precsr(S, t). In order to keep the size of N
small, after computing Precsr (S, t), we first apply the new heuristic rule (via the
function structural reductioncsr), and then we apply simulation-based heuris-
tics to remove redundancies. The function remove redundanciescst(N, R, T)
uses simulation relations between nodes of N and nodes of R (the CST collecting
the generators created via all transitions) and T; the function minimizecsr(N)
uses simulation relations of nodes of N. We discuss the practical evaluation of
the resulting algorithm in the following section.

6 Experimental Results

Based on a new optimized implementation of the CST-library presented in
[DROQ], and using the library for computing minimal place invariants (a system
of generators for the positive solutions of 7 - C = 0) coming with GreatSPN
[CEFGRY5], we have implemented the algorithm of Fig. [l and tested on several
types of verification problems expressible in terms of coverability of markings for
Petri Nets. The parameters taken into considerations in our evaluation are listed
in Fig.

Parameterized Problems. More precisely, we have considered mutual exclusion
properties for the parameterized, concurrent and production systems like the
Multipoll of [MC99], the Mesh 2x2 of [ABCT95| (Fig. 130, p. 256), its extension



Attacking Symbolic State Explosion 307

Size of the Petri Net
P=Number of places;
T = Number of transitions.
Verification problem (VP) (only the type of property)
ME=Mutual exclusion property;
C=Covering for a random marking;
SL=Semi-liveness.
Use of heuristics
I=Invariant-based reductions (structural heuristic rule);
S=Simulation-based reductions.
Statistics: execution
EX=Execution time (in seconds) on an AMD Athlon 900 Mhz;
NI=N. of iterations before termination (with *=before stopping the execution).
Quality of analysis
R=An initial state has been reached.
Statistics: use of memory
MaxE(N)=N. of elements (nodes) of the biggest CST associated to S of Fig. B}
NE(N)=Number of elements (nodes) of the CST for the fixpoint;
Ratio of memory saving (using CSTs)
RM=MAX-N/(MAX-E x P) in pct.;
RN=NN/(NE x P) in pct.

Fig. 6. Parameters of the Experimental Evaluation.

to the 3x2 case, the CSM of [ABCT95| (Fig. 76, p. 154), and for an extension
of the Readers-Writers example given in [Rei86] in which we use several buffers
with 45 slots. Furthermore, we have considered semi-liveness and coverability
problems for the PNCSA communication protocol analyzed in [BF99[Fin93].
The experimental results are listed in Fig. [l We performed every example ei-
ther enabling or disabling the structural heuristic rule and the reductions based
on simulation relations. As shown in Fig. [ the heuristics turned out to be fun-
damental to ensure termination in reasonable time for most of the examples.
To compare our results with other infinite-state systems, we ran some of the
parameterized examples like CSM and Mesh using the efficient model checker
based on polyhedra (i.e. constraint solver over the reals) HyTech [HHWY7]. In
the experiments on the largest examples (using backward analysis) HyTech was
still computing after more than one day.

Finite-state Problems. After having fixed the value of the parameter K in the
initial marking, we have also tested some case-studies using the specialized Petri
Net tool GreatSPN [CEGRI5]. GreatSPN uses efficient encodings of markings
and simplification rules that reduce the input net to produce the reachability
set of bounded Petri Nets. We performed our experiments on a Pentium 133Mhz
measuring the value of K from which GreatSPN is not able to compute the entire
reachability graph: K = 3 for the Mesh 2x2; K =9 for Multipoll, and K = 115
for CSM. In contrast, as shown in Fig. [, we managed to verify mutual exclusion
properties for any value of K (assuming K > 1 in the initial marking) with the
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following execution times: 1.26s for Mesh 2x2; 1.05s and 324s for Multipoll; and
0.04s for CSM. As already noticed by Bultan in other case-studies [Bul00], lifting
a verification problem from the finite-state to the parameterized case can make
its solution easier! Also note that the use of invariants makes the backward anal-
ysis sensible to the initial marking. This effect is clear looking at the execution
times obtained using different values for K for the Mesh2x2 in Fig.[] (e.g., we
found more useful invariants for K = 1 than for K > 1).

Finally, we have also considered safety properties for mon-parametric ex-
amples (i.e., where it makes no sense to put parameters in the initial mark-
ing) like the classical Peterson’s and Lamport’s mutual exclusion algorithms
[MCO9EMO0]. As a result, we managed to prove safety properties for all these
examples with negligible execution times.

7 Related Works and Conclusions

In this paper we have presented new heuristic rule, based on the structural theory
of Petri Nets, to be used in the backward approach of [ACITI6FS01]. Efficient
algorithms allow us to apply the heuristic rule avoiding the enumeration of the
minimal points of upward-closed sets generated in the computation of Pre*. This
way, we manage to mitigate the symbolic state explosion in practical examples
we did not manage to handle with previous backward technology. With the set of
benchmarks of Fig. [7, we hope it will be possible to establish connections with
other recent attempts of attacking symbolic state explosion [ANO0BLP*99|. The
combination of structural and enumerative techniques has been studied before
in the context of forward reachability, where invariants are used as heuristic
for efficient encodings of markings [CEFGRO5[PCP99]. Structural properties are
also used to statically compute over-approximations of the reachability set of a
Petri Net [EMO0JSTCI]]. We are not aware of previous attempts of combining
structural heuristics and backward reachability.
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Case-study
EX—Fig. 1K21
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5 4ME /0.2

5 4ME 0.01

5 4ME / 0.00
1413ME //  0.08
1413ME /  0.19
14 13 ME 39.25
1413ME //  0.08
1413ME //  0.08
1413ME //  0.08
1821 ME /298
18 21 ME >20000
1821 ME /11721
1821 ME //  1.96
1821 ME //  3.06
1821 ME //  3.06
3232ME,// 111
3232ME ¢ 114
3232ME .,/  7.37
3232ME  9.34
3232ME /  16.65
3232ME/  >20000
3232ME .,/  0.69
3232ME,// 111
3232ME,// 111
5254 ME //  11.18
5254 ME  ,/  12.06
52 54 ME / / 8.4
24 22 ME // 3215.34
2422 ME ,/ >20000
24 22 ME >20000
2422 ME /  >20000
3136SL /098
3136SL 698
3136C /526
3136 C 4/ 25871.28
1412ME /,/ 001
1412ME /  0.18
1412 ME 23.12
1412 ME / 0.01
11 9ME// 001
11 9ME / 0.8
11 9ME 1.09

1 1
4 4
4 7
1 1
9 15

11 29
11 33737

9 15

9 15

9 15
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18* 8544367
21 9416
18 649
18 881
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15 54
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16 160197
9* 1239466
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2 2
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1 1
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NE NN RN
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17 85 9 29 64.4

22 62.9 15 32 42.7
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7342 125220 4680 1
73 35 70 68 7

73 35 70 68 7

73 35 70 68 7
435 3 5641 196 0.2
60922 0.04 - - -
2404 177015 652 0.04
341 2.9 4361 140 0.2
435 2.7 5641 196 0.2
435 2.7 5641 196 0.2
340 20 429 277 2
340 20 429 294 2
921 11 2138 935 1
951 9 2418 1157 1
1367 15 2130 1741 2
105607 1 — - =
272 28 211 326 5
353 22 407 294 2
340 20 429 277 2
1192 7 2441 1074 1
1198 7 2447 1076 5
1183 15 1159 1643 3
5911 229119 1936 0.3
30941 1 . - =
73724 0.2 — - =
122510 0.3 — - =
418 24 117 594 16
1590 19 356 1744 16
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8174 219435 10886 2
28 100 3 28 67
118 23 181 169 7
7212 0.3 12125 4331 2
28 100 3 28 67

13 118 1 13 118

66 37 57 80 13
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Fig. 7. The experimental results have been obtained using an AMD Athlon 900
Mhz. The parameters of the evaluation are described in Fig. [l
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