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Abstract. A common strategy in drug design and pharmacophore iden-
tification consists of evaluating large sets of molecular structures by com-
paring their 2D structure drawings. To simplify the chemists’ task, the
drawings should reveal similarities and differences between drugs. Given
a family of molecules all containing a common template, we present an
algorithm to compute standardised 2D structure drawings. The molecu-
les being represented as a graph, we compute a structure called supertree
in which all molecules can be embedded. Using the correspondences bet-
ween atoms provided by the supertree, we are able to coordinate the
drawings performed by a breadth-first traversal of the molecular gra-
phs. Both parts of the problem are NP-hard. We propose algorithms of
heuristic nature.

1 Introduction

1.1 Problem Statement

A Molecule is defined as an undirected graph of bounded degree with labelled
nodes and edges. We restrict this definition to the case where molecules contain
only induced cycles of length at most α —typically α = 6, and two such cycles
share at most one edge. This way, a molecule reduces to a tree with local cycles
and blocks of cycles. 1 We define a molecular family as a set of molecules M =
{M1, M2, .., Mm} sharing a connected subgraph T called the template. For a
molecule Mk, the connected subgraphs of Mk\T are called its appendices and
are denoted Tti , i.e. Mk = T ∪ {Tt1 , Tt2 , .., Ttk}. We further assume that each
appendix is rooted at the unique node connecting it to the template. At last, all
the molecules processed are assumed to have a planar drawing. Notice, that in
the context of drug design, the assumptions are mostly satisfied.

The question we are interested in is related to the pharmacophore identifica-
tion problem and was posed by a French pharmaceutical company as a follow-up
to [4]. Using the previous definitions, we can state it as follows:
? A poster version of this work has been presented at JOBIM 2000 –Jounées Ouvertes

Biologie Informatique Mathématique, France, Mai 2000.
1 Two cycles are adjacent if they share an edge. A block is a connected subgraph

consisting of adjacent cycles. For further definitions concerning basic graph theory,
we refer to [5, Chapter 1].
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Given a molecular family and its template, draw the molecules
in the plane in a standardised way to make the comparisons and
interpretations of the chemist easier.

This is exemplified on Figure 1 which depicts two “similar” molecules with the
drawings as they are stored in the database as well as the drawings automatically
generated by our algorithm. The dotted edge served as template. 2

Naturally, 2D drawings cannot capture all the subtleties of a molecule. (In
particular the stereo-chemistry is not taken into account.) These 2D represen-
tations should therefore be considered as a necessary but not sufficient informa-
tion: whenever they fall short from providing the precision required, they can
be enriched by more precise facts such as the 3D Connolly surface, chemical
measurements, etc.

Fig. 1. (left) Database drawings, (right) Drawing algorithm “longest chain”

1.2 Paper Overview

In Section 2, we review relevant previous work. Section 3 outlines our drawing
method. Its main ingredients are developed in Sections 4, 5, and 6. Implemen-
tation issues and results are presented in Section 7. Finally, Section 8 lists the
future plans.

2 Previous Work

The bibliographic work consists of three parts: literature concerning the dra-
wing of chemical structures, graph drawing methods in general, and the graph
theoretic question of subgraph isomorphisms.

To the best of our knowledge, there exist very few publications concerning
automatic drawing of 2D chemical structures. Several chemists confirmed that no
automatic drawing software exists on the market. Nevertheless, in the Seventies
and Eighties several approaches were proposed. First attempts by Zimmerman
2 Examples are taken from our partner’s database. For confidentiality reasons, they

are slightly modified.
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and Feldman [8] use a library of basic substructures and combine them according
to a set of rules. The main criticism to this approach is lack of generality. In [3],
a three-dimensional model is projected in the plane, but cyclic structures are
not drawn with correct angles. In [14], Shelley presents a promising heuristic
method. Similar to our approach, it is based on a breadth-first traversal of the
molecule with the successive positioning of atoms. However, the heuristic is quite
involved, and the final choice for atom positions is not completely described.
A more recent genetic algorithm by D.B.Hibbert [10] generates and displays
chemical structures. Angles are fixed following the valence of the atoms, and a
drawing is evaluated with respect to the distance between non-adjacent atoms.

Concerning graph drawing literature and to the best of our knowledge, effi-
cient algorithms for planar drawing of trees with unitary edge length and several
fixed angles do not exist. However, hardness results for drawing trees are parti-
cularly interesting. We use the logic machine approach of Whitesides and Eades
[5, Chapter 11.2] to show the hardness of our drawing problem.

The comparison of graphs and trees are well known questions in graph theory.
Problems involving isomorphism testing of graphs are in general NP-hard pro-
blems [15, Chapter 2.6]. For molecular graphs, i.e. node labelled graphs, a sim-
plification is shown in [13]. The computational complexity is lowered down by an
important factor, but the problem still remains NP-complete. Polynomial-time
algorithms exist for trees: The embedding problems for subgraph isomorphism
and topological embedding can be solved in O(n2.5 log n) time for two trees of
size O(n) [9]. The problem is NP-hard for more than two trees, as shown in [1].

3 Algorithm Outline

3.1 Drawing Conventions and Constraints

A chemical drawing must satisfy several properties. The drawing is planar, and
the degree of the node determines the angle between its adjacent edges. However,
assuming one edge is fixed, the positioning of its adjacent nodes is not fully
determined. The possible choices are shown in Figure 2. The angle between two
edges incident to a node of degree 3 and a node of degree 2 that does not have
two double bonds is α = ±2π

3 . For a node of degree 2 with two double bonds
there is no choice, α = π. There are six possibilities to draw the adjacent nodes
of a node of degree 4: The angles are multiples of α = π

2 , and the order among
the edges is not fixed. If the edge belongs to a cycle, the angle is given by the
type of cycle (i.e. for a hexagon α = 2π

3 ).

3.2 Automated Molecular Drawing: A Three Stages Process

From the previous discussion, a satisfactory solution to our problem needs to be
able to:

1. identify the sub-structures common to several molecules,
2. perform the drawing of the molecules.
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Fig. 2. Angles between bonds

To solve the first part of the problem, we construct a graph, the supertree, which
“includes” all the molecules of the family. It is a fictive molecule into which each
molecule is embedded. In general, the supertree itself does not admit a planar
drawing. It is simply used to record and coordinate the drawings of the molecu-
les.
The second stage of the drawing process consists of effectively drawing the mole-
cules. The criteria to be respected are twofold. First, the constraints of Section
3.1 must hold. Second, in order to improve readability, some attention has to
be devoted to aesthetic aspects. In particular, we shall be concerned with the
diameter of the drawing — the maximum distance between two atoms, as well
as the total area of the drawing.

To summarise, the outline of the algorithm is the following. First, cycles and
blocks are detected in all the molecules. Next, a representation of the whole
family of molecules is computed, the so-called supertree. At last, the drawing
algorithm is applied to each molecule separately, but drawing decisions are co-
ordinated using the supertree. The heuristics applied in the drawing procedure
are based on the supertree.

4 Preprocessing Step: Cycle and Block Detection

The first step is the detection of cycles and blocks of cycles in all molecules.
For each appendix, a Breadth-First Search (BFS) algorithm stores parent-child
relations and non-tree edges, i.e. the last edge of each cycle to be traversed by
the BFS. The corresponding cycle to a non-tree edge is found by collecting the
ancestors of the nodes incident to the non-tree edge until a common ancestor
is found. Adjacent cycles are grouped to a block. The first node of a block in
BFS order is called its entry node. It is easy to see that the detection of cycles
in a molecular graph of size O(n) with c induced cycles of maximum size α has
O(n + αc) running time.
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5 Identification of Common Substructures

5.1 Supertree under Topological Embedding

The first part of the problem is to identify substructures that are isomorphic
in several molecules of the family. This is necessary to be able to draw them
the same way, up to a rigid motion. To give an illustration, Molecule 1 and
Molecule 2 shown in Figure 3 have the template (dotted) but also the dashed
parts in common. An embedding of a graph G into a graph S is a one-to-one

Fig. 3. Identified substructures, (a) Molecule 1 (b) Molecule 2

mapping of all nodes of G to the nodes (not necessarily all) of S. The type of
embedding defines the condition under which two nodes can be mapped.3 The
smallest common embeddable supertree (SCES), thus, contains all atoms of all
molecules, but several identical atoms may be associated to a single node.

We choose topological embedding which allows matching an edge to a path.
This way, similar substructures are matched even if they are connected by paths
of different length. This is, for example, employed in Figure 3. Figure 4 presents
a simple supertree example.
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Fig. 4. Simple example to demonstrate the supertree

5.2 Supertree Computation

In this section, we show how to compute the supertree S(r(M), r(M ′)) of two roo-
ted trees M and M ′ with roots r(M) and r(M ′). In the sequel, S(r(M), r(M ′))
3 For definitions in this section, we refer to [9].
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stands for the supertree as well as its size. Recall, that the roots are provided
by the template. M and M ′ are appendices of the molecules rooted at the same
template node.

Algorithm of Gupta and Nishimura. We adapt the algorithm proposed by
Gupta and Nishimura in [9] which is based on a dynamic programming scheme.
Without giving the details of the proofs, the results of [9] are briefly illustrated
and later revisited for the treatment of cycles and blocks.

The algorithm is based on the following observation. An embedding can either
map the two roots r(M) and r(M ′) to the root of the supertree and some children
of r(M) to distinct children of r(M ′), or one of the roots can be mapped to
a descendant of the other root. In [9, Lemma 7.4], the three possibilities are
formalised as follows:

For any node a of M with children b1, ..., bk and for any node u of M ′

with children v1, ..., vl, three quantities are defined:

M1 = min
1≤i≤l

{
S(a, vi) + 1 +

∑
j 6=i

S(∅, vj)
}

;

M2 = min
1≤i≤k

{
S(bi, u) + 1 +

∑
j 6=i

S(bj , ∅)
}

; and

M3 = MinWM({b1, ..., bk}, {v1, ..., vl}) + 1.

Then S(a, u) = min {M1, M2, M3}.

As in [9], MinWM({b1, ..., bk, n1, ..., nl}, {v1, ..., vl, m1, ..., mk}) is the mini-
mum weight perfect matching of the bipartite graph built from the two sets of
nodes adjacent to a and u and a copy of each node in the party node set. The
weight of the edge (bi, vj) is the size of the minimum supertree S(bi, vj). Edges
(bi, mi) and (nj , vj) correspond to a matching of a node with its copy. They have
weight S(bi, ∅) and S(∅, vj), respectively.
The running time of the algorithm is O(n2.5 log n) for two trees of size O(n).
This cost is dominated by the bipartite matching calculations. For details, we
refer to [9].

Dealing with Cycles and Blocks. Unfortunately, a dynamic programming
scheme does not apply to general graphs. A reduction from trees with blocks of
cycles to trees is necessary in order to avoid NP-hardness. Two solutions come
to mind: The reduction of a block to one node, or the destruction of the cycles
by “hiding” an edge.

The first solution has the disadvantage that only complete blocks of cycles
can be matched. The matching of a path that is not part of a cycle to some
edges of a cycle is, yet, desirable for some chemical structures. The second one
has a different drawback: since the choice of the hidden edge, e.g. the non-tree
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Fig. 5. Hiding non-tree edges (the node labels follow the BFS-order)

edge, is not uniquely determined by the graph-structure, the result might not
be optimal as illustrated in Figure 5.

We choose a hybrid solution to avoid these inconveniences: For the matching
of two blocks with entry nodes a or u, we do not regard their internal structure
but consider a block as an atomic node —solution 1. In the case where either
a or u is not part of a block, the non-tree edges of the blocks are hidden as
proposed in the second solution, and the normal procedure applies.

Adaptation of the Algorithm to Labelled Trees. Only a slight modification
is necessary to take atom types into account. The matching of nodes that are
not of the same type is punished by counting the corresponding supertree node
twice.

Data-Structures and Implementation. For every node a of M proceeding
from leaves to root and for every node u of M ′ proceeding from leaves to root,
S(a, u) can be recursively computed following the scheme:

S(a, u) =




1 if they are leaves and type(a) =
type(u),

2 if they are leaves and type(a) 6=
type(u),

max(size(block1), size(block2)) if a root of block1 and u root of
block2, and the blocks are leaves,

min {M1, M2, M3} otherwise.

Of course, to be able to actually construct the supertree, one has to keep
track of the subtrees as well as their sizes. To do so, for each pair of nodes (a, u),
a potential supertree node is created. Depending on whether S(a, u) was the
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result of M1, M2, or M3, the corresponding edges are inserted. For example, in
the case of S(a, u) = M3, the edges inserted are ((a, u), (bj , vi)) for each pair
(bj , vi) matched in the computation of M3, ((a, u), (bl, ∅)) and ((a, u), (∅, vk)) for
the non-matched nodes (matched with its own copy).
The tree rooted at the node (r(M), r(M ′)) is the smallest supertree of M and
M ′. This is due to the fact that at each node insertion, we insert the edges that
connect the node to its children in the supertree.

5.3 Supertree for the Family of Molecules

Theorem 1. The computation of the smallest common embeddable supertree of
m rooted trees of bounded degree is NP-hard and hard to approximate within a
factor of n1−ε, for any ε > 0.

Proof. The problem is reduced from the INDEPENDENT SET problem follo-
wing the result of [1]. For details see [2].

In this context, we content ourselves to an approximate solution and compute
the supertrees two by two in a binary fashion. At first, the family is divided
into pairs of molecules for which the supertree is computed. This is repeated
recursively until we are left with a single supertree. Notice that the optimality
of the result over several recursive calls is not guaranteed.

The size of the supertrees is in the worst case the sum of the size of the
molecules —a rough upper bound. Thus, for m molecules of size O(n), the size
of the supertree of the family is in the worst case of order O(m×n). The following
property is easily checked.

Proposition 1. The computation of the supertree of a family of m molecules of
sizes O(n) has a worst case running time of O((mn)2.5 log(mn))

6 Drawing Molecules

The algorithm is based on the observation that all possible drawings of the
molecule can be enumerated. Once an edge has been drawn, there is only a
limited number of possibilities to draw the adjacent edges – see Section 3.1. The
drawing algorithm consists of determining the choice of angles that leads to a
permissible drawing which, in addition, fulfils as much as possible the aesthetic
criteria.

6.1 NP-Hardness Proof

Before describing the algorithm, we state that it is an NP-hard problem to decide
whether there exists a permissible drawing of a molecule following the constraints
described in Section 3.1. The proof mimics the “logic engine” of [7]. See [2] for
details.

Theorem 2. It is an NP-hard problem to decide whether there exists a permis-
sible drawing of a molecule.
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6.2 Basic Drawing Procedure

The basic procedure to draw a molecule consists of traversing the nodes in
breadth-first-order starting at a template node and assigning a coordinate to
each adjacent node. In case of a cycle or a block of cycles, the breadth-first order
is not followed, and the whole block is processed at once. Before assignment, each
position is checked for conflicts, i.e. intersections of the new edge with already
drawn nodes and edges. If the assignment of coordinates to an adjacent node
is impossible, we backtrack to the preceding node (in the breadth-first traver-
sal), and try another permutation of node/position pairs. In case of failure, we
backtrack even further.

To complete the description, one needs to define an order of preference:

P1. on the adjacent nodes of the last node drawn.
Two options referred to as “largest” and “longest” subtree are implemented.
Nodes are ordered with respect to the depth or size of the subtree they are
root of.

P2. on the possible positions of the nodes to be drawn.
The positions maximising the sum over the distances to already drawn nodes
or the continuation of the longest chain are preferred.

The combination of the possibilities for P1 and P2 yield 4 heuristics. (But
we disregard the combination “largest subtree” – “development of longest chain’
which does not make sense.)

6.3 Rigid Blocks

The analysis of the decision tree which describes all possible drawings immedia-
tely leads to the notion of rigid blocks. We define a rigid block to be a part of the
molecule whose embedding depends on only one decision. In case of a block, for
example, the choice of the position of one node determines the placement of the
whole block and of its adjacent edges. In the drawing procedure, this is taken
into account by processing an entire block immediately after the placement of
the first node, as already mentioned above. For the adjacent edges, the angle is
determined by the angle inside the cycle. An example of a molecule with a block
of 5 cycles is given in Figure 6(c).

6.4 Coordination of the Drawings

This section describes how drawing decisions are coordinated using the supertree.
The first molecule is drawn as described above, with the only difference that
the heuristics (depth or size of subtrees) are based on the supertree structure.
For the following molecules, the heuristic consists of trying the choice that has
been successful in the majority of the molecules already processed. If it fails,
another angle is chosen with the usual heuristics. Already drawn molecules are
not corrected in order to avoid further backtracking.
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The data-structure used for the coordination of the angles consists of a prio-
rity queue for each edge that contains all angles used for the edge. The priority
is the number of molecules that employed this solution. It is updated each time a
molecule has been processed. In fact, it is a persistent data structure as proposed
in [6] using the “fat node model”.

7 Implementation and Results

The implementation consists of about 10000 lines of C++ code. It uses the
Graph Template Library GTL (http://infosun.fmi.uni-passau.de/GTL) and the
STL library (Standard Template Library) [12]. The GTL library implements
a graph data-structure together with basic algorithms such as graph traversal
algorithms. It is based on the generic data-structures of STL.Molecules are given

as molfiles or structure-data files, two connection table (CTAB) formats that are
standard in the chemical software industry (see http://www.mdli.com). The list
of atoms and bonds in CTAB format is transformed into the graph description
language GML [11] by a perl script. It is possible to display the former drawing
of the molecule (that was done by the chemist) to be able to compare the results.
The graphical output is written in OpenGL (http://reality.sgi.com/opengl). A
CTAB file is produced for further use in standard chemical set-ups. For printing,
a Postscript file is dumped.

The drawing algorithm can be applied to single molecules separately from the
supertree computation. Some of the results are shown as examples in the paper.
Usually, there is not much difference between the different heuristics, neither in
running time nor in the drawings. For the supertree program, some molecules
are entered – either with specified templates or without (default: the template
consists of the first edge). Again, the options for the drawing algorithm are valid.

The running time on a SUN computer with a SPARC processor at 300 MHz
and 250 MB of RAM is about 25 seconds for 12 molecules of average size of 35
atoms. So far, the code has not been optimised. More experimental facts will be
provided in [2].

We tested examples from two molecular databases. The examples of data-
base 1 were selected by the pharmacologist as good and typical examples for
their application. In the second molecular database, the drawings are given as
3D projections of the molecular structures –see Figure 6(b).

8 Conclusion and Future Work

The calculation of the supertree is a promising solution to coordinate drawing
decisions in the layout of 2D-chemical structures of several similar molecules. In
addition to the fact that the drawings reveal similarities and differences between
several molecules, the supertree speeds up the drawing procedure. Whenever a
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Fig. 6. (a) Family of 4 molecules, (b) Example from database 2, (c) Molecule with
block of cycles

backtracking is necessary in the first molecule, copying its result for the other
molecules prevents from testing the misleading decisions again.

Unfortunately, the method is restricted to the case where a template or at
least one common atom is known in all molecules of the family. The choice of
the template is crucial to the quality of the result. For now, a generalisation
of the supertree algorithm to the case of non-rooted trees seems difficult to
realize without a significant slow down in computation time (a factor of n2 per
call). Notice, however, that template queries to data-bases yield in general the
necessary information. Second, the optimality of the size of the supertree after
successive recursive calls is not guaranteed. It might be interesting to derive
bounds on the error and to propose more sophisticated strategies to avoid it. Last
but not least, one might look at a further use of the supertree representation
in this context. The size of the supertree as a measurement of similarity, for
example, could be considered.

The results of the drawing algorithm are in general correct and readable
to the chemist. The heuristics avoid backtracking in most cases which makes
the computation very fast. Problems occur when no permissible drawing can
be found. Should this happen, we return the original database drawings. A me-
chanism to allow compromises in the drawing such as the changing of angles or
variances of the edge length would allow more flexibility. Another problem is the
orientation of ring systems such as steroids. Such chemical structures must be
drawn with a certain orientation. In order to draw them in the right manner,
we propose to supply a dictionary of critical ring systems with their predefined
drawings.

Acknowledgements. The authors wish to thank Sue Whitesides for interesting
discussions on rigid blocks and on the complexity of the drawing algorithm during
her visit at INRIA in May 1999.
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