Meta-BDDs: A Decomposed Representation
for Layered Symbolic Manipulation
of Boolean Functions

Gianpiero Cabodi

Dip. di Automatica e Informatica
Politecnico di Torino, Turin, Italy
cabodi@polito.it
1LLPD.//WWW.POL1LO.1L/ CdadbOd.l

Abstract. We propose a BDD based representation for Boolean func-
tions, which extends conjunctive/disjunctive decompositions. The model
introduced (Meta-BDD) can be considered as a symbolic representation
of k—Layer automata describing Boolean functions. A layer is the set of
BDD nodes labeled by a given variable, and its characteristic function
is represented using BDDs. Meta-BDDs are implemented upon a stan-
dard BDD library and they support layered (decomposed) processing of
Boolean operations used in formal verification problems. Besides target-
ing reduced BDD size, the theoretical advantage of this form over other
decompositions is being closed under complementation, which makes
Meta-BDDs applicable to a broader range of problems.

1 Introduction

Binary Decision Diagrams [i] (BDDs) are a core technique for several applica-
tions in the field of Formal Verification and Synthesis. They provide compact
implicit forms for functions depending on tens to hundreds of Boolean variables.

Many variants of the original BDD type B have been proposed to explore
possible optimizations and extensions (see for example a survey in [F]). Dynamic
variable ordering techniques (sifting [B]) have played a key role to push forward
the applicability of BDDs and to face the ordering dependent memory explosion
problem. Partitioned [l and decomposed [H forms have also been followed as
a divide—and—conquer attempt to scale down the complexity of symbolic opera-
tions.

This paper follows the latter trend. We propose a decomposed representation
for Boolean functions, which extends conjunctive/disjunctive decompositions.
One of the limitations of conjunctive (disjunctive) decompositions is that they
are biased to the zeroes (ones) of a Boolean function. Let us consides for instance
a conjunctive form f = A, fi, each one of the f; components describes a subset
of the zeroes (the OFF-set) of f. Dually for disjunctive forms. Both forms are
not closed under negation: the negation of a conjunctive form is disjunctive
(and vice—versa), so the application requires both forms, and practical /heuristic
simplification rules, unless all formulas can be put in positive normal form.

! Reduced Ordered BDDs (ROBDDs), or simply BDDs whenever no ambiguity arises

G. Berry, H. Comon, and A. Finkel (Eds.): CAV 2001, LNCS 2102, pp. 118-JEa# 2001.
© Springer-Verlag Berlin Heidelberg 2001

http://www.polito.it/~cabodi

Meta-BDDs: A Decomposed Representation 119

Our work proposes a decomposed form evenly oriented to represent both the
zeroes and the ones of a Boolean function. Besides looking at a compact for-
mat, we look for efficient symbolic manipulation in the decomposed form. Our
solution can be canonical, it is closed under negation, and it supports standard
Boolean operations and quantifiers, so it may be applied to BDD based combi-
national and sequential verification problems. To find the most suitable way of
describing this new decomposed form, we adopt an automaton model, which has
recently been proposed to describe Boolean functions within an explicit reach-
ability framework [H]. We see a BDD (and the related Boolean function) as an
automaton, and we describe it through a set of BDDs. We thus use the term
Meta—BDD for the decomposed form.

In the sequel, we will briefly overview some preliminary concepts and related
works, then we will introduce Meta-BDDs and the related symbolic manipula-
tions. We will finally present some experimental results attained with a prototype
implementation.

2 Preliminaries and Related Works

Binary Decision Diagrams (BDDs) [l are directed acyclic graphs providing
a canonical representation of Boolean functions. Starting from a non reduced
Ordered BDD (OBDD), the Reduced OBDD (ROBDD [i]) for a given Boolean
function is obtained by repeatedly applying two well known reduction rules: (1)
Merging rule (two isomorphic subgraphs are merged), and (2) Deletion rule (a
BDD node whose two branches point to the same successor is deleted).

Simple graph algorithms, working depth—first on BDDs, implement many
operators: APPLY, ITE (if-then—else), and existential/universal quantifiers are
well-known examples. BDDs have been widely used in verification problems to
represent functions as well as sets, by means of their characteristic functions.
Operations on sets are efficiently implemented by Boolean operations on their
characteristic functions. The notation x4 is usually adopted for the character-
istic function of a set A. For instance, let A, B be two sets, and x4, xp their
characteristic functions, we write:

XAUB = XAV XB; XAnB = XA\ XB, XA-B = XA\ 7XB

For sake of simplicity, we make a little abuse of notation in the rest of this
paper, and we make no distinction between the BDD representing a set, the
characteristic function of the set and the set itself.

2.1 State Sets Represented by k—Layer DFAs

A given Boolean function f(z) : {0,1}* — {0, 1} is represented by Holzmann and
Puri [f] as a Deterministic Finite Automaton (DFA). They introduce k— Layer
DFAs to describe sets of states within a verification framework based on explicit
reachability. An automaton accepts input strings of length k. In the Boolean
case, {0,1} is the input alphabet, the automaton accepts a set S C {0,1}* of
k—tuples, and each layer in the automaton corresponds to an input bit of the
function describing a state set.

A k—Layer DFA has one initial and two terminal states, the accepting ter-
minal state 1, and the rejecting terminal state 0. The automaton is minimized

120 Gianpiero Cabodi

(b)

Fig.1. A BDD (a) and a k—Layer DFA (b) for the same Boolean function. The
deletion rule is not applied to the k—Layer DFA.

if states which have exactly the same successors are merged together. The au-
tomaton describing a Boolean function has a close relationship with the BDD
representing it, with a variable ordering corresponding to the input string order-
ing. A k—Layer DFA is minimized by only using the merging rule, whereas the
deletion rule is avoided, to keep input strings of length k.

As an example, Figure ll shows the BDD (a) and the DFA (b) for the same
Boolean function. Given a BDD variable ordering corresponding to the layers,
the two representations have similar shapes, but no implicit variables are present
in the k—Layer DFA.

2.2 McMillan’s Conjunctive Decomposition

McMillan’s canonical conjunctive decomposition [H] is another relevant starting
point for this work. The automaton representation is proposed by McMillan,
too. He sees a BDD representing a set of states as a “finite state automaton that
reads the values of the state variables in some fixed order, and finally accepts or
rejects the given valuation”.

A function f(z1,...,2,) is decomposed as f = A!_, fi, the i-th conjunctive
component being defined as f; = £ | fG—1_ The f® functions are the projec-
tions of f onto growing sets of variables f®) (z1, ..., z;) = I(zig1, ...,). f(z) and
| is the generalized cofactor “constrain” operator [AE. Conjunctive components
have growing support (f; = fi(z1,...,x;)), and the representation is canonical
given a variable order for projections (which is not necessarily the same as the
BDD variable order). Cofactoring is a major source of BDD size reduction for
this representation, due to the BDD simplification properties of the generalized
cofactor operator: the BDD representing g | f is often (not alwaysHl!) smaller

2 Since “constrain” may introduce new variables (and BDD nodes) in the cofactored
term, simplification is not always achieved. Other variants of generalized cofactor
have been introduced to expecially address simplification tasks. An example is the

Meta-BDDs: A Decomposed Representation 121

than the BDD of g, and the decomposition f(?) = f0=1 A (f() | fG=1) ex-
ploits this fact, expecially in cases of factors with disjoint supports or supports
including conditionally independent variables.

Conjunction, disjunction and projection (existential quantification)
algorithms are also proposed in [, in order to use the decomposition in sym-
bolic model checking problems that can be put in positive normal form (with
negation only allowed on literals). They can be summarized as follows.

Conjunction. is the simplest operation. The result of a conjunction fg is com-
puted in two steps. An intermediate result ¢ is first evaluated by conjoining the
couples of corresponding components f; and g; bottom-up (with decreasing i),
and applying a “reduction” [l process:

t, = fngn
tic1 = fi—19i—13%s.t;

The intermediate result is then “normalized” top-down (by increasing i) for
canonicity (and BDD simplification): h; = ¢; | hy | ... | h;—1. The decom-
posed conjunction thus results in a linear number of conjunction and projection
operations, and a quadratic number of cofactor operations.

Disjunction. is a less natural operation for conjunctive decompositions. The
i-th component of h = f V g should be evaluated by taking into account all
components of the operands from 1 to 4:

ti = /\321 fiv /\321 gj
hi=t; L hi] ... hi1

This is not efficient, because of the explicit computation of conjunctions
and delayed normalization. So a more efficient computation, with interleaved
normalization, is proposed:

hi= N\ Lha Lo Lhic) Vv N(gg Lha Lo L hiy)
Jj=1 j=1

resulting in a quadratic number of conjunction and cofactor, and a linear number
of disjunction operations (which is more complex than the previous conjunction
case).

Projection (Existential Quantification h = 3S.f.) has the same problems as

disjunction, and it is computed in a similar way: h; = 35.(/\;:1(]}- Lhil ...]
h;—1)) Again a quadratic number of conjunction and cofactor operations (and a

linear number of quantifications) is required.

“restrict” cofactor [M], which locally abstracts from f variables not found in g. But
some nice properties of “constrain” are lost, and canonicity of conjunctive decom-
position is not guaranteed.

3 Reduction is a term we bring from breadth-first BDD manipulation (indicating a
postponed application of merging and deletion rules) []. It was not used in [[]

122 Gianpiero Cabodi

2.3 Incompletely Specified Boolean Functions

An incompletely specified Boolean function is a function defined over a subset
of {0,1}"™. The domain points where the function is not defined are called don’t
care set, whereas the points where the function is defined as true or false are
called ON-set and OFF-set, respectively (the union of ON-set and OFF-set is
called care set).

Given an incompletely specified function f, we will use the notation f.on
for the ON-set, f.of f for the OFF-set, and f.dc for the don’t care set. Two
of them are enough to completely characterize f, since they have null mutual
intersections and their union is the domain space. So f might be represented
by the couple f = (f.on, f.of f), being f.de = —(f.onV f.of f). Another way to
represent f is the interval of completely specified functions f = [f.on, —f.of f].

3 Meta-BDDs. Describing a BDD by a Layered Set of
BDDs

This section defines Meta-BDDs. They are not a new type of Decision Diagram
for Boolean functions. We introduce them as a layered set of BDDs used to
describe a Boolean function. We view a BDD as a DFA, and we use other BDDs
to describe it by layers of variables, and to symbolically encode breadth—first
computations of BDD operators.

We can also view Meta-BDDs as an extension of McMillan’s canonical con-
junctive decomposition [d]. Our representation is more general, since it includes
conjunctive as well as disjunctive decompositions, and it is closed under Boolean
negation. It is canonical under proper conditions.

Let us define the i—th layer as the set of nodes labeled by the z; variable.
We characterize the layer with the BDD paths reaching terminals (either 1 or 0)
from x; nodes. In the automaton view of BDDs, this means that the accepting
or rejecting final state is decided when testing the x; variable. In the case of
Figure @ there is no path to terminal nodes from the x; layer, there is one
path to terminal 1 from the xo layer (x122 = 11), 3 paths to 0 at the x5 layer
(x1z223 = {000,010,100}), 3 paths to 1 (zqzexzzy = {0011,0111,1011}) and 3
paths to 0 (z1z2zszs = {0010,0110,1010}) from the x4 layer.

We describe a layer of a given function f by means of a function capturing
the zeroes (paths to 0) and ones (paths to 1) of f at that layer. More specifically,
we encode the i-th layer of f with an incompletely specified function f;, such
that the ON-set (f;.on) is the set of ones of f at the i-th layer, and the OFF-set
(fi-of f) is the set of zeroes of f at the i-th layer. As a consequence, the don’t
care set (f;.dc) is the set of ones/zeroes reached by f at other layers.

We informally introduce the Meta representation of f (Meta-BDD if symbol-
ically encoded by BDDs), as the set of f; layers that completely characterize f.
For each layer we represent the two sets of paths leading to the 1 and 0 terminals
at that layer. In the case represented in Figure ll, this leads to the Meta form of
Figure l(a).

A more accurate and formal definition of Meta-BDDs is obtained by intro-

ducing the Meta operator <>M

functions.

, working on incompletely specified Boolean

Meta-BDDs: A Decomposed Representation 123

f1=1(0,0) = (0,0)

f2 = (11311132,0) (11311132,)
f3 = (0, ~(z122)~23) = (0, —xs)

fa = (0(z122) T30, ~(T122) T3 T 2) f4 = (x4, 4)

(a) (b)
Fig. 2. Layered Meta representations of f. Each f; = (fi.on, fi.of) is exactly
defined only for the ones and zeroes of f at the corresponding layer (a). Upper
layers are used to simplify lower f;s by means of cofactoring (b).

Definition 1. Given two incompletely specified Boolean functions f and g, h =

<f9 >M is an incompletely specified function, such that the ON-set (OFF-
set) of h is the ON-set (OFF-set) of f augmented with the portion of the ON-set
(OFF-set) of g not covered by the care set of f:

< £,9 >M X ITE(=f.de, £, 9) (1)

The above definition can be rewritten as
h.on = f.onV gonA-foff

< £, >M = b such that {h.off — FoffV g.off A—f.on
h.dc = f.dcAg.dc

The operator returns the argument in the unary case (< f >M f) and it is
associative
<< f,g >M,h>M =< f,<g,h>M>M =<f,9h M

We are now ready to formally define the Meta decomposition of f in n com-
ponents.

Definition 2. The Meta decomposition of a Boolean function f is an ordered
set of components that produces f if given as argument to the <>M operator:

def
f[{\/frly, <f1af2a' af’n. M f
A Meta-BDD is a BDD representation of a Meta decomposition.

We adopt [7, j] subscripts to indicate intervals of components, and we option-
ally omit them if clear from the context (we use fM instead of f[{\/rll]).
Applying equation (lll) and associativity, a Meta decomposition can be recur-

sively written as M
f[i,j] = ITE(~f;.dc, fl?fz+1 "l)
which leads to the following expanded expression for f:
f = ITE("fl.dC, fl, ITE("fg.dC, fg, ITE(ITE(_'fnfldC, fnfl, fn))))

The inspiring idea of this decomposition is that each component contributes
a new piece to the ON-set and the OFF-set of f. In other words, f is progres-
sively approximated and finally reached by a sequence of incompletely specified

functions f[{\/ll] =< f[{\/;] <. = f['i\/rll] = f ordered by the precedence relation

4 < M = (W on € ¥ on) A (f¥hof £ € 10)

124 Gianpiero Cabodi

The functions have non decreasing ON-set and OFF-set, and the last one coin-
cides with f.

We have a degree of freedom in selecting the sequence of functions converging
to f. Starting from canonical conjunctive decomposition, we adopt the idea of

projecting f onto growing sets of variables, so that f[{\/il] captures the ones and
zeroes of f at the upper 7 layers (i.e. the BDD paths reaching 0 or 1 forall
variables at the lower levels (z > z;)). We thus choose f[{\/il] (21, ..., x;) such that

f['i\z-l] (Z1,..,zi).on =Y(z > ;). f
B

The f['i\/il] function is represented by the first ¢ terms of the Meta decom-

position f1,..., f;. The definition does not provide a rule to uniquely compute
the f; components, given f. In fact, we have here another degree of freedom,
as the f; term is partially “covered” by the previous ones (< 7). So we might
leave it partially unspecified, or better exploit this fact (as in [H]) and simplify
the lower layers by cofactoring them with the don’t care set of the upper ones:

fi= 14 L de.
M

Since the don’t care set of f[1 i—1] is the intersection of the don’t care sets

of the first ¢ — 1 components (f['i\/ilfl].dc = /\;;11 fj.de, Ywe avoid computing it

and we apply to f; a chain of cofactors: f; = f[{\/il] |l fide] fode] ... | fi_1.de.

This would simplify the representation of Figure B(a) to the form (b), which is
obviously simpler.

Meta-BDDs and Conjunctive Decompositions. Meta decompositions in-
clude McMillan’s conjunctive decomposition as the particular case with

fon = 0 for all i < n and floff = V(@ > z)~f = -3z > z)).f.

Given the above assumptions, the i-th component of fM is f; = (0,-3(z >
x;).f | 3@ > x;-1).f), where the OFF-set is the complement of McMillan’s
generic conjunctive term.

Variable Ordering and Grouping. The ordering applied to the definition of a
Meta-BDD is not required to be the same as the BDD ordering. Moreover, layers
can be extended to groups of variables, i.e. each z; in the previous definitions is
a set of variables instead of a single variable. This has the advantage of reducing
the number of layers in the decomposition, where each layer includes a set of
variables (and the corresponding edges to terminals).

In our implementation, we observed best performance when using the same
order for variables and layers, and grouping variables. For the cases we addressed
(100 to 200 state variables), reasonable group sizes are 10 to 30 variables. Dy-
namic variable ordering is supported, provided that variable layers are rebuild
each time a new variable order is produced. The overhead we experienced for
this transformation is low compared to sifting time, and to the overall cost of
image computations, since rebuilding variable groups is a linear operation and

Meta-BDDs: A Decomposed Representation 125

transforming a Meta-BDD from old layers to new ones is a variant of the BDD
to Meta-BDD transformation (described in the next section).

Meta-BDDs and Canonicity. Meta-BDDs are canonical under conditions
similar to McMillan’s decomposition, i.e. that layer simplifications are done
through constrain cofactor. Canonicity guarantees constant time equality check,
but our experience in sequential reachability shows that we may give it up when-
ever non canonical representations produce memory reduction.

This is often the case for Meta-BDDs, where a conditional application of
reduction and constrain simplification may filter out the decompositions
producing benefits and abort the bad ones. This is a major point for the efficiency
in our implementation where reductions and cofactorings are controlled by BDD
size based heuristic decisions.

We also experienced the “restrict” cofactor [H], with worse results on the av-
erage, compared with controlled application of constrain. A possible reason for
this fact is that restrict guarantees good local optimizations of individual func-
tions, but operations involving restricted functions may blow up when combining
terms with different restrict optimizations.

4 Symbolic Operations on Meta-BDDs

We describe in this section how basic Boolean operators can be applied to Meta-
BDD decompositions. In particular, we will concentrate on the operations re-
quired by sequential verification tasks: standard logic operators and quantifiers.
Our procedures are here proposed for the canonical case, and we omit for sim-
plicity heuristic decision points for conditional application of reductions and
cofactor simplifications.

First of all, Meta BDDs provide a constant time Not operation whose result
is again a Meta-BDD. In fact, since Boolean negation swaps zeroes with ones,
—|fM is computed by simply swapping the (f;.on, fi.of f) couples.

Going to BDD /Meta-BDD conversions and Apply-like operations, we operate
them through a layered process, which is inspired by], where BDD operations
are performed through a breadth—first two phase (Apply-Reduce) technique. But
our method is implicit, we operate breadth—first through layer-by-layer itera-
tions on the T-ROBDD implicit structure, represented by BDDs.

FigureH shows how we convert a BDD to a Meta-BDD. We initially assign all
terminal edges to the bottom layer, i.e. we initialize all Meta-BDD components to
0, except the last one. Then we perform reduction and constrain simplification.

Reduction and constrain simplification are shown in Figure [l METAREDUCE
is a bottom—up process which finds BDD nodes with both cofactors pointing to
the same terminal. The merged edges are moved to the upper layers. METACON-
STRAIN (Figure (b)) operates the cofactor based simplification. The reduction
and constrain operations are here represented by dedicated procedures, as post—
processing steps of Meta-BDD operations. For best performance, they can be
integrated within breadth—first manipulations, and operated by layers as soon
as possible.

126 Gianpiero Cabodi

BDD2META (f)
fortc=1ton—-1
fn — (f7 _‘f)
M (fry o f)
METAREDUCE(fM)
METACONSTRAIN(fM)

return f

Fig.3. Converting a BDD to Meta-BDD. All terminal edges are initially as-
signed to the bottom (n—th) layer. They are moved to the proper upper layers by
the reduction procedure. constrain simplification is finally operated

METAREDUCE (fM) METACONSTRAIN (fM)
for : =n — 1 downto 1 fori=1ton—1
fion — fionVV(x > x;).fiy1.0n forj=i+1ton
fi.of f — fiof fV V(2 > i) firr.0f f fi—f;l fide

Jit1 — fixr | fide
(a) (b)

Fig. 4. Reduction (a). Terminal edges are moved upward by a bottom-up itera-
tive process. Move is achieved by adding the reduced part to f;, then deleting it
from fiy1usingcofactor. Constrain based simplification (b). A double iteration

is operated to avoid explicit computation of fl-'/\/l.dc.

As an example of APPLY operation, we show the conjunction (METAAND)
procedure. Disjunction is obtained for free in terms of complementation and
conjunction. The proposed algorithm is based on the following theorem

Theorem 1. Let f['xl] and g be Meta decompositions, then

M
[4,4]
M M __ M M M
P N9t =< Tl AN 9l >
with r; computed as:

ri.on = \/;:1 fi.on A _\/;‘1:1 gi.on -
rioff = fuoff ANz gronV gioff A=\IZ fron

Proof Sketch. Let us consider conjunction as a symbolic breadth—first visit of
the product automaton of f and g. The set of paths reaching 0 at the i—th layer
is given by the paths where either f or g are 0 at the ¢—th layer, and they are
not 1 at the upper ones (< i) I . The set of paths to 1 is given by the paths
where both automata (f and g) reach 1 at one of the first ¢ layers.

Figure [ll(a) shows our algorithm for conjunction. f' and ¢’ are used to col-
lect the overall ON-sets of the upper components (\/, fi.on and \/, g;.on in The-
orem [ll). Explicit computation of the above terms would be in contrast with

* Due to the cofactor based simplification, f;.of f (gi.of f) could intersect the onset of
upper components

Meta-BDDs: A Decomposed Representation 127

METAAND (fM , gM)

fle1,9 «1,dc—1
fori=1ton
e flde
g g ldec
ri.of f — fi.of f L de A= f'V
gi-of f L de A—g'
fl— f'Afioon] dc
g — g Ngi.on | dc

METAEXIST (fM, S)

fle1,dc—1

TM - fM

fori=1ton
fre=flde
ri — 1 | dc
ri.on — 3S. \(f',rs.on)
= N, ~fiof)
ri.of f «— —3S.f’

! /
ri.on «— f'Vg dc «— —ri.onVri.of f

dc — =(ri.onV r;.of f) METAREDUCE(TM)
TM — (7‘1 Tn) M
b aTal METACONSTRAIN(r"")
METAREDUCE(r”"") return
I\/IETACONSTRAIN(TM)
return TM

(a) (b)

Fig. 5. Breadth—first computation of Boolean And (a) and existential quantifica-
tion (b). The layers of the result are computed through top—down layered visits
of the operands

the purposes of the decomposed representation. We thus interleave the layer
computations with cofactoring based simplifications, which allow us iteratively
projecting f' and ¢’ on decreasing subsets of the domain space. Cofactoring is
done both to keep BDD sizes under control, and to achieve a preliminary reduc-
tion. Full bottom-up reduction and final constrain simplification are explicitly
called as last steps.

Existential quantification (METAEXIST procedure) is shown in Figure B(b).
Computation is again top-down, and based on the following theorem

Theorem 2. Let f['i\/lj] be a Meta decomposition, then

35 M =< 35,1, 35.(~ fof £ A FE > M

Proof Sketch. Let us again concentrate on the layered automaton view of
3S. f['i\/lj] The existential quantification ll of the first component (3S.f:) captures

all ones and zeroes reached at the i-th layer of the non reduced result (other
ones/zeroes might be hoisted up when reducing lower levels). The ones and

M

[i4+1,n]
the operand). But spurious ones introduced by cofactor transformations could
produce wrong (overestimated) ones, so we need to force 0 within the OFF-set
of the i-th component.

zeroes at lower layers (> i) are computed working with f; (lower layers of

The algorithm of Figure [(b) uses f’ to accumulate the filtering function
(conjunction of complemented OFF-sets). We do not represent f’ as a mono-

> We compute the existential quantification of an incompletely specified function as

3s.f = (3S.f.on,VS.=f.of f)

128 Gianpiero Cabodi

lithic BDD, since this would again be a violation of our primary goal (decom-
position). We thus use “clustered” BDDs (partitioned conjunctions performed
under threshold control), and we also interleave layer computations with cofactor
simplifications (as in METAAND).

Existential quantification is by far the most important (and expensive) oper-
ation in symbolic reachability analysis. Due to its combined usage with conjunc-
tion within image/preimage computations, BDD packages provide the so called
“relational product” or “and-exist” operator, a recursive procedure specifically
concieved to avoid the explicit intermediate BDD generated as a result of con-
junction before existential quantification. We did the same with Meta-BDDs, and
we implemented a METAANDEXIST procedure (not shown here) which properly
integrates the previously shown METAAND and METAEXIST algorithms.

5 Experimental Results

The presented technique has been implemented and tested within a home-made
reachability analysis tool, built on top of the Colorado University Decision Dia-
gram (CUDD) package [&]. The experiments shown here are limited to reacha-
bility analysis of Finite State Machines, as a first and general framework, unre-
lated from the verification of specific properties. Our main goal is to prove that
the sequential behavior of the circuits presented can be analyzed with relevant
improvements by using Meta-BDDs. Combinational verification as well as BDD
based SAT checks are other possible applications of Meta-BDDs.

We present data for a few ISCAS’89-addendum [&2] benchmarks and some
other circuits [EIE]. They have different sizes, within the range of circuits man-
ageable by state-of-the-art reachability analysis techniques. We only report here
data for the circuits we could traverse with some gain. The benchmark circuits
we tried without any significant result are: s1269, s1423, s1512, s5378. We argue
this is mainly due to the fact that no relevant cases of independent or condition-
ally independent variables are present in the state sets of those circuits. Tablell

Table 1. Comparing BDDs and Meta-BDDs in reachability analysis. 266 MHz
Pentium II, memory limit 400 MB, time limit 36000 s.

BDDs Meta-BDDs
R
Circuit FF D States BDD,x Mem Time (Sift) BDDpx Mem Time (Sift) ‘I;]‘»‘
[Knodes] [MB] [s] [Knodes] [MB] [s]
s3271 116 16 1.31-103! - - Time-out 782 214 7973 (1190) 7.7
3330 132 16 7.27-10%7 - Mem-out - 4534 356 22345 (17532) 4.2
FIFOs 142 63 5.01-10%! 1169 45 3691(3232) 183 24 3215 (170) 13
queue 82 45 3.43-10'1 387 27 1873(1750) 132 21 921 (350) 19
Rotatorig 32 2 1.00 - 232 65 14 25 (23) 12 5 1 (0) 1
Rotatorzgz 64 2 1.00 - 2%4 - Mem-out - 390 17 831 (602) 1
Spinner;g 33 2 1.00 - 233 30 5 7 (4) 74 2(1) 1
Spinnerss 65 2 1.00 - 2°° - Mem-out - 244 20 417 (331) 1

collects statistics on the circuit used, and the results obtained. For each circuit
it first shows some common statistics: the number of latches (FF), the sequential
depth (D), and the number of reached states (States). We then compare traver-
sals based on the same image heuristic (IWLS95 by Ranjan et al. [E]), with

Meta-BDDs: A Decomposed Representation 129

standard BDDs and Meta-BDDs. Since conjunctively partitioned transition re-
lations are not critical in terms of BDD size, we use Meta-BDDs only for state
sets (and intermediate product of image computations). For both techniques we
show peak live BDD nodes (BDD,y,), maximum memory usage (Mem) and CPU
time (Time) with explicit indication of sifting time. We finally show the ratio

BDD vs. Meta-BDD size for reachable state sets (\R\/\RM\)

s3271 and s3330 are known to be hard to traverse circuits, both for time
and memory costs. FIFO is a freely modified version of the example used in [H],
whereas queue is a queue model from the NuSMV [distribution. Rotator [
has two stages. An input register (subscript 16/32 is register size) is fed by
primary inputs. An output register stores a rotated copy of the inputs register.
The number of rotated bits is determined by a five bits control input. All states
are reachable, but image computation is exponentially complex since the early
quantification scheme pays the dependence of the output (input) register bits
from all input register (primary input) bits. Spinner [[J] is a similar circuit,
where the input register can be loaded with the output register, too. These are
both cases in which conditional independence can be efficently factored out by
Meta-BDDs, in order to achieve relevant gains in intermediate image steps (even
though no gains are shown in reachable states).

In all cases Meta-BDDs were able to “compress” reachable state sets and
to produce overall improvements. The first two circuits could not be completed
with standard BDDs in the adopted experimental setup.

Memory gains are clearly visible from peak BDD nodes, memory usage, and
reachable state sets size ratio . The overhead introduced to work with the
decomposed form is visible in the reduced ratio sifting time vs. total time (except
for the larger example, s3330 where sifting still dominates) and time reductions
are mainly due to the smaller BDDs involved in computations.

6 Conclusions and Future Work

We propose a BDD based decomposition for Boolean functions, which extends
conjunctive/disjunctive decompositions and may factor out variable indepen-
dances and/or conditional independances with gains not achievable by standard
BDDs.

Our work includes and extends [H§], by proposing a representation closed
under negation and applicable to a wider range of BDD based problems, and by
exploring non-canonicity in terms of heuristically controlled decomposition and
simplification steps. Experimental results on benchmark and home made circuits
show relevant gains agaist standard BDDs in symbolic FSM traversals. Future
works will investigate heuristics, and application to real verification tasks.

Acknowledgement

The author thanks Fabio Somenzi for the FIFOs, Rotator and Spinner source
descriptions.

5 The ratio |R|/|RM| is 1 in the case of Rotator and Spinner because the reachable state
set is the entire state space (a constant function both with BDDs and MEta-BDDs).
The BDD gains in those circuits are related to intermediate image BDDs.

130 Gianpiero Cabodi
References
1. R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEFE

2.

3.

10.

11.

12.
13.

14.

15.

Transactions on Computers, C-35(8):677-691, August 1986.

R. E. Bryant. Symbolic Boolean Manipulation with Ordered Binary—Decision Di-
agrams. ACM Computing Surveys, 24(3):293-318, September 1992.

R. Rudell. Dynamic Variable Ordering for Ordered Binary Decision Diagrams. In
Proc. IEEE/ACM ICCAD’93, pages 42-47, San Jose, California, November 1993.
J. Jain, J. Bitner, J. A. Abraham, and D. S. Fussel. Functional Partitioning for
Verification and Related Problems. In Brown/MIT VLSI Conference, pages 210
226, March 1992.

K. L. McMillan. A conjunctively decomposed boolean representation for symbolic
model checking . Proc. CAV’96, Lecture Notes in Computer Science 1102, Springer
Verlag, pages 13-25, August 1996.

G.J. Holzmann and A. Puri. A minimized automaton representation of reachable
states. Software Tools for Technology Transfer,Springer Verlag, 3(1), 1999.

O. Coudert, C. Berthet, and J. C. Madre. Verification of Sequential Machines
Based on Symbolic Execution. In Lecture Notes in Computer Science 407, Springer
Verlag, pages 365-373, Berlin, Germany, 1989.

H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangiovanni-Vincentelli. Im-
plicit Enumeration of Finite State Machines Using BDDs. In Proc. IEEE IC-
CAD’90, pages 130-133, San Jose, California, November 1990.

O. Coudert and J. C. Madre. A Unified Framework for the Formal Verification of
Sequential Circuits. In Proc. IEEE ICCAD’90, pages 126-129, San Jose, California,
November 1990.

R.K. Brayton R.K. Ranjan, J.V. Sanghavi and A. Sangiovanni-Vincentelli. High
performance bdd package based on exploiting memory hierarchy. Proc. ACM/IEEE
DAC’96, pages 635640, June 1996.

F. Somenzi. CUDD: CU Decision Diagram Package — Release 2.3.0. Technical
report, Dept. of Electrical and Computer Engineering, University of Colorado,
Boulder, Colorado, October 1998.

MCNC Private Communication.

K. Ravi and F. Somenzi. Hints to Accelerate Symbolic Traversal. In Correct
Hardware Design and Verification Methods (CHARME’99), pages 250-264, Berlin,
September 1999. Springer-Verlag. LNCS 1703.

R. K. Ranjan, A. Aziz, R. K. Brayton, B. Plessier, and C. Pixley. Efficient BDD
Algorithms for FSM Synthesis and Verification. In IWLS’95: IEEE International
Workshop on Logic Synthesis, Lake Tahoe, California, May 1995.

A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new Sym-
bolic Model Verifyer. In Proc. CAV’99, Lecture Notes in Computer Science 1633,
Springer Verlag, pages 495-499, July 1999.

	Introduction
	Preliminaries and Related Works
	State Sets Represented by $k-$Layer DFAs
	McMillan's Conjunctive Decomposition
	Incompletely Specified Boolean Functions

	Meta-BDDs. Describing a BDD by a Layered Set of BDDs
	Symbolic Operations on Meta-BDDs
	Experimental Results
	Conclusions and Future Work

