
ToolBlocks:

An Infrastructure for the Construction of
Memory Hierarchy Analysis Tools

Timothy Sherwood and Brad Calder

University of California, San Diego
{sherwood,calder}@cs.ucsd.edu

Abstract. In an era dominated by the rapid development of faster and
cheaper processors it is difficult both for the application developer and
system architect to make intelligent decisions about application interac-
tion with system memory hierarchy. We present ToolBlocks, an object
oriented system for the rapid development of memory hierarchy models
and analysis. With this system, a user may build cache and prefetching
models and insert complex analysis and visualization tools to monitor
their performance.

1 Introduction

The last ten years have seen incredible advances in all aspects of computer design
and use. As the hardware changes rapidly, so must the tools used to optimize
applications for it. It is not uncommon to change cache sizes and even move
caches from off chip to on chip within the same chip set. Nor is it uncommon
for comparable processors or DSPs to have wildly different prefetching and local
memory structures. Given an application it can be a daunting task to analyze
the existing DSPs and to choose one that will best fit your price/performance
goals. In addition, many researchers believe that future processors will be highly
configurable by the users, further blurring the line between application tuning
and hardware issues. All of these issues make it increasingly difficult to build an
suite of tools to handle the problem.

To address this problem we have developed ToolBlocks, an object oriented
system for the rapid development of memory hierarchy models and tools. With
this system a user may easily and quickly modify simulated memory hierarchy
layout, link in preexisting or custom analysis and visualization code, and analyze
real programs all within a span of hours rather than weeks. From our experience
we found that there are three design rules necessary for building any successful
system for memory hierarchy analysis.

1. Extendibility: Both the models and analysis must be easily extendible to
support the ever changing platforms and new analysis techniques.

2. Efficiency: Most operations should be able to be done with a minimal amount
of coding (if any) in a small amount of time.

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 70–74, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



ToolBlocks 71

3. Visualization: Visualization is key to understanding complex systems and
the memory hierarchy is no different.

Noticeably missing from the list is performance. This has been the primary
objective of most other memory hierarchy simulators [1,2,3], and while we find
that reasonable performance is necessary, it should not be sought at the sacrifice
of any of the other design rules (most notably extendibility).

ToolBlocks allows for extendibility through it’s object oriented interface. New
models and analysis can be quickly prototyped, inserted into the hierarchy, tested
and used. Efficiency is achieved through a set of already implemented models,
analysis and control blocks that can be configured rapidly by a user to gather
a wide range of information. To support visualization the system hooks directly
into a custom X-windows visualization program which can be used to analyze
data post-mortem or dynamically over the execution of an interactive program.

2 System Overview

ToolBlocks can be driven from either a trace, binary modification tool, or simu-
lator. It is intended to be an add on to, not a replacement for, lower level tools
such as ATOM [4] and DynInst [5]. It was written to make memory hierarchy
research and cross platform application tuning more fruitful and to reduce re-
dundant effort. Figure 1 shows how tool blocks fits into the overall scheme of
analysis.

Level 4

Application

Data Generation

Modeling Analysis

Visualization

Level 1

Level 2

Level 3

Fig. 1. Typical flow of data in an analysis tool. Data is gathered from the
application which is used to do simulations and analysis whose results are then
visualized

At the bottom level we see the application itself. It is here that all analysis
must start. Level 2 is where data is gathered either by a tracing tool, binary
modification tool or simulation. Level 3 is where the system is modeled, statistics
are gathered, and analysis is done. At the top level data is visualized by the end
user. ToolBlocks does the modeling and analysis of level 3, and provides some
visualization.



72 Timothy Sherwood and Brad Calder

The ToolBlocks system is completely object oriented. The classes, or blocks,
link together through reference streams. From this, a set of blocks called a block
stack is formed. The block stack is the final tool and consists of both the memory
hierarchy simulator and the analysis. At the top of the block stack is a termina-
tor, and at the bottom (the leafs) are the inputs. The stack takes input at the
bottom and sends it through the chain of blocks until it reaches a terminator.
Figure 2 is a simple example of a block stack.

Root Block (terminator)

Loads and
Stores

L1 Instruction
Cache

L1 Data
Cache

Unified L2 Cache

Icache 
Analysis

TLB 
Analysis

Information
Instruction

TLB

Fig. 2. The basic memory hierarchy block stack used in this paper. Note the
terminating RootBlock. The inputs at the bottom may be generated by trace
or binary modification. The hexagons are analysis, such as source code tracking
or conflict detection.

The class hierarchy is intentionally quite simple to support ease of extendibil-
ity. There is a base class, called BaseBlock, from which all blocks inherit. The
base block contains no information, it simply defines the most rudimentary in-
terface. From this there are three major types of blocks defined: model blocks,
control blocks, and analysis blocks.

Model blocks represent the hardware structures of the simulated architecture,
such as cache structures and prefetching engines. These blocks, when assembled
correctly, form the base hardware model to be simulated.

Control blocks modify streams in simple ways to aid the construction of
useful block stacks. The simplest of the control blocks is the root block, which
terminates the stack by handling all inputs but creating no outputs. However
there are other blocks which can be used to provide user configurability without
having to code anything. For example filter, split and switch blocks.



ToolBlocks 73

The analysis blocks are the most interesting part of the ToolBlocks system.
The analysis blocks are inserted into streams but have no effect on them, they
simply pass data along, up to the next level without any modifications. The
analysis blocks are used to look at the characteristics of each stream so that
a better understanding of the traffic at that level can be gained. There are
currently four analysis routines, TraceBlock for generating traces, PerPcBlock
for tracking memory behavior back to source code, HistogramBlock for dividing
up the data into buckets, and ViewBlock for generating a visual representation
of the data. These analysis routines could further be linked into other available
visualization tools.

The total slowdown of program execution varies depending on the block
stack, but is typically between 15x and 50x for a reasonable cache hierarchy and
a modest amount of analysis and all the ATOM code inserted into the original
binary.

2.1 Example Output

A

B

0

8

16

24

32

0 16M 32M 48M

Groff miss footprint

C
ac

he
 C

ol
or

Fig. 3. Original footprint for the application Groff. The x axis is in instruc-
tions executed (millions) and the y axis is the division by cache color. Note the
streaming behavior seen at point A, and the conflict behavior at point B.

Having now seen an overview of how the system is constructed, we now
present an example tool and show how it was used to conduct memory hierarchy
research. The tool we present is a simple use of the cache model with a ViewBlock
added to allow analysis of L2 cache misses. The memory hierarchy is a split
virtually indexed L1, and a virtually indexed unified L2. On top of the L2 is a
visualization block allowing all cache misses going to main memory to be seen.

Figure 3 shows the memory footprint of the C++ program groff taken for
a 256K L2 cache. On the X axis is the number of instructions executed, and



74 Timothy Sherwood and Brad Calder

on the Y axis is a slice of the data cache. Each horizontal row in the picture is
a cache line. The darker it is the more cache misses per instruction. As can be
seen, there are two major types of misses prevalent in this application, streaming
misses (at point A) and conflict misses (at point B).

The streaming capacity/compulsory misses, as pointed to by arrow A, are
easily seen as angled or vertical lines because as memory is walked through,
sequential cache lines are touched in order. Conflict misses on the other hand
are characterized as long horizontal lines. As two or more sections of memory
fight for the same cache sets, they keep kicking each other out, which results in
cache sets that almost always miss.

From this data, and through the use of the PerPC block, these misses can be
tracked back to the source code that causes them in a matter of minutes. The
user could then change the source code or the page mapping to avoid this.

3 Conclusion

In this paper we present ToolBlocks as an infrastructure for building memory
hierarchy analysis tools for application tuning, architecture research, and recon-
figurable computing. Memory hierarchy tools must provide ease of extension to
support a rapidly changing development environment and we describe how an
powerful and extendible memory hierarchy tool can be built from the primitives
of models, analysis, and control blocks.

We find that by tightly coupling the analysis and modeling, and by the
promotion of analysis blocks to first class membership, a very simple inter-
face can provide a large set of useful functions. The ToolBlocks system is a
direct result of work in both conventional and reconfigurable memory hierar-
chy research and is currently being used tested by the Compiler and Architec-
ture and MORPH/AMRM groups at UC San Diego. You can retrieve a ver-
sion of ToolBlocks from http://www-cse.ucsd.edu/ groups/ pacl/ tools/
toolblocks.html. This research was supported by DARPA/ITO under contract
number DABT63-98-C-0045.

References

1. Sugumar, R., Abraham, S.: Cheeta Cache Simulator, From University of Michigan.
2. Hill, M., Smith, A.: Evaluating Associativity in CPU Caches. IEEE Trans. on Com-
puters, C-38, 12, December 1989, p.1612–1630.

3. Gee, J., Hill, M., Pnevmatikatos, D., Smith, A. Cache Performance of the SPEC
Benchmark Suite. IEEE Micro, August 1993, 3, 2.

4. Srivastava, A., Eustace, A.: ATOM: A System for Building Customized Program
Analysis Tools. Proceedings of the Conference on Programming Language Design
and Implementation, pages 196-205. ACM, 1994.

5. Hollingsworth, J., Miller, B., Cargille, J.: Dynamic Program Instrumentation for
Scalable Performance Tools In the Proceedings of 1994 Scalable High Performance
Computing Conference, May 1994.


	Introduction
	System Overview
	Example Output

	Conclusion

