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Abstract. This paper studies the drawability problem for minimum
weight triangulations, i.e. whether a triangulation can be drawn so that
the resulting drawing is the minimum weight triangulations of the set
of its vertices. We present a new approach to this problem that is ba-
sed on an application of a well known matching theorem for geometric
triangulations. By exploiting this approach we characterize new classes
of minimum weight drawable triangulations in terms of their skeletons.
The skeleton of a minimum weight triangulation is the subgraph indu-
ced by all vertices that do not belong to the external face. We show that
all maximal triangulations whose skeleton is acyclic are minimum weight
drawable, we present a recursive method for constructing infinitely many
minimum weight drawable triangulations, and we prove that all maxi-
mal triangulations whose skeleton is a maximal outerplanar graph are
minimum weight drawable.

1 Introduction

The study of the combinatorial properties of fundamental geometric graphs such
as minimum spanning trees, Delaunay triangulations, proximity graphs, rec-
tangle of influence graphs, maximum weight triangulations, and Voronoi trees
is motivated not only by the theoretical appeal of the questions that this study
raises, but also by the importance that such geometric structures have in dif-
ferent application areas including computer graphics, computer aided manufac-
turing, communication networks, and computational biology. Geometric graphs
are straight-line drawings that satisfy some additional geometric constraints (for
example pairs of adjacent vertices are deemed to be “close” according to some
definition of proximity, while not adjacent vertices are far from each other in the
drawing). Thus, the study of the combinatorial properties of a given type of geo-
metric graph can be naturally turned into the following graph drawing question:
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What are those graphs admitting the given type of drawing?. This question has
attracted increasing interest in both the graph drawing and the computational
geometry communities and several papers have been published on the topic in
recent years, including [2[4[78IOITOJTA[T5I16IT7]. See also [6] for a survey.

The present paper is devoted to minimum weight triangulations. Despite
the relevance of minimum weight triangulations in areas like numerical analysis
and computational geometry, the problem of computing these triangulations
efficiently has not yet been solved and their basic combinatorial properties are
still not well-understood. We provide new insight on the combinatorial properties
of minimum weight triangulations by addressing the minimum weight drawability
problem, i.e. the problem of determining whether a triangulation 7" admits a
straight line drawing I" that is a minimum weight triangulation of the set of
its vertices; we call I' a minimum weight drawing of T and we say that T is
manimum weight drawable.

The minimum weight drawability problem was first studied in [IT[12] where
it was proved that all maximal outerplanar graphs are minimum weight drawa-
ble and a linear time drawing algorithm was presented. As a side effect of the
combinatorial characterization in [T1/12], a linear time algorithm for computing
the minimum weight triangulation of a set of points that are the vertices of a
regular polygon was shown. These results have motivated the investigation of
minimum weight drawable triangulations such that not all the vertices belong
to the outer face, which is the subject of [I3] and of a recent paper by Wang,
Chin, and Yang [20].

In [13] families of minimum weight drawable triangulations are characterized
in terms of their skeleton, i.e. the subgraph induced by their interior vertices.
Classes of drawable triangulations whose skeleton is either acyclic or maximal
are described and it is proved that the skeleton of a minimum weight triangu-
lation can be any forest. In the same paper, the relationship between minimum
weight drawability and Delaunay drawability is investigated. A triangulation is
Delaunay drawable if it admits a drawing that is the Delaunay triangulation
of the set of its vertices; characterizations of Delaunay drawable triangulations
can be found in the works by Dillencourt [8I79]. In [I3] an infinite family of
minimum weight drawable, but non-Delaunay-drawable, triangulations are con-
structed, each of which as an acyclic skeleton.

Wang, Chin, and Yang [20] focus on the minimum drawability of triangu-
lations with acyclic skeletons and show examples of triangulations of this type
that do not admit a minimum weight drawing, thus solving one of the open
problems in [I3]. Wang, Chin, and Yang also provide a partial characterization
of minimum weight drawable triangulations having acyclic skeletons, by showing
that all triangulations whose skeleton is a regular star graph admit a minimum
weight drawing.

In this paper we look at the minimum weight drawability problem from a new
perspective. Namely, we present a new technique for proving that a straight-line
drawing is a minimum weight triangulation of the set of its vertices. The tech-
nique compares distances between adjacent vertices against distances between
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any possible pairs of vertices in the drawing and is based on an application of
a matching theorem by Aichholzer et al. [1] which establishes a correspondence
between the edges of any two triangulations computed on the same point set. By
using this technique we can prove the correctness of new drawing algorithms for
new classes of minimum weight drawable triangulations. The main results that
we establish in this paper can be listed as follows.

— We characterize those maximal triangulations with acyclic skeleton that ad-
mit a minimum weight drawing. In [I3] only a partial characterization was
presented.

— We devise a method for recursively constructing minimum weight drawable
triangulations whose skeleton is a maximal triangulation. As an application
of this method, we show minimum weight drawable triangulations with ma-
ximal skeletons that are not Delaunay drawable. The other previously known
members of this family of triangulations all had acyclic skeletons [13].

— We show that all maximal triangulations whose skeleton is a maximal ou-
terplanar graph are minimum weight drawable. This extends the result of
[11] where the minimum weight drawability of maximal outerplanar graphs
is proved.

2 Preliminaries

We assume familiarity with basic computational geometry, graph drawing and
graph theory concepts. For further details see [3/5/18].

Theorem 1. [I] Let P be a finite set of points in the plane and consider two
triangulations T and T' of P. There exists a perfect matching between T and T'
with the property that matched edges either cross or are identical.

The skeleton S(T') of a triangulation T' is the graph induced by the set of
its internal vertices. For example, the skeleton of a maximal outerplanar graph
is the empty graph, the skeleton of a wheel graph consists of just one vertex,
namely, the center of the wheel.

We will often be concerned with graphs G each of whose edges has an associa-
ted weight, namely the length of the corresponding segment in some straight-line
drawing of G. We denote the weight of an edge e by w(e). The weight of a set
E of edges refers to the sum of the weights of the edges in E and is denoted by
w(E), as is the weight of a graph G or a drawing I

3 Feasible and Forced Edges

Let P be a finite set of points in the plane. We denote by Seg(P) the set of
all segments having both endpoints in P. A set E C Seg(P) is feasible if E
is contained in some minimum weight triangulation of P; E is forced if it is
contained in every minimum weight triangulation of P. Edges of the convex hull
of P are clearly forced, as is any segment which is not crossed by any other
segment connecting two points of P.
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Our algorithms compute drawings where some edges are forced and the other
edges are feasible. In order to show the correctness of our constructions, we rely
on the following lemma, which gives a sufficient condition under which a set of
edges is feasible. The lemma is an application of Theorem [1. In the lemma, for
any E C Seg(P), we denote by I(E) C Seg(P) those edges which intersect at
least one edge of E.

Lemma 1. Let E C Seg(P) be such that
1. E is planar.

2. Every edge of E is light, that is, for every e € E, every edge crossing e is at
least as long as e.

3. For all st € I(E) and all s € I(I(F)) — E — I(E) such that s crosses s/,
| sr]>|s].

Then E is feasible.

Sketch of Proof. Let T be a triangulation of P such that £ Z T. We will show
how to modify T to obtain a triangulation containing F and having weight at
most w(T). Let B/ = E —T, and let G =T — I(E'). Note that G is planar and
that no edge of G intersects any edge of the (planar) set E’, and so G U E’ is
planar. Since any planar set of edges can be extended to a triangulation by the
addition of zero or more edges, we can extend GUE’ to a triangulation 7”. Hence,
by Theorem [ there exists a matching between 7" and T in which every edge of
T’ is matched either with itself or with an edge of T' that crosses it. Since no edge
of E' isin T, E’ is matched to a subset M of T so that every edge in E’ crosses
the edge in M that it matches. Therefore M C TNI(E’). Then w(M) > w(E'),
since each edge of E’ is light. So, w(T) = w(G) + w(M)+w((TNI(E"))— M) >
w(G)+wE)+w(TNI(E))—M)=w(GUE")+w(TNIE")) - M).

Now, we extend G U E’ to a triangulation by adding | (T’ N I(E")) — M |
edges. Notice that each of the edges we add must be in I(I(E)) — E — I(E),
since E C G U E’, and edges in I(FE) would cross edges in G U E’. Thus, by
Condition 3 of the lemma, each of the added edges can be at most as long as
any edge in I(F) that it crosses. Because T N I(E')) — M C I(E), we have
that the weight of the added edges is at most w(T'NI(E’)) — M). Therefore, by
the inequality above we conclude that the new triangulation has weight at most
w(T).

In the next sections we present several applications of Lemma [ to the mini-
mum weight drawability problem.

4 Acyclic Skeletons

In [20] it is shown that not all triangulations with acyclic skeleton are minimum
weight drawable. On the positive side, in [I3] the following partial characteriza-
tion of maximal triangulations with acyclic skeleton is proved.

Lemma 2. Let T be a maximal triangulation and let S(T') be the skeleton of T
If S(T) is a path, then T is minimum weight drawable and a minimum weight
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drawing of T' can be computed in linear time with the real RAM model of com-
putation.

In this section we complete the characterization of those maximal triangu-
lations with acyclic skeleton that are minimum weight drawable. We start by
characterizing acyclic skeletons of maximal triangulations.

Lemma 3. Let T be a mazimal triangulation and let S(T') be the skeleton of T
If S(T) is acyclic, then it is a tree with at most three leaves.

Proof. Proof omitted in extended abstract.

Let T be a maximal triangulation whose skeleton is acyclic. By Lemma [3]
two cases are possible: Either the skeleton of T' is a tree with exactly one vertex
of degree 3 or it is a path. If it is a path, the minimum weight drawability of T’
is guaranteed by Lemma[2 The next lemma studies the remaining case.

Lemma 4. FEvery maximal triangulation whose skeleton is a tree with three lea-
ves is minimum weight drawable.

Proof. Proof omitted in extended abstract.
We can summarize the results of this section as follows.

Theorem 2. Let T be a mazximal triangulation with n vertices and let S(T') be
the skeleton of T. If S(T) is acyclic, then T is minimum weight drawable, and a
minimum weight drawing of T can be computed in O(n) time in the real RAM
model of computation.

5 Maximal Skeletons

In this section we study the minimum weight drawability of triangulations whose
skeleton is maximal. In Subsection EJlwe show a recursive method to construct
minimum weight drawable triangulations each having a skeleton that is a maxi-
mal triangulation. In subsection we study the minimum weight drawability
when the skeleton is a maximal outerplanar graph.

5.1 Skeletons That Are Maximal Triangulations

The next theorem allows us to describe a recursive method for drawing certain
triangulations as minimum weight triangulations

Theorem 3. Let T be a mazimal triangulation and let S(T') be its skeleton. If
S(T) is such that:

1. S(T) is a maximal triangulation, and

2. S(T) is minimum weight drawable,

then T is minimum weight drawable.
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Sketch of Proof. Let ag, a1, and as be the three vertices of the outer face of T
Let vg, v1, and vy be the three vertices of the outer face of S(T') and let I
be a minimum weight drawing of S(T"). We show how to construct a minimum
weight drawing I' of T from I” by adding vertices ag, a1, and ag and their
incident edges. There are two cases to consider: Either (i) each a; (¢ = 0,1,2) is
adjacent to two vertices of the outer face of S(T'), or (ii) there exists a vertex of
the outer face of T adjacent to vg, v1, and vs.

For Case (i), suppose a; is adjacent to v; and to v;y; (in the rest of the
proof we always assume ¢ = 0, 1,2 and all subscripts taken mod 3). Each a; is
represented as a point in the plane so that the following geometric constraints
are satisfied (see Figure[l(a)):

Constraint 1: The coordinates of the vertices are chosen so that aq, as, and
a3 form the convex hull of the new set of points.

Constraint 2: Vertex a; is connected to v; and to v;1 by segments that do
not intersect any edge of I'”. The segment connecting a; to v;4o intersects
I’

Constraint 3: The distance between a; and each vertex of I is larger than
length of the longest edge of the outer face of I".

Let I" be the resulting drawing and let P be the set of vertices of I". We prove
that I" is a minimum weight triangulation of P. All edges of the type a;a;+; are
forced because of Constraint 1. Similarly, the edges connecting ag, a; and as to
vg, V1, and vy are forced because of Constraint 2.

Let E be the edges of the type v;v;11. Clearly E is planar. I(E) consists of
segments connecting a vertex of I"” to a vertex of the convex hull of P. Thus,
by Constraint 3 every edge of E is light. Also notice that I(I(E)) — E — I(E)
consists of segments connecting pairs of vertices of I'', which by Constraint 3
are shorter than any element of I(E). Therefore, by Lemma [[lwe conclude that
E is feasible.

Now, since F is feasible and is a (convex) triangle, all edges of the type a;a;11
are forced. Thus, since I’ is a minimum weight drawing, we conclude that I" is
a minimum weight triangulation of P.

We now consider Case (ii). Suppose that ag is adjacent to v, v1, and vy, that
a1 is adjacent to both v; and v, and that as is adjacent only to vo. A drawing
of T is constructed in three steps: first ag and its incident edges are added to
I, then a; is added, and finally a5 is added. The coordinates of the vertices is
chosen so that a1, as, and ag form the convex hull of the new set of points. Also,
the following constraints are satisfied (see Figure [i(b)):

Constraint a: Vertex ag is connected to vg, v1, and vy by segments that do
not intersect any edge of I"". The distance between ag and each vertex of I’
is larger than the length of the longest edge of the outer face of I'".

Constraint b: Vertex a; is connected to vy, and ve by segments that do not
intersect any edge of I''. A segment connecting a; to vy crosses only shorter
segments.
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Constraint c: Vertex as is connected to v, by segments that do not intersect
any edge of I'". Segments connecting as to either vy or vy cross only shorter
segments.

Observe that Constraints a, b, and ¢ imply that the distance between a; and
each vertex of I is larger than length of the longest edge of the outer face of
I'. The reasoning to prove that the drawing defined with this construction is
minimum weight is similar to that described for Case (i). We omit details for
brevity.

(a) (b)

Fig. 1. Tllustration for Theorem [3] The shaded grey regions represents I"'. (a) A mi-
nimum weight drawing in which each a; (¢ = 0,1,2) is adjacent to two vertices of the
outer face of I'. (b) A minimum weight drawing in which a vertex of the outer face of
T adjacent to three vertices of the outer face of I".

Theorem [B] provides a basic tool for constructing minimum weight drawable
triangulations. One such triangulation, obtained after one step of the recursion,
is depicted in Figure 2} Theorems B] and Bl imply that the triangulation is mi-
nimum weight drawable. In the figure, some vertices of the triangulation are
drawn as white circles: Removing the white vertices breaks the graph into four
disconnected components. This means that the graph violates one of necessary
conditions that all Delaunay drawable triangulations must satisfy [8]. Similarly,
it can be verified that none of the triangulations recursively drawn by the above
procedure are Delaunay drawable.

Lemma 5. There exists an infinite family of triangulations that admit a mini-
mum weight drawing, are mot Delaunay drawable, and have skeletons that are
maximal triangulations.

We remark that the only families of minimum weight but not Delaunay
drawable triangulations known so far had a considerably simpler combinatorial
structure, since their skeletons were forced to be acyclic [13].
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Fig. 2. A minimum weight drawable triangulation constructed by the recursive proce-
dure of Theorem [3l The skeleton of the triangulation is a maximal triangulation. The
triangulation is not Delaunay drawable.

5.2 Skeletons That Are Maximal Outerplanar Graphs

In [III12] it is proved that all maximal outerplanar graphs admit minimum
weight drawings and a linear time algorithm to compute these drawings is pre-
sented. In this section we prove that every maximal triangulation whose skeleton
is a maximal outerplanar graph is minimum weight drawable. Our proof relies
on the following approach:

— A special type of minimum weight drawing of S(T) is computed by means
of a variant of the algorithm in [1T|[I2].

— Such a drawing of S(T') is used as a building block to compute a minimum
weight drawing of T

Before giving more technical details, we briefly recall the basic idea behind the
algorithm of [11I12]. Let G be a maximal outerplanar graph and let D(G) be its
dual; observe that D(G) is a tree such that all non-leaf vertices have degree three.
The vertices of G are drawn as cocircular points chosen to be a subset of the
vertices of regular polygon I1. IT is defined so that the dual graph of its minimum
weight triangulation is a complete tree having D(G) as its subtree (in [TT/12] it
is shown that the minimum weight triangulation of a regular polygon coincides
with its greedy triangulation). The minimum weight triangulation of G can be
obtained by deleting vertices of degree 2 from the minimum weight triangulation
of IT, until the dual of the remaining triangulation becomes identical to D(G)
(deleting a vertex of degree 2 and its incident edges from the minimum weight
triangulation of IT corresponds to deleting a leaf from its dual tree). Since IT is
defined in such a way that it may have exponentially many more vertices than
G, additional tools are devised [ITJI2] by which a time complexity proportional
to the number of vertices of G is achieved. Intuitively, the algorithm does not
explicitly construct the minimum weight drawing of IT, but it uses the knowledge
of the topology of its dual tree to directly compute the coordinates of the vertices
of the minimum weight drawing of G.

We are now ready to prove the main result of this section. Let T" be a maximal
triangulation whose skeleton S(T') is a maximal outerplanar graph. Let ag, ay,
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and ag be the three vertices of the outer face of T'. We distinguish between those
vertices of S(T') that are adjacent to exactly one of ag, a;, and as and those
vertices of S(T') that are adjacent to at least two of agp, a1, and as. Vertices
of S(T') of this second type are called transition vertices. Since T is a maximal
triangulation, S(7') has either two or three transition vertices. An example where
S(T') has two transition vertices is given in Figure Bl (a); an example where S(T')
has three transition vertices is given in Figure B] (b).

(@) (b)

Fig. 3. (a) A minimum weight drawing of a triangulation whose skeleton is a maximal
outerplanar graph with two transition vertices. (b) A minimum weight drawing of
a triangulation whose skeleton is a maximal outerplanar graph with three transition
vertices. Figure (a) also shows lines | and !’ and the minimum weight triangulation of
a regular polygon IT that are used by the drawing algorithm of Lemma [l

Lemma 6. It T is a mazimal triangulation whose skeleton S(T') is a mazimal
outerplanar graph with exactly two transition vertices, then T is minimum weight
drawable.

Sketch of Proof. Since S(T') has exactly two transition vertices, one of them
is adjacent to all of the outer vertices ag, a1, and as of T, while the other is
adjacent to only two of them. Let us label the two transition vertices as vy and
v1 and assume that vy is adjacent only to to ag and a;. Let ng be the number of
non-transition vertices of S(T') that are adjacent to ag, let ny be the number of
non-transition vertices of S(T") that are adjacent to a; and let n = max{nq,ns}.

We modify the drawing algorithm of [T1I[12] as follows. A polygon IT is defined
such that: (i) The dual tree of a minimum weight triangulation of IT is a complete
tree having the dual of S(T) as its subtree (we recall that the minimum weight
triangulation of a regular polygon coincides with its greedy triangulation); (ii) IT
has at least 2n+2 vertices. A minimum weight drawing of S(7T") is now computed
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by vertex deletion from the minimum weight triangulation of I1. Vertices vy and
vy are chosen to be antipodal points of the polygon; therefore, there are n vertices
on both sides of the polygon between vy and v,. This guarantees that we can
delete vertices of degree 2 from the minimum weight triangulation of I in such
a way that: (i)the dual graph of the resulting triangulation after the deletions
coincides with the dual graph of S(T') (i.e. the resulting triangulation is a drawing
of S(T)), and (ii) the two paths from vy to v1 along the drawing of S(T") consist
of ng and of ny vertices, respectively. Let I'"” be the drawing of S(T') obtained
by this procedure. The fact that I is a minimum weight drawing of S(T) is a
consequence of the property that deleting a vertex of degree 2 and its incident
edges from a minimum weight triangulation of a set of cocircular points gives as
a result a minimum weight triangulation of the remaining points.

In order to construct a minimum weight drawing of T" we now add to I"”
vertices ag, a1, az, and their incident edges. Refer to Figure 3 (a). Let £ be the
line through vy and v; and let £ be the perpendicular bisector of the segment
having vy and vy as its endpoints. We assume that by construction I has ng
vertices in the half-plane above ¢ and thus there are n; vertices in the half-plane
below ¢ and that ¢ is horizontal. The coordinates of the vertices are chosen so
that aq, as, and ag form the convex hull of the new set of points. The following
additional constraints are satisfied

Constraint 1: Vertex ag is drawn on the left-hand side of line ¢ and above line
£. Vertex ag is connected to vy, v1 and to the ng non-transition vertices above
£ by segments that do not intersect any edge of I"". The distance between ag
and each vertex of I is larger than the length of the longest edge of I".

Constraint 2: Vertex a; is drawn on the left-hand side of line ¢’ and below line
£. Vertex a is connected to vg, v1 and to the nq non-transition vertices below
£ by segments that do not intersect any edge of I'". The distance between a;
and each vertex of I is larger than the length of the longest edge of I".

Constraint 3: Vertex as is drawn on the right-hand side of ¢ and on line
{. Vertex ao is connected to v; by a segment longer than those segments
connecting ag and a; to vertices of S(T).

Let I' be the resulting drawing. Observe that the edges of the outer face and
edge asvy are forced. Let E be the set consisting of the edges of I and of the
segments connecting ag and a; to S(7T'). Clearly F is planar. Also, I(E) consists
of segments connecting either vertices of I'"” to vertices of the convex hull or pairs
of vertices of I'". By Constraints 1, 2, and 3 and since I’ is a minimum weight
drawing, we have that each segment e of E is crossed by segments of I(E) that
are no shorter than e; hence E is light. Now, since I(I(E)) — I(E) — E = 0, it
follows by Lemma [[Jthat F is feasible. Therefore I" is a minimum weight drawing
of T.

Lemma 7. If T is a mazimal triangulation whose skeleton S(T') is a mazimal
outerplanar graph with exactly two transition vertices, then T is minimum weight
drawable.
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Sketch of Proof. A minimum weight drawing I" of T is computed by a variant of
the algorithm in the proof of Lemmal@l Namely, I is computed in the same way
as in the proof of the above lemma, and vertices ag and a; are added by the same
strategy. The coordinates of vertex as are now chosen so that: (i) all segments
connecting as to the vertices of I’ are shorter that all segments that can possibly
cross them and (ii) all segments starting at as and that cross remaining edges
of the drawing are longer than these edges. An example of a drawing computed
by this strategy is given in Figure[d (b). The proof that I" is a minimum weight
drawing relies on Lemma [ and is similar to that of Lemma

Theorem 4. Let T be a mazimal triangulation and let S(T') be its skeleton. If
S(T) is a mazimal outerplanar triangulation, then T is minimum weight drawa-
ble and its minimum weight drawing can be computed in linear time in the real
RAM model of computation.

6 Conclusions and Open Problems

In this paper we have presented new results on the minimum weight drawability
problem by characterizing new families of maximal triangulations that admit a
minimum weight drawing. The new results are based on a sufficient geometric
condition for a set of line segments to be part of a minimum weight triangulation.

The general problem of determining which triangulations are minimum
weight drawable is still far from solved. As intermediate steps toward solving
the problem, we might suggest pursuing the following:

1. Devise other sufficient conditions of the type given in Lemma [1 that allow
us to better understand the geometric properties of minimum weight trian-
gulations of given sets of points.

2. Study the minimum weight drawability of k-outerplanar graphs (a graph
is k-outerplanar when it has a planar embedding such that all vertices are
on disjoint cycles properly nested at most k deep). The proof techniques of
Lemmas [6] and [l may be a good starting point.

3. Further investigate the relationship between Delaunay drawability and mi-
nimum weight drawability. An interesting class to study seems to be the
set of 4-connected triangulations, for which a characterization in terms of
Delaunay drawability is known.
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