Verifying Network Protocol Implementations by
Symbolic Refinement Checking

Rajeev Alur and Bow-Yaw Wang

Department of Computer and Information Science
University of Pennsylvania
{alur,bywang}@cis.upenn.edu
http://www.cis.upenn.edu/~{alur,bywang}

Abstract. We consider the problem of establishing consistency of code
implementing a network protocol with respect to the documentation as
a standard RFC. The problem is formulated as a refinement checking
between two models, the implementation extracted from code and the
specification extracted from RFC. After simplifications based on assume-
guarantee reasoning, and automatic construction of witness modules to
deal with the hidden specification state, the refinement checking prob-
lem reduces to checking transition invariants. The methodology is illus-
trated on two case-studies involving popular network protocols, namely,
PPP (point-to-point protocol for establishing connections remotely) and
DHCP (dynamic-host-configuration-protocol for configuration manage-
ment in mobile networks). We also present a symbolic implementation
of a reduction scheme based on compressing internal transitions in a hi-
erarchical manner, and demonstrate the resulting savings for refinement
checking in terms of memory size.

1 Introduction

Network protocols have been a popular domain of application for model checkers
for over a decade (see, for instance, [15,10]). A typical application involves check-
ing temporal requirements, such as absence of deadlocks and eventual transmis-
sion, of a model of a network protocol, such as TCP, extracted from a textbook
description or a standard documentation such as a network RFC (Request for
Comments) document. While this approach is effective in detecting logical errors
in a protocol design, there is still a need to formally analyze the actual implemen-
tation of the protocol standard to reveal implementation errors. While analyzing
the code implementing a protocol, the standard specification, typically available
as a network RFC, can be viewed as the abstract model. Since the standard
provides implementation guidelines for different vendors on different platforms,
analysis tools to detect inconsistencies with respect to the standard can greatly
enhance the benefits of standardization.

The problem of verifying a protocol implementation with respect to its stan-
dardized documentation can naturally be formulated as refinement checking.
The implementation model I is extracted from the code and the specification

G. Berry, H. Comon, and A. Finkel (Eds.): CAV 2001, LNCS 2102, pp. 169-181, 2001.
© Springer-Verlag Berlin Heidelberg 2001

170 Rajeev Alur and Bow-Yaw Wang

model S is extracted from the RFC document. We wish to verify that I < .S
holds, where the notion =< of refinement is based on language inclusion. A re-
cent promising approach to automated refinement checking combines assume-
guarantee reasoning with search algorithms [19, 14, 4], and has been successfully

applied to synchronous hardware designs such as pipelined processors [20] and
a VGI chip [13].

To establish the refinement, we employ the following three-step methodology
(advocated, for instance in [4]). First, the refinement obligation is used to gen-
erate simpler subgoals by applying assume guarantee reasoning [23,2,5,12,19].
This reduces the verification of a composition of implementation components to
individual components, but verifies an individual component only in the con-
text of the specifications of the other components. Second concerns verification
of a subgoal I < S, when S has private variables. The classical approach is to
require the user to provide a definition of the private variables of the specifi-
cation in terms of the implementation variables (this basic idea is needed even
for manual proofs, and comes in various disguises such as refinement maps [1],
homomorphisms [17], forward-simulation maps [18], and witness modules [14,
19]). Consequently, the refinement check I < S reduces to I|W < S, where W
is the user-supplied witness for private variables of S. As a heuristic for choos-
ing W automatically, we had proposed a simple construction that transforms
S to Eager(S), which is like S, but takes a stuttering step only when all other
choices are disabled [4]. Once a proper witness is chosen, the third and final step
requires establishing that every reachable transition of the implementation has
a matching transition of the specification, and can be done by an algorithmic
state-space analysis for checking transition invariants.

For performing the reachability analysis required for verifying transition in-
variants efficiently, we propose an optimization of the symbolic search. The pro-
posed algorithm is an adaptation of a corresponding enumerative scheme based
on compressing unobservable transitions in a hierarchical manner [6]. The ba-
sic idea is to describe the implementation I in a hierarchical manner so that I
is a tree whose leaves are atomic processes, and internal nodes compose their
children and hide as many variables as possible. This suggests a natural optimiza-
tion: while computing the successors of a state corresponding to the execution of
a process, apply the transition relation repeatedly until a shared variable is ac-
cessed. A more effective strategy is to apply the reduction in a recursive manner
exploiting the hierarchical structure. In this paper, we show how this hierarchical
scheme can be implemented symbolically, and establish significant reductions in
space and time requirements.

Our methodology for refinement checking is implemented in the model checker
MocHA [3]. Our first case study involves verifying part of the RFC specifica-
tion of Point-to-Point Protocol (PPP) widely used to transmit multi-protocol
datagrams [22]. The implementation ppp version 2.4.0 is an open-source pack-
age included in various Linux distributions. We extract the model ppp of the
specification and the model pppd of the implementation manually. To establish
the refinement, we need to assume that the communication partner behaves like

Verifying Network Protocol 171

the specification model, thus, employ assume-guarantee reasoning. The specifi-
cation has many private variables, and we use the “eager witness” construction
to reduce the problem to transition invariant check. Our analysis reveals an in-
consistency between the C-code and the RFC document. The second case study
concerns the Dynamic Host Configuration Protocol (DHCP) that provides a
standard mechanism to obtain configuration parameters. We analyze the dhcp
package version 2.0 patch level 5, the standard implementation distributed by
Internet Software Consortium, with respect to its specification RFC 2131 [11].

2 Refinement Checking

In this section, we summarize the definition of processes, refinement relation
over processes, and the methodology for refinement checking. The details can be
found in [4].

The process model is a special class of reactive modules [5] that corresponds
to asynchronous processes communicating via read-shared write-exclusive vari-
ables. A process is defined by the set of its variables, along with the constraints
for initializing and updating variables. The variables of a process P are par-
titioned into three classes: private variables that cannot be read nor written
by other processes, interface variables that are written only by P, but can be
read by other processes, and external variables that can only be read by P, and
written by other processes. Thus, interface and external variables are used for
communication, and are called observable variables. The process controls its pri-
vate and interface variables, and the environment controls the external variables.
The separation between private and observable variables is essential to applying
our optimization algorithm based on compressing internal transitions. The state
space of the process is the set of possible valuations to all its variables. A state is
also partitioned into different components as the variables are, for instance, con-
trolled state and external state. The initial predicate specifies initial controlled
states, and the transition predicate specifies how the controlled state is changed
according to the current state.

In the following discussion, we write B[X] for the set of predicates over vari-
ables in X. For the set of variables X, we write X’ for the corresponding variables
denoting updated values after executing a transition. Furthermore, for sets of
variables X = {z;} and Y = {y;} with the same cardinality, X = Y denotes
Niz; = y;. For any subset Z of variables X and P € B[X], 3Z.P and VZ.P stand
for the existential and universal quantification over the variables in Z.

Definition 1. A process P is a tuple (X,1,T) where

- X = (X,,X;,X.) is the (typed) variable declaration. X,, X;, X. repre-
sent the sets of private variables, interface variables and external variables
respectively. We define X, = X, U X; to be the controlled variables, and
X, = X; U X, to be the observable variables;

— Given a set X of typed variables, a state over X is an assignment of variables
to their values. We define Q. to be the set of controlled states over X., Q.

172 Rajeev Alur and Bow-Yaw Wang

to be the set of external states over X, Q = Q. X Q. to be the set of states,
and Q, to be the set of observable states over X,;

— I € B[X,] is the initial predicate;

— T € B[X,X]] is the transition predicate with the property (called asyn-
chronous property) that (X, = X.) = T.

The asynchronous property says that a process may idle at any step, and thus,
the speeds of the process and its environment are independent. In order to sup-
port structured descriptions, we would like to build complex processes from
simple ones. Three constructs, hide H in P, P||P’ and P[X := Y] for building
new processes are defined. The hiding operator makes interface variables inac-
cessible to other processes, and its judicious use allows more transitions to be
considered internal. The parallel composition operator allows to combine two
processes into a single one. The composition is defined only when the controlled
variables of the two processes are disjoint. The transition predicate of P||Q is
thus the conjunction of transition predicates of P and @. The renaming operator
P[X :=Y] substitutes variables X in P by Y.

For a process P, the sets of its executions and observable traces are defined
in the standard way. Given two processes P and @, we say P refines), written
P =< @, if each observable trace of P is an observable trace of). Checking refine-
ment relation is computationally hard, and we simplify the problem in two ways.
First, our notion of refinement supports an assume guarantee principle which
asserts that it suffices to establish separately Pi||Q2 < Q1 and Q1||P» = Q2 in
order to prove P || Py < @1||Q2. This principle, similar in spirit to many previous
proposals [23,2,5,12,19], is used to reduce the verification of a composition of
implementation components to individual components, but verifies an individ-
ual component only in the context of the specifications of the other components.
The second technique reduces checking language inclusion to verifying transition
invariants. If the specification has no private variables, an observable implemen-
tation state corresponds to at most one state in the specification. The refinement
check then corresponds to verifying that every initial state of P has a correspond-
ing initial state of @), and every reachable transition of P has a corresponding
transition in Q. When @ has private variables, then the correspondence between
implementation states and specification states should be provided by the user in
order to make the checking feasible. The user needs to provide a witness W that
assigns suitable values to the private variables of the specification in terms of
implementation variables. It can be shown that P < @ follows from establishing
P||W =< Q. In our setting of asynchronous processes, it turns out that the witness
W itself should not be asynchronous (that is, for asynchronous W, P|W =< Q
typically does not hold). This implies that the standard trick of choosing the
witness to be the subprocess QP of) that updates its private variables, used in
many of the case studies reported in [20, 13], does not work in the asynchronous
setting. As a heuristic for choosing W automatically, we have proposed a con-
struction that transforms QP to Fager(QP), which is similar to the subprocess
QP, but takes a stuttering step only when all other choices are disabled [4]. This

Verifying Network Protocol 173

construction is syntactically simple, and as our case studies demonstrate, turns
out to be an effective way of automating witness construction. The complexity
of the resulting check is proportional to the product of P and QP.

3 Symbolic Search with Hierarchical Reduction

In this section, we consider the problem of verifying P < @) when @ does not have
any private variables. In this case, if one can check that all reachable P transitions
have corresponding transitions in @, then P < @ holds. Since all variables of Q)
appear in P, the corresponding transitions can be obtained by projection, and
the problem can be solved by an appropriately modified reachability analysis.
The core routine is Next: given a process P and a set R of its states, Next(P,
R) returns the set T of transitions of P starting in R along with the set S
of successors of R. There is, however, a practical problem if one intends to
implement the successor function Next with existing BDD packages. Since Next
needs to return the set of transitions, early quantification, an essential technique
for image computation, is less effective. In [6], we have reported a heuristic to
improve the enumerative search algorithm. In this section, we propose a symbolic
algorithm to implement it.

We use NEXT P represent the process obtained by merging “invisible” tran-
sitions of P where invisibility is defined to be both write-invisible (not writing
to interface variables) and read-invisible (not reading from external variables).
Let T € B[X), Xi, X,, X, X]] be a transition predicate (the primed variables
denote the updated values). The write-invisible transitions are captured by the
predicate T A (X; = X/) (the second clause says that the interface variables
stay unchanged) and read-invisible transitions correspond to VX,..T (the quan-
tification ensures that the transition is not dependent on external variables).
Thus, the invisible component T; of T is T'A (X; = X[) AVX..T, and the visible
component T, is T' A —7T;. Define the concatenation T7 > 15 of two transition
predicates T1,T» € B[X, X'] to be 3Z.T1[X' — Z] NT2[X « Z].

Definition 2. Let P = ((X,, Xi, X,),I,T) be a process. Define NEXT P =
(Xp, Xiy Xo), LT withT' = (X, = X))V (uST, vV (T; < 5)).

The transition predicate of NEXT P is equivalent to (X = X') VTP v (T}
TEYV (TF > TF s TF) v - - -. In other words, a transition in NEXT P is either
a stuttering transition, or zero or more invisible transitions followed by a visible
transition of P.

It can be shown that NEXT P and P are equivalent (modulo stuttering).
Furthermore, the NEXT operator is congruent [4]. This allows us to apply the
NEXT operator to every subprocess of a process constructed by parallel compo-
sition, hiding and instantiation. We proceed to describe a symbolic algorithm for
state-space analysis of a process expression with nested applications of NEXT ,
without precomputing the transition relations of the subprocesses (such a pre-
computation would require an expensive transitive closure computation).

174 Rajeev Alur and Bow-Yaw Wang

funct Next(M,R) =
ifM=P
then helper := AQ.let Q. := Q[X[]
Te:=Tp N Q¢
R = (3XxF.1r NQ)XIF — X2
R" := R\ cache
cache := cache V R’
in (T¢, R")
return NextAuc(P, helper, R)
elsif M = M1 HMQ
then (Tl7 Nl) = Next(Mh R)
(TQ, NQ) = Next(MQ, R)
S = (3XM2 R) A (XM = xM)
So = (AXM R) A (X[M2 = x[M2)
T:=(Ti ANS2)V (T2 AS1) V (T ANT?)
N = AXM RATI ANT2)[XM — X2
N := N1V Ny V N’
return (T, N)
elsif M = hideY inM;
then helper := AQ.Next(M1, Q)
return NextAuc(M, helper, R)

Fig. 1. Algorithm Next.

The algorithm Nezt (figure 1) computes the visible transitions of a process
M from the current states R by proceeding according to the structure of M.
For each case, a tuple of transitions and a set of new states is returned. Each
atomic process takes its turn to update its controlled variables as the algorithm
traverses the expression. Whenever a state is reached by the current exploration,
we check if it has been visited. If not, the state is put in the newly reached states.
The transition compression of subprocesses is performed by applying NEXT im-
plicitly in cases of atomic processes and hiding. This is achieved by invoking the
function NextAuc to merge invisible transitions in these two cases. For parallel
composition Mj || Ma, it is not necessary to do so since variable visibility remains
the same. Therefore, the algorithm simply invokes itself recursively to obtain
transitions 77 and T, corresponding to subprocesses M; and M, respectively,
and computes the composed transitions for the following three cases: (1) M;
takes a transition in 77 and My stutters; (2) M takes a transition in 75 and M,
stutters; and (3) both M; and M, take transitions in T} and T3 respectively.

For atomic processes and the case of hiding, the helper function is given
to NextAuc as a parameter. It returns transitions and new states of the sub-
process before NEXT is applied. For hiding, the helper function simply returns
the transitions and new states of M7, and the algorithm Next lets NextAuc do
the transition compression. For an atomic process, the helper function computes

Verifying Network Protocol 175

comment: helper returns a tuple of lower-level transitions
comment: and newly reached states from the given set of states.
funct NextAuc(M, helper,R) =

N := false
T := false
I := true
Q:=R
do

(T',N'") := helper(Q)

T = (T' AN XM = X)) A (vXT7)
T:=IxT)VT

I

= I T
Q = BXM.QATHXM — XxM]
Q=N AQ
N:=NV(N'\Q)
while Q # 0

return (7, N)
Fig. 2. Algorithm NextAuc.

transitions 7, and new states R”. It then returns the transitions and newly
reached states after updating cache.

Figure 2 shows the NextAuc algorithm for invisible transition compression.
The naive fixed-point computation hinted in definition 2 is expensive and unnec-
essary. Rather than computing fixed points, our algorithm generates the transi-
tion predicate of NEXT P on the fly by considering only the current states. The
idea is to compute T; X - - - 1 T; > T, incrementally until all visible transitions
reachable from the current states are generated. Several variables are kept by
the algorithm to perform the task. N accumulates newly reached states in each
iteration, T' consists of compressed transitions, I is the concatenation of consec-
utive invisible transitions and @ is the states reached by invisible transitions in
the current iteration.

The algorithm NeztAuc first computes the invisible component 7} in 7”. The
new transitions 7" are added to T after concatenated with previous invisible
transitions. The concatenated invisible transition I is updated by appending 7.
To compute states for the next iteration, the set @’ of all reached states by
current invisible transitions is generated. The new states) reached by invisible
transitions are the intersection of the newly reached states N’ and invisible states
Q'. Finally, the visible states of N’ are put into the new visible states N. The
main correctness argument about the algorithm is summarized by:

Theorem 1. Let M be a process, R € B[XM] and suppose Next(M, R) returns
(T, N). Then the predicate T AR captures the transitions of NEXT M starting in
R, and N contains all successor states of R that are not previously visited.

Implementation. The symbolic algorithm for refinement checking is imple-
mented in the model checker MoCHA [3]. The implementation is in Java using

176 Rajeev Alur and Bow-Yaw Wang

Event Action

Up : lower layer is Up tlu : This-Layer-Up

Down : lower layer is Down tld : This-Layer-Down

Open : administrative Open tls : This-Layer-Started
Close : administrative Close tlf : This-Layer-Finished
TOV : Timeout with counter > 0 irc : Initialize-Restart-Count
TO™ : Timeout with counter expired zrc = Zero-Restart-Count

RCR™T : Receive-Configure-Request (Good) scr : Send-Configure-Request
RCR™ : Receive-Configure-Request (Bad)

RCA : Receive-Configure-Ack sca = Send-Configure-Ack

RCN : Receive-Configure-Nak/Rej scn = Send-Configure-Nak/Rej

RTR : Receive-Terminate-Request str = Send-Terminate-Request

RTA : Receive-Terminate-Ack sta = Send-Terminate-Ack

0 1 2 3 4 5 6 7 8 9

Initial Starting Closed Stopped Closing Stopping Reg-Sent Ack-Rcvd Ack-Sent Opened
Up 2 irc,scr/6

Down 0 tls/1 0 1 1 1 1 t1d/1
Open tls/1 1 irc,scr/6 3 5 5 6 7 8 9
Close 0 t1f/0 2 2 4 4 irc,str/4 irc,str/4 irc,str/4 tld,irc,str/4
Tot str/4 str/5 scr/6 scr/6 scr/8
TO™ t1£/2 t1£/3 t1£/3 t1£/3 t1£/3
RCRT sta/2 irc,scr,sca/8 4 5 sca/8 sca,tlu/9 sca/8 tld,scr,sca/8
RCR™ sta/2 irc,scr,scn/6 4 5 scn/6 sen/7 scn/6 tld,scr,scn/6
RCA sta/2 sta/3 4 5 irc/7 scr/6 irc,tlu/9 tld,scr/6
RCN sta/2 sta/3 4 5 irc,scr/6 scr/6 irc,scr/8 tld,scr/6
RTR sta/2 sta/3 sta/4 sta/5 sta/6 sta/6 sta/6 tld,zrc,sta/5
RTA 2 3 t1£/2 t1£/3 6 6 8 t1d,scr/6

Fig. 3. The PPP Option Negotiation Automaton.

the BDD-packages from VIS [7]. The transition predicate is maintained in a
conjunctive form. The details are omitted here due to lack of space.

4 Verification of Network Protocols

4.1 Point-to-Point Protocol

Point-to-Point Protocol (PPP) is designed to transmit multi-protocol datagrams
for point-to-point communications [22]. To establish the connection, each end
sends Link-layer Control Protocol (LCP) packets to configure and test the data
link. The authentication may be followed after the link is established. Then PPP
sends Network Control Protocol packets to choose and configure network-layer
protocols. The link will be disconnected if explicit LCP or NCP packets close
it, or certain external events occur (for instance, modem is turned off). In this
case study, we focus on checking an implementation of the option negotiation
automaton (section 4 in [22]) for link establishment.

Protocol RFC Specification. Figure 3 reproduces the transition table of the
automaton as shown in section 4.1 of the specification. As one can see from the
table, events and actions are denoted by symbols. For each entry in the table,
it shows the actions and the new state of the automaton. If there are multiple
actions to be performed in a state, they are executed in an arbitrary order.

Verifying Network Protocol 177

static void
fsm_rtermack(f)
fsm *f;
{
switch (f->state) {
/* other cases here */
case OPENED:
if (f->callbacks->down)
(xf->callbacks->down) (f); /* Inform upper layers */
fsm_sconfreq(f, 0);
break;

Fig. 4. Code-style in fsm.c.

When initiating a PPP connection, the host first sends a configuration re-
quest packet (scr) to its peer and waits for the acknowledgment (RCA or RCN).
The peer responds by checking the options sent in the request. If the options are
acceptable, the peer sends a positive acknowledgment (sca). Otherwise, a nega-
tive acknowledgment (scn) is sent to the host. In any case, the peer also sends its
configuration request packet to the host. They try to negotiate options accept-
able to both of them. After they agree on the options, both move to the Opened
state and start authentication phrase (or data transmission, if authentication is
not required). The communication can be terminated by Close event explicitly
or Down event (perhaps due to hardware failure). A termination request (str)
is sent if the link is closed explicitly. A restart counter is used to monitor the
responses to request actions (scr and str). If the host has not received the ac-
knowledgment from the peer when the timer expires. It sends another request if
the counter is greater than zero. Otherwise, it stops the connection locally.

Implementation. The implementation ppp version 2.4.0' is an open-source
package included in various Linux distributions and widely used by Linux users.
The package contains several tools for monitoring and maintaining PPP connec-
tions as well. The daemon pppd implements the protocol and is of our concern
here. The file main.c uses the subroutines defined in fsm.c to maintain the fi-
nite state machine. Events and actions have their corresponding subroutines in
fsm.c. In this work, we assume events and actions are handled correctly. There-
fore we leave them as symbols as in the specification. Figure 4 shows how the
program behaves on event RTA (receive terminate acknowledgment). For each
state that can handle the RTA event, a case statement is put in the subroutine.
For instance, if RTA is received when the state is Opened, it will inform the
upper layers, send a configuration request (fsm sconfreq) and returns. There
are 2,589 lines in files main.c and fsm.c.

Modeling. Once we have defined the constants for events and actions. It is
easy to construct a process for the automaton. The following guarded command

! Available at ftp://ftp.linuxcare.com.au/pub/ppp/ppp-2.4.0.tar.gz.

178 Rajeev Alur and Bow-Yaw Wang

(written in the language of MOCHA [3]) models the behavior when the state is
Opened and the event RTA occurs (figure 3).

[1 state = Opened & in_p = in_v & evt = RTA & out_p "= out_v ->
act’ := scr; out_p’ := out_v; counter’ := dec counter by 1;
state’ := Req_Sent; in_v’ := "in_p

The variable state denotes the current state, evt the event, and act the
action. The variable counter represents the restart counter. It is decremented
by one if the action scr is performed. The variables in p and in v model the
input channel: the channel is empty if and only if they are equal. Similarly, out p
and out v are for the output channel.

For the corresponding implementation (figure 4), more variables are needed
to help us for modeling and recovering traces faithfully. We use the variable addr
to record which subroutine is modeled by the current transition. The boolean
variable timer is used to model the timeout event: if timer is true and the
program is in the main loop, it may go to timeout handler. Other variables
share the same meaning as those in the specification model.

[l addr = rtermack & state = Opened & out_p “= out_v ->
act’ := scr; out_p’ := out_v; timer’ := true; counter’ := 2;
in_v’ := "in_p; addr’ := input

Another process Link is used to model the network channel. It accepts an
action from one automaton, translates it to an event, and forwards the event to
the other automaton. We manually translate the C program to reactive modules.
Since the program is well-organized (as seen in figure 4), it may be possible to
translate it automatically. The resulting description in MOCHA contains 442 lines
of code (182 lines for pppd and 260 lines for the specification).

Verification. Having built the models of the specification and implementation,
we wish to apply the refinement check. However, certain aspects of the specifica-
tion are not explicitly present in the implementation. For instance, the automa-
ton is able to send a couple of packets in any order if it is in the state Stopped
on event RCR* or RCR~. Two variables are introduced to record which packets
have been sent. These variables do not appear in the C program but only in the
specification model. As discussed earlier, we need a witness to define these spec-
ification variables in terms of the implementation variables. We use the heuristic
suggested in [4] to use the eager witness F, and check if pppd| E < ppp where
pppd and ppp are the formal models of implementation and specification respec-
tively. However, this refinement relation does not hold. It fails because pppd is
built with the assumption that it communicates with another PPP automaton.
Consequently, we try to establish pppd0||link||pppdl =< ppp0, where pppd0, pppl
are instances of the implementation model pppd, and link is the model of the
network channel. Using assume-guarantee reasoning, in conjunction with the
witness module, this verification goal can be simplified to

pppd0 || link || ppp1 || E < ppp0.

Verifying Network Protocol 179

This amounts to establishing that the implementation pppd refines the specifi-
cation ppp assuming the communication partner satisfies the specification and
using F as a witness for the private variables of the specification.

Analysis Result. To check the refinement obligation, we use a prototype built
on top of the model checker MocHA [3]. It produces a trace which describes
an erroneous behavior of the implementation. The bug can be seen in the code
segment shown in figure 4. On receiving RTA at state Opened, the automaton
should bring down the link (tld), send a configuration request (scr) and go to
state Req-Sent. However, the implementation does not update the state after
it brings down the link and sends the request. In almost all circumstances, the
bug is not significant. It can only be observed if the user tries to open the link
instantaneously after the disconnection. Our translation lets us trace the bug
in the C program easily. After we fix the bug, the refinement relation can be
established.

In terms of computational requirements of the refinement check, in compari-
son to the IWLS image package available in VIS [7], our algorithm requires less
memory: while the maximum MDD size with IWLS package is 265,389 nodes,
our optimized algorithm the corresponding size is 188,544 nodes, a saving of
about 30%. It takes IWLS package 5294.95s to finish while ours for 2318.87s, a
saving of 56%.

4.2 Dynamic Host Configuration Protocol

The Dynamic Host Configuration Protocol (DHCP) provides a standard mech-
anism to obtain configuration parameters. It is widely used in mobile environ-
ment, especially for network address allocation. The protocol is designed based
on the client-server model. Hosts which provide network parameters are called
servers. They are configured by network administrators with consistent informa-
tion. Clients, on the other hand, communicate with servers and obtain proper
parameters to be a host in the network. In a typical scenario, a laptop obtains its
network address after it is plugged in any network recognizing DHCP. The user
can then access to the network without filling network parameters manually.
The DHCP specification [11] only describes the state machine informally.
The state-transition diagram found in section 4.4 [11] gives a global view of the
protocol. The details are written in English and scattered around the document.
The dhcp package version 2.0 patch level 52 is the standard implementation dis-
tributed by Internet Software Consortium. We are interested in knowing whether
the client (dhclient.c) is implemented correctly. The implementation does not
appear to follow the specification strictly. For instance, it lacks two of the states
shown in the state diagram. As a result, it is much more challenging to write
down formal models for the specification and implementation in this case than
for PPP. We adopt the same style and build four processes: the client spec-
ification client, the client implementation dhclient, the server server and the
communication channel link. Since the implementation performs transitions in

2 Available at http://www.isc.org/products/DHCP/dhcp-v2.html.

180 Rajeev Alur and Bow-Yaw Wang

several stages, an eager module is introduced to resolve the timing difference. To
make the model more realistic, we make the channel link lossy. We do not find
any inconsistency during the check dhclient||link||server||E < client.

In terms of computational requirements of the refinement check, while the
maximum MDD size with IWLS package is 13,692 nodes, our optimized algo-
rithm the corresponding size is 29,192 nodes. However, IWLS package takes
350.84s in comparison to 82.70s in our algorithm. It takes 76% less in time in
the presence of 53% more in space. We speculate the dynamic ordering algorithm
causes this abnormality; further investigation is surely needed.

5 Conclusions

The main contribution of this paper is establishing applicability of refinement
checking methodology to verification of implementations of network protocols
with respect to RFC documentations. The relevance of the various steps in the
methodology is supported by two case studies involving popular protocols, with
an inconsistency discovered in one case. We have also proposed a symbolic search
algorithm for compressing internal transitions in a hierarchical manner, and
established the resulting savings in memory requirements.

In both case studies, the model extraction was done manually. This is un-
avoidable for extracting specification models since RFC documents typically
describe the protocols in a tabular, but informal, format. As far as automating
the generation of implementation models from C-code, the emerging technology
for model extraction [8,16,9,21] can be useful.

Acknowledgments. We thank Michael Greenwald for many details about PPP
and DHCP protocols. This work is partially supported by NSF CAREER award
CCR97-34115, by SRC contract 99-TJ-688, by Bell Laboratories, Lucent Tech-
nologies, and by Sloan Faculty Fellowship.

References

1. M. Abadi and L. Lamport. The existence of refinement mappings. Theoretical
Computer Science, 82(2):253-284, 1991.

2. M. Abadi and L. Lamport. Composing specifications. ACM TOPLAS, 15(1):73~
132, 1993.

3. R. Alur, L. de Alfaro, R. Grosu, T. Henzinger, M. Kang, R. Majumdar, F. Mang,
C. Kirsch, and B. Wang. MoOCHA: A model checking tool that exploits design
structure. In Proceedings of 23rd Intl. Conference on Software Engineering, 2001.

4. R. Alur, R. Grosu, and B.-Y. Wang. Automated refinement checking for asyn-
chronous processes. In Proc. Third Intl. Workshop on Formal Methods in
Computer-Aided Design. Springer, 2000.

5. R. Alur and T. Henzinger. Reactive modules. Formal Methods in System Design,
15(1):7-48, 1999.

6. R. Alur and B.-Y. Wang. “Next” heuristic for on-the-fly model checking. In
CONCUR’99: Concurrency Theory, Tenth Intl. Conference, LNCS 1664, pages
98-113. Springer, 1999.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Verifying Network Protocol 181

R. Brayton, G. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S. Cheng,
S. Edwards, S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. Ranjan, S. Sarwary,
T. Shiple, G. Swamy, and T. Villa. VIS: A system for verification and synthesis. In
Proc. Eighth Intl. Conference on Computer Aided Verification, LNCS 1102, pages
428-432. Springer-Verlag, 1996.

J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu, Robby, and H. Zheng.
Bandera: Extracting finite-state models from Java source code. In Proceedings of
22nd Intl. Conference on Software Engineering, pages 439-448. 2000.

S. Das, D. Dill, and S. Park. Experience with predicate abstraction. In Computer
Aided Verification, 11th Intl. Conference, LNCS 1633, pages 160-171. Springer,
1999.

J. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighire-
anu. CADP: A protocol validation and verification toolbox. In Proc. Eighth Intl.
Conference on Computer-Aided Verification, LNCS 1102. Springer-Verlag, 1996.
R. Droms. Dynamic Host Configuration Protocol, March 1997. RFC 2131.

O. Griimberg and D. Long. Model checking and modular verification. ACM Trans-
actions on Programming Languages and Systems, 16(3):843-871, 1994.

T. Henzinger, X. Liu, S. Qadeer, and S. Rajamani. Formal specification and verifi-
cation of a dataflow processor array. In Proc. Intl. Conference on Computer-aided
Design, pages 494-499, 1999.

T. Henzinger, S. Qadeer, and S. Rajamani. You assume, we guarantee: Methodol-
ogy and case studies. In CAV 98: Computer-aided Verification, LNCS 1427, pages
521-525, 1998.

G. Holzmann. The model checker SPIN. IEEE Trans. on Software Engineering,
23(5):279-295, 1997.

G. Holzmann and M. H. Smith. Software model checking - extracting verifica-
tion models from source code. In Formal Methods for Protocol Engineering and
Distributed Systems, pages 481-497, Kluwer Academic Publ., 1999.

R. Kurshan. Computer-aided Verification of Coordinating Processes: the automata-
theoretic approach. Princeton University Press, 1994.

N. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algorithms.
In Proc. Seventh ACM Symposium on Principles of Distributed Computing, pages
137-151, 1987.

K. McMillan. A compositional rule for hardware design refinement. In CAV 97:
Computer-Aided Verification, LNCS 1254, pages 24-35, 1997.

K. McMillan. Verification of an implementation of tomasulo’s algorithm by com-
positional model checking. In CAV 98: Computer-Aided Verification, LNCS 1427,
pages 110-121, 1998.

K. Namjoshi and R. Kurshan. Syntactic program transformations for automatic
abstraction. In Computer Aided Verification, 12th Intl. Conference, LNCS 1855,
pages 435-449. Springer, 2000.

W. Simpson. The Point-to-Point Protocol. Computer Systems Consulting Services,
July 1994. STD 51, RFC 1661.

E. Stark. A proof technique for rely-guarantee properties. In Found. of Software
Technology and Theoretical Computer Science, LNCS 206, pages 369-391, 1985.

	1 Introduction
	2 Refinement Checking
	3 Symbolic Search with Hierarchical Reduction
	4 Verification of Network Protocols
	4.1 Point-to-Point Protocol
	4.2 Dynamic Host Configuration Protocol

	5 Conclusions
	References

