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Abstract. This paper casts the problem of point-set alignment and cor-
respondence into a unified framework. The utility measure underpinning
the work is the cross-entropy between probability distributions for align-
ment and assignment errors. We show how Procrustes alignment parame-
ters and correspondence probabilities can be located using dual singular
value decompositions. Experimental results using both synthetic and real
images are given.

1 Introduction

Point pattern matching is a problem of pivotal importance in computer vision
that continues to attract considerable interest. The problem may be abstracted as
either alignment or correspondence. Alignment involves explicitly transforming
the point positions under a predefined geometry so as to maximise a measure of
correlation. Examples here include Procrustes normalisation [8], affine template
matching [20] and deformable point models [2]. Correspondence, on the other
hand, involves recovering a consistent arrangement of point assignment labels.
The correspondence problem can be solved using a variety of point assignment
[I3/15] and graph-matching [2TJ6I119] algorithms.

The problem of point pattern matching has attracted sustained interest in
both the vision and statistics communities for several decades. For instance, Ken-
dall [R] has generalised the process to projective manifolds using the concept of
Procrustes distance. Ullman [16] was one of the first to recognise the importance
of exploiting rigidity constraints in the correspondence matching of point-sets.
Recently, several authors have drawn inspiration from Ullman’s ideas in deve-
loping general purpose correspondence matching algorithms using the Gaussian
weighted proximity matrix. For instance Scott and Longuet-Higgins [13] locate
correspondences by finding a singular value decomposition of the inter-image
proximity matrix. Shapiro and Brady [14], on the other hand, match by compa-
ring the modal eigenstructure of the intra-image proximity matrix. In fact these
two ideas provide some of the basic groundwork on which the deformable shape
models of Cootes et al [2] and Sclaroff and Pentland [I2] build. This work on the
co-ordinate proximity matrix is closely akin to that of Umeyama [I7] who shows
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how point-sets abstracted in a structural manner using weighted adjacency gra-
phs can be matched using an eigen-decomposition method. These ideas have
been extended to accommodate parametererised transformations [18] which can
be applied to the matching of articulated objects [19]. More recently, there have
been several attempts at modelling the structural deformation of point-sets. For
instance, Amit and Kong [1] have used a graph-based representation (graphical
templates) to model deforming two-dimensional shapes in medical images. La-
des et al [9] have used a dynamic mesh to model intensity-based appearance in
images.

In a recent paper we developed a unified statistical framework for alignment
and correspondence [3]. The motivation for the work was that the dichotomy
normally drawn between the two processes overlooks considerable scope for syn-
ergistic interchange of information. In other words, there must always be bounds
on alignment before correspondence analysis can be attempted, and vice versa.
Our approach in developing the new point-pattern matching method was to em-
bed constraints on the spatial arrangement of correspondences within an EM
algorithm for alignment parameter recovery. This process has many features re-
miniscent of Jordan and Jacob’s hierarchical mixture of experts algorithm [7].
The observation underpinning this paper is that although the method proved ef-
fective it fails to put the alignment and correspondence processes on a symmetric
footing. The relational constraints were simply used to gate the contributions to
the log-likelihood function for the alignment errors.

The idea underpinning this paper is to provide a new framework for the
maximum likelihood matching of point-sets which allows a symmetric linkage
between alignment and correspondence. Specifically, we aim to realise interlea-
ved iterative steps which communicate via an integrated utility measure. The
utility measure is the cross-entropy between the probability distributions for ali-
gnment and correspondence. By casting the cross-entropy in terms of matrices,
we realise optimisation via dual singular value decompositions. The first of these
transforms the point set positions so as to locate an alignment that maximises
the weighted correlation between the point-set co-ordinates. The second singular
value decomposition updates the set of correspondence probabilities that maxi-
mise the weighted correlation between the edge-sets of the adjacency graphs for
the point-sets. These processes are interleaved and iterated to convergence.

2 Point-Sets

Our goal is to recover the Procrustes normalisation that best aligns a set of
image feature points w with their counterparts in a model z. In order to do this,
we represent each point in the image data set by a co-ordinate position vector
w; = (v4,1;)7 where i is the point index. In the interests of brevity we will
denote the entire set of image points by w = {w;, Vi € D} where D is the point
index-set. The corresponding fiducial points constituting the model are similarly
represented by z = {z;,Vj € M} where M denotes the index-set for the model
feature-points z;.
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Later on we will show how the two point-sets can be aligned using singu-
lar value decomposition. In order to establish the required matrix represen-
tation of the alignment process, we construct two co-ordinate matrices from
the point position vectors. The data-points are represented by the matrix D =
(wy ws ... wjp ) whose columns are the co-ordinate position vectors. The
corresponding point-position matrix for the modelis M = (21 22 ... 2z ).

One of our goals in this paper is to exploit structural constraints to improve
the recovery of alignment parameters from sets of feature points. To this end we
represent point adjacency using a neighbourhood graph. There are many alterna-
tives including the N-nearest neighbour graph, the Delaunay graph, the Gabriel
graph and the relative neighbourhood graph. Because of its well documented
robustness to noise and change of viewpoint, we adopt the Delaunay triangula-
tion as our basic representation of image structure [4]. We establish Delaunay
triangulations on the data and the model, by seeding Voronoi tessellations from
the feature-points.

The process of Delaunay triangulation generates relational graphs from the
two sets of point-features. More formally, the point-sets are the nodes of a data
graph Gp = {D, Ep} and a model graph Gy = {M, Ep}. Here Ep C D x D
and Ej; € M x M are the edge-sets of the data and model graphs. Later on
we will cast our optimisation process into a matrix representation. Here we use
the notation Ep(i,4’) to represent the elements of the adjacency matrix for the
data graph; the elements are unity if ¢ = i’ or if (i,7’) is an edge and are zero
otherwise. We represent the state of correspondence between the two graph using
the function f : D — M from the nodes of the model graph onto the nodes of
the data-graph.

3 Dual Step Matching Algorithm

We characterise the matching problem in terms of separate probability distribu-
tions for alignment and correspondence. In the case of alignment, the distribution
models the registration errors between the data point positions and their counter-
parts in the model under Procrustes alignment. The correspondence process on
the other hand captures the consistency of the pattern of matching assignments
to the graph representing the point-sets. The set of assignments is represented by
the function f : D — M. Suppose that Pi(’?) is the probability that node i from
the data graph is in alignment with node j from the model graph at iteration
n. Similarly, QET;) is the probability that node ¢ is in correspondence with node

j. Further suppose that pEZ—) = p(wgn)@j) is the probability distribution for the

alignment error between the nodes ¢ and j under the Procrustes alignment at
iteration n. The distribution of the correspondence errors associated with the
assignment function (™) at iteration n is qu) With these ingredients the utility
measure which we aim to maximise in the dual alignment and correspondence
step is
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&= Z Z [Q(n) lnp(n+l) + P(n) In q("+1) (1)

€D jeM

In other words, the two processes interact via a symmetric expected log-
likelihood function. The correspondence probabilities weight contributions to
the expected log-likelihood function for the alignment errors, and vice-versa. In
our previous work, we showed how the first term arises through the gating of
the log-likelihood function of the EM algorithm [3].

The alignment point positions and correspondence matches are recovered via
the dual maximisation equations

D+ = argmaXZ Z Q (n+1 (2)
€D jeM
and
f(nJrl) _ argmaxz Z P(n) (n+1) (3)
i€D jeM

3.1 Alignment

To develop a useful alignment algorithm we require a model for the measure-
ment process. Here we assume that the observed position vectors, i.e. w; are
derived from the model points through a Gaussian error process. Suppose that
the revised estimates of the data-point position matrix D™ is wz(-"). According
to our Gaussian model of the alignment errors,

1
2m/| |

where Y is the variance-covariance matrix for the point measurement errors.
Here we assume that the position errors are isotropic, in other words the errors
in the z and y directions are identical and uncorrelated. As a result we write
X = 0%, where I, is the 2x2 identity matrix. With this model, maximisation
of the expected log-likelihood function &, reduces to minimising the weighted
square error measure

Fa=D 3 QW (2 — w!™ )T (z; — w{™*Y) (5)

€D jeM

1 n — n
cexp|— = (z; — w5 (z; — wi") (4)

p(w("|z;) = .

We would like to recover the maximum likelihood alignment parameters by
applying an rigid transformation to the two point-sets. We recover the requi-
red parameter matrix by performing singular value decomposition of a point-
correspondence matrix. In order to develop the necessary formalism, we rewrite
the weighted squared error criterion using a matrix representation. Suppose that
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Q™™ is the data-responsibility matrix whose elements are the a posteriori cor-
respondence probabilities Q(") With this notation the quantity F, can be ex-
pressed in the following matrlx form

Fo=Tr[MTQ™ M] — 2Tr[D"*V QM MT] + Tr[D VT QM DI+ (6)

Since the first and third terms of this expression do not depend on the alig-
nment of the point-sets, the transformation matrix satisfies the condition

DY) = argmax Tr[DQ™ MT] (7)
D

The Procrustes alignment of the points can be thought of as maximising a weigh-
ted measure of overlap or correlation between the point-sets.

The required maximisation can be performed using a singular value decom-
position. The procedure is as follows. The matrix DQ M7 is factorised into a
product of three new matrices U, V and A, where A is a diagonal matrix whose
elements are either zero or positive, and U and V' are orthogonal matrices. The
factorisation is as follows DD QM MT = U AVT.

The matrices U and V define a rotation matrix @ which aligns the principal
component directions of the point-sets M and D. The rotation matrix is equal
to©® =VUT.

With the rotation matrix to hand we can find the Procrustes alignment
which maximises the correlation of the two point sets. The procedure is to first
bring the centroids of the two point-sets into correspondence. Next the data
points are scaled to that they have the same variance as those of the model.
Finally, the scaled and translated point-sets are rotated so that their correlation
is maximised.

To be more formal the centroids of the two point-sets are u(") E(w (n))

and par = E(z;). The corresponding covariance matrices are E(n) E((w 1(") -

Hp ) (w™ — u%‘ )T) and Zay = E((z; — u\P)(z; — puHT).
With ingredients the update equation for re-aligning the data-points is

TrX
w£n+1) — o+ MVUT( (n) _ ug)) (8)
TrXp
Finally, we update the a posteriori matching probabilities by substituting the
revised position vector into the conditional measurement distribution. Using the
Bayes rule, we can re-write the a posteriori measurement probabilities in terms

of the components of the corresponding conditional measurement densities

Py p(w"|z)) ©)
i )
Zj'eM p('wi |Zj')
It is worth pausing to consider the relationship between the point correlation

measure developed in this paper and those exploited elsewhere in the literature
on point pattern matching. The quantity DM7 is simply the standard measure
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of overlap that is minimised in the work on least-squares alignment [18]. The
matrix @, on the other hand, plays the role of the correspondence matrix used
by Scott and Longuet-Higgins [13]. So, the utility measure delivered by the cross
entropy plays a synergistic role with the correspondence point proximity matrix
weights the least-squares criterion.

3.2 Correspondences

The correspondences are recovered via maximisation of the quantity

&= Z Z P(n In q(n+1) (10)

i€D jeM

Suppose that Vp (i) = {i’|(i,7") € Ep} represents the set of nodes connected
to the node 7 by an edge in the graph with edge-set Ep. Furthermore, let us
introduce a set of assignment variables that convey the following meaning

() :{1 if f0)(i) = j (11)

% 0 otherwise

In a recent study [5], we have shown that the probability distribution for the
assignment variables is

qi(:nj) = Kexp{ Z Z E,";r/l))} (12)

i'€Vp (i) '€V (J

where K and k. are constants. With this distribution to hand, the correspon-
dence assignment step reduces to one of maximising the quantity

Fe=3 0 2 3 Enli,i)En(G 3PS sy (13)

€D jEMVED j EM

where ED(i,i’) and EM(j,j’) are the elements of the adjacency matrices for
the data and model graphs. In more compact notation, the updated matrix of
correspondence indicators S("t1) satisfies the condition

S+ — arg mngr[E%P(")EAIST] (14)

where P(") is a matrix whose elements are the alignment probability P( "
other words, the utility measure gauges the degree of correlation between the
edge-sets of the two graphs under the permutation structure induced by the ali-
gnment and correspondence probabilities. Following Scott and Longuet-Higgins
[13] we recover the matrix of assignment variables that maximises F. by per-
forming the singular value decomposition ESP(”)EA’M = VAUT, where A is
again a diagonal matrix and U and V are orthogonal matrices. The matrices U
and V are used to compute an assignment matrix R("*Y) = VUT. To compute
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the associated matrix of correspondence probabilities, Q") we perform row
normalisation on R, As a result

(n) o
Qi = ——= (15)
2, (n+1)
Zje/\/l RiJ

This is clearly simplistic and violates symmetry. In our future work we plan
to improve the algorithm to include Sinckhorn normalisation and slack variables
for unmatchable nodes along the lines of Gold and Rangarajan [6].

4 Experiments

In this section, we provide some experimental evaluation of the new unified
approach to correspondence and alignment. Here, we use both synthetic point-
sets and real images.

4.1 Sensitivity Study

To evaluate the robustness of the new approach, we furnish a sensitivity study.
This compares the new iterative alignment method with the following three
alternatives:

— The first method(Refered to as ”Weight+SVD”) is similar to that of Scott
and Longuet-Higgins. This performs the singular value decomposition W) =
USASVST on the initial inter-image weight matrix. Suppose that Ag is the
matrix obtained by setting the diagonal elements of Ag to unity, then the
Scott and Longuet-Higgins algorithm delivers an updated matrix of corre-
spondence weights W=U SASVg . The updated weight matrix can be used
to align the point-sets using the method outlined earlier in this paper.

— The second algorithm(Refered to as ”Single SVD”) performs the singular
value decomposition DM7T = UAVT to find the rotation matrix @ = VU
that maximises the unweighted point correlation Tr[DMT].

— The third method(Refered to as ”PCA”) is based upon aligning and scaling
in the principal component axes of the two point-sets.

Figure [Th shows the RMS error as a function of the standard deviation of the
point position error. The main point to note from this plot is that for all four
algorithms the RMS error increases linearly with the noise standard deviation.
However, for the new algorithm (EM+Weight+SVD-shown as circle points),
the rate of increase of the RMS error is much lower than the remaining three
algorithms. In other words, the new algorithm gives more accurate alignments.

Figure[b shows the fraction of points in correct correspondence as a function
of the fraction of added clutter. The main point to note for this plot is that
the new method (EM+Weight+SVD - shown as circles) is considerably more
accurate in locating correspondences. Moreover, the two SVD-based methods
perform only marginally better than the PCA alignment,
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Fig. 1. Sensitivity study. Left:Alignment error as a function of noise-variance on the
point-sets. Right:Alignment error as a function of the fraction of structural error

We have evaluated the noise sensitivity of the algorithm on synthetic point-
sets and compared it with the quadratic assignment method of Gold and Ranga-
rajan [I1] and the Scott and Longuet-Higgins algorithm. The point sets have been
subjected to affine deformation, random measurement error(positional jitter)
and contamination from added clutter.

Figure Rl shows the fraction of correct correspondences as a function of the
fraction of added clutter. The method outperforms that of the quadratic as-
signment algorithm and the Scott and Longuet-Higgins algorithm. The onset of
significant correspondence error occurs when the fraction of clutter exceeds 30%.
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Fig. 2. Positive correspondence rate as a function of percentage of clutters for rigid
transformed point set with clutters.

4.2 Real-World Data

We have evaluated the algorithm on matching corners detected in real-world
images. The corner detector used in our studies is described in the recent paper
by by Luo, Cross and Hancock[I0)]. We use Delaunay graphs to represent the
structural arrangement of the corners. Figure F]l shows the correspondences bet-
ween the corners as lines between the two images. After checking by hand, the
fraction of correct correspondences is 77%. Figure [l shows the iterations of the
alignment process. The process converges after 10 iterations and the alignment
is qualitatively good.
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Fig. 4. Correspondences

Fig. 5. Alignment results. Left:Overlayed original images. Middle: 1 Iteration. Right:
10 Iterations

5 Conclusions

In conclusion, we have shown how the processes of point-set alignment and cor-
respondence analysis can be unified using a symmetric entropy. By drawing on a
Gaussian model of point position errors and an exponential model of correspon-
dence assignment errors, we are able to cast the two problems as maximisation of
weighted correlation measures. In both cases the point matches can be recovered
using singular value decomposition. Our new measures of point-set similarity na-
turally combine the ideas already developed by Scott and Longuet-Higgins and
Umeyama in a single statistical utility measure. An experimental study reveals
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that the proposed method is outperforms that of Scott and Longuet-Higgins in
terms of its ability to recover from contaminating clutter and positional error in
the point-sets.
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