

A. Ambler, S.B. Calo, and G. Kar (Eds.): DSOM 2000, LNCS 1960, pp. 83 - 94, 2000.
 Springer-Verlag Berlin Heidelberg 2000

Constructing End-to-End Traffic Flows
for Managing Differentiated Services Networks

Jae-Young Kim1, James Won-Ki Hong1, Sook-Hyun Ryu1, and Tae-Sang Choi 2

1 Department of Computer Science and Engineering

Pohang University of Science and Technology
{jay,jwkhong,shryu}@postech.ac.kr

2 Internet Architecture Team
Internet Technology Department

Electronics and Telecommunications Research Institute
choits@etri.re.kr

Abstract. Differentiated Services (DiffServ), presently being standardized by IETF,
is considered to be a promising solution for supporting different service
characteristics to different classes of network users on the Internet. The IETF
DiffServ working group has defined a general architecture of DiffServ and is
elaborating more detailed features. A simple but powerful management mechanism
is needed to operate, provision, monitor and control DiffServ networks. Managing
end-to-end traffic flows is one of the key components for managing DiffServ
networks. Various high-level management functions can be built by using the flow
information. In this paper, we present our work on designing a system architecture
for managing DiffServ networks using the SNMP framework. DiffServ routers
with SNMP agents have been developed, and a management system constructing
end-to-end traffic flows has been designed.

1 Introduction

Over the past decade, the number of devices and the number of Internet users have
increased at an exponential rate and the network traffics caused by data transfers will
continue to rise. While previous network bandwidths were sufficient to carry text-
based application data, current network bandwidths are no longer sufficient to handle
multimedia, real-time network traffic flows.

Because the increase rate of network bandwidth is much slower than the increase
rate of network usage, bottleneck points, where bandwidth is insufficient for network
users, are commonly observed. In such situations, every packet competes for access to
the bandwidth and the result is packet loss, unexpected delays, and jitter. However,
both Transmission Control Protocol (TCP) and Internet Protocol (IP), two network
protocols for delivering packets in the Internet, were originally designed in the best-
effort service model.

But users’ requirements have been changing. Users want to get different service
qualities for different types of services they obtain. Integrated Services (IS) [1] with
Resource reSerVation Protocol (RSVP) [2] signaling is the first approach to provide
such a service on the Internet. RSVP attempts to provide per-flow QoS support
assurances with dynamic resource reservation. A flow is defined by the 5-tuple,

mailto:choits@etri.re.kr

Jae-Young Kim et al. 84

consisting of source and destination IP address, transport protocol, and source and
destination port. However, since RSVP/IS relies on per-flow states and per-flow
processing in every network node, it is difficult to deploy RSVP/IS in large carrier
networks like the Internet.

Differentiated Services (DiffServ) is an alternative approach to provide
differentiated service qualities to different classes of users. DiffServ uses aggregation
of traffics in each routing decision point. Type of Service (ToS) field is used for
distinguishing these traffic aggregates. Since the ToS is much simpler than the 5-tuple
information, it is easier to implement DiffServ than RSVP/IS [3, 4, 5].

DiffServ applies administrative domain concepts. Within one domain, core routers
forward traffics according to the ToS field of traffic aggregates. Between two different
domains, there are edge routers which perform classification of flows based on 5-
tuple information like RSVP/IS. Since the edge routers mark the ToS field of
incoming traffics, core routers do not need to handle complex information.

Although the IETF DiffServ working group has defined several standards for
DiffServ, the management aspect of DiffServ is not yet fully standardized. Current
standards have defined only the operational aspects of DiffServ. When deploying
DiffServ in network nodes, various management functions are needed for remote
control of a large number of DiffServ nodes. Possible management considerations are
how to configure each DiffServ router, how to change its configuration, and how to
monitor or meter traffic each router handles.

Constructing end-to-end traffic flows in DiffServ networks is a key component of
managing DiffServ networks. An end-to-end traffic flow consists of a routing path
from a source edge router to a destination edge router and performance parameters of
packet streams with a given ToS field over the routing path. Various high-level
management functions such as bottleneck detection, topology mapping, Service Level
Agreement (SLA) monitoring, etc., can be built by using the flow information. Since
current management efforts are only focusing on element management of each
DiffServ router, the end-to-end traffic flows have to be constructed by using the
current element management functions.

In this paper, we propose a method for managing end-to-end traffic flows in
DiffServ networks using the SNMP management framework. The IETF DiffServ
working group has defined DiffServ MIB for managing DiffServ-enabled network
devices. Based on this MIB, we have developed an SNMP agent system that operates
in Linux-based DiffServ routers. A central DiffServ manager handles management
functions on DiffServ routers with SNMP. The manager constructs end-to-end traffic
flows for supporting various high-level management functions. Furthermore, a Web-
based DiffServ management console that provides easy-to-use interfaces running in a
Web browser is designed.

The rest of this paper is organized as follows. Section 2 explains the architecture
of differentiated services proposed by IETF. Section 3 considers the management
issues for DiffServ networks. Section 4 describes the detailed constructing methods
and applications of end-to-end DiffServ flows and Section 5 shows how to develop a
DiffServ management system. Finally, Section 6 summarizes our work and discusses
directions for future research.

Constructing End-to-End Traffic Flows 85

2 Architecture of DiffServ

DiffServ proposes a basic method to differentiate a set of traffic among network nodes.
The method is based on a simple model where traffic entering a network is classified
and possibly conditioned at the boundaries of the network, and assigned to different
behavior aggregates. Each behavior is identified by a single Differentiated Services
Code Point (DSCP).

DSCP is the most-significant 6 bits from the IPv4 Type-Of-Service (ToS) octet or
IPv6 traffic class octet. This 6-bit field indicates how each router should treat the
packet. This treatment is called a Per-Hop Behavior (PHB). PHB defines how an
individual router will treat an individual packet when sending it over the next hop
through the network. Being 6 bits long, the DSCP can have one of 64 different binary
values.

Four types of PHBs have been defined as standard thus far [4, 6, 7, 8]. They are
default, class-selector, Assured Forwarding (AF), and Expedited Forwarding (EF).
Table 1 summarizes the standard PHBs and DSCP values accordingly.

Table 1. Standard PHBs

PHB Name DSCP Description
Default 000000 best-effort (RFC 1821)
Class-selector xxx000 7 classes (RFC 2474)
AFxy xxxyy0 4 classes with 3 drop probabilities (RFC 2597)
EF 101110 no drop (RFC 2598)

A DiffServ-enabled network node has several components for handling DiffServ.

Fig. 1 explains five components of DiffServ architecture; classifier, meter, marker,
shaper, and dropper [9, 10] in a traffic conditioning block (TCB).

ClassifierClassifier MarkerMarker

MeterMeter

Shaper
Dropper
Shaper
Dropper

Packet In Packet Out

TCB

Fig. 1. Basic Traffic Conditioning Block of DiffServ

A classifier selects network packets in a traffic stream based on the content of
some portion of the packet header. There are two types of classifiers, the Behavior
Aggregate (BA) classifier based on the DiffServ values, and the Multi-Field (MF)
classifier based on the value of a combination of 5-tuple information. A meter
measures the temporal properties of the stream of packets selected by a classifier. It
passes state information to other conditioning actions to trigger a particular action for
each packet. A marker sets the DSCP of a packet and a shaper delays some or all of
the packets in a traffic stream in order to bring the stream into compliance with a

Jae-Young Kim et al. 86

traffic profile. A dropper discards some or all of the packets in a traffic stream in
order to bring the stream into compliance with a traffic profile.

DiffServ router is a fundamental DiffServ-enabled network node. The conceptual
model and requirements of the DiffServ routers are discussed in IETF [11, 12]. The
DiffServ router is considered to have routing component, set of TCBs, queuing
component, and configuration and monitoring module that are organized as in Fig. 2.

DiffServ Configuration
and Monitoring

Module

Ingress
TCB

Egress
TCB QueuingRoutingdata

management
(SNMP/COPS)

Fig. 2. Conceptual Model of a DiffServ Router

DiffServ-related components are separated from the routing component to
simplify the addition of DiffServ capability to the existing router. There is a set of
TCBs cascaded both at the ingress point and the egress point. Traffic conditioning can
be performed either at the ingress point or at the egress point, or both. Queuing
component is a set of underlying packet queues which keep packets before the routers
send them out. The management module for DiffServ router can be operated in
several ways such as SNMP or COPS [13, 14]. The management module configures
TCB parameters and monitors the performance of each TCB. The detailed approach
for managing DiffServ networks are explained in the next section.

3 Management of Differentiated Services

Managing DiffServ networks includes a set of various management functions. Current
IETF approach for managing DiffServ networks is based on the SNMP framework.
The SNMP framework is simple and a de-facto standard for managing Internet-related
network devices. We investigate the structure of DiffServ MIB defined by the IETF
and provide an overview of on-going efforts to define the MIB.

The IETF DiffServ working group currently suggests an SNMP Management
Information Base (MIB) for the DiffServ architecture [15]. The MIB is designed
according to the DiffServ implementation conceptual model [12] for managing
DiffServ routers in the SNMP framework. The initial draft was proposed on July 1999,
with the detailed definitions currently being elaborated and extended in the working
group. Table 2 summarizes the primary object tables defined in the DiffServ MIB.

Constructing End-to-End Traffic Flows 87

 Table 2. DiffServ MIB Structure

Element Table Name Description
Classifier list of classifiers Classifier SixTupleClfr 5-tuple classifier + DSCP value

Meter Meter metering parameters
Action Action mark / count / absolute drop

AlgDrop algorithmic dropper
Queue queuing parameters Queue
Scheduler shaping parameters

The DiffServ table entries are linked each other with the RowPointer textual

convention. RowPointer object is used for pointing an entry in the same or different
table [16]. The DiffServ MIB represents a TCB as a series of table entries linked
together by RowPointers. With this scheme many different TCBs can be represented
in the object tables efficiently. Each table contains several MIB objects to configure,
monitor, and modify DiffServ characteristics in a network node. By getting and
setting these object values via SNMP, the SNMP manager can control DiffServ-
enabled network nodes from a remote location.

However, the current DiffServ MIB is only for managing the characteristics of one
DiffServ router. It does not provide a complete network picture of a set of DiffServ
routers in one administrative domain. In order to provide such high-level management
functions, the current management framework should be extended.

4 Constructing End-to-End DiffServ Flows

We defined a DiffServ flow as a sequence of network packets with the same DSCP
value in a DiffServ domain. Every network service provided from a DiffServ network
can be represented as a DiffServ flow from a set of source nodes to a set of
destination nodes. Possessing information on such DiffServ flows can help understand
the current service status. Information on the DiffServ flow consists of two parts:
topology and performance. Topology information represents router-to-router
connectivity. A path from a set of source edge routers to a set of destination edge
routers must be provided. Performance information represents a number of
performance parameters of a given DiffServ path. The performance information can
be obtained by combining performance parameters of each router in a DiffServ path.

In this section, we suggest a method to create end-to-end DiffServ flows by
combining routing information from MIB II and DiffServ performance parameters
from DiffServ MIB. The end-to-end DiffServ flow information can be used as a basic
component for providing sophisticated high-level management functions.

4.1 Method

A DiffServ flow consists of topology and performance information. Topology
information is constructed from routing tables and performance information is

Jae-Young Kim et al. 88

constructed from DiffServ MIB values. Constructing end-to-end DiffServ flows thus
consists of two phases, as in Fig. 3. First, the topology generator produces the
topology information as a linked list of routers and the performance analyzer
aggregates performance parameters of each router in the routing path by using the
topology information. MIB II and DiffServ MIB are used to construct the information.

Topology
Generator

ipAddrTable
ipRouteTable

MIB II

Source
Edge Router

Destination
Edge Router

Core
Routers

Egress
TCB

Ingress
TCB

Linked List of DiffServ Routers of A DiffServ Flow Path

Performance
Analyzer

Classifier
Meter
Action
Queue

DiffServ MIB

Meter : metering result
Count : # of packets, # of octets
Drop : drop rate, # of drops
Throughput : min rate, max rate

Performance Information

Topology Information

Input

Aggregation Rules

Source IP
Destination IP DSCP

Fig. 3. Construction Process of DiffServ Flow Information

Since each DiffServ router supports routing protocols, the router keeps a routing
table containing a list of next hop routers for a given destination IP address. The MIB
II has the routing table and a central SNMP manager can retrieve the routing table
information to construct a whole routing connectivity map in a DiffServ domain. Two
MIB tables, ipAddrTable and ipRouteTable are used to create topology information.
The ipAddrTable contains IP addresses of all network interfaces in a router and the
ipRouteTable contains the IP routing table that has the next hop host and network
interface for a set of destination IP addresses. By combining them we can obtain
every source-to-destination routing path. Given a source-destination pair, the topology
generator outputs a linked list of DiffServ routers composing a DiffServ flow path.

DiffServ flow performance information is obtained from the DiffServ MIB. Each
DiffServ router has performance parameters observed locally. The parameters include
metering parameters, counter values, numbers of dropped packets, minimum and
maximum rates of packet transmission, and so on. These parameters are calculated
and maintained for each DSCP value; that is, the DiffServ MIB of a DiffServ router
contains all the performance parameters of DiffServ flows it processes. When a linked
list of routers composing a DiffServ flow path is given, the performance analyzer
aggregates values of the parameters from each DiffServ router one by one and
produces end-to-end performance information of a DiffServ flow.

Constructing End-to-End Traffic Flows 89

 One important consideration in calculating end-to-end performance information
is that the performance parameters contained in the DiffServ MIB in each router do

not distinguish packets with different IP source/destination pair. Defined by the
DiffServ concept, every core router forwarding packets between the source node to
the destination node, only looks up the DSCP value in the header of each packet. Thus
performance parameters from DiffServ MIB are for aggregated traffic with a given
DSCP value, not for specific traffic flow from a given source to a given destination,
which we want to analyze. The traffic flow that we want to distinguish is mixed with
other flows with the same DSCP value but with different source/destination pairs.

From this observation, we make rules to follow when aggregating performance
parameters. First, absolute values, such as counter values, should be translated to
relative values. For example, number of dropped packets should be changed to rate of
dropped packets so that the drop rate of a specific end-to-end DiffServ flow can be
calculated by accumulating each drop rate in the router list. If there are three routers
with 10% drop rates for a specific DSCP flow in the end-to-end routing path, the
overall drop rates for the end-to-end DiffServ flow is calculated as 30%. Second,
some parameters, such as throughput rates, should be calculated by finding out
minimum or maximum values. For example, minimum throughput of an end-to-end
DiffServ flow is calculated by finding out the minimum throughput in every router
because the end-to-end throughput is bounded by the router with the least throughput.

4.2 Management of DiffServ Flows

By following the proposed method, we can obtain information of a set of end-to-end
DiffServ flows in a DiffServ domain. Given a source/destination pair and a DSCP
value, topology and performance information of a DiffServ flow from the source to
the destination is constructed. Since the flow information gives a network view of
DiffServ flows in a DiffServ domain to network administrators, various network
management functions can be performed.

! Network topology management
Network topology can be created with the DiffServ flow information. Network
connectivity and performance data should be kept in a management system in a
certain format. The topology is not static. Numbers of DiffServ flows appear and
disappear constantly. Managing the topology should follow such dynamic changes
and show the current status.

! Bottleneck detection and rerouting
By analyzing the DiffServ flow information we can find out the location of the traffic
bottleneck point. At the bottleneck point, the DiffServ flow cannot satisfy the required
throughput. Drop rates go up and the metering result fails. The management system
should resolve such occurrences. Rerouting of forwarding paths can be one solution.
Routing tables can be modified for high-priority traffic to avoid the bottleneck points.

! Service Level Agreement (SLA) monitoring and reporting
Customers of the DiffServ network always want to know that the quality of service
they utilize meets the SLA. Further, service providers want to monitor the service

Jae-Young Kim et al. 90

quality they provide to the customers. The service quality measurement turns out to
be easy when we have DiffServ flow information. Performance parameters of
DiffServ flows from a certain customers’ network, which can be monitored and
summarized to report the SLA satisfaction.

! Accounting and billing
When the DiffServ is deployed commercially in the Internet backbone, it is necessary
for the Internet service providers to keep the usage record of their customers and
request fees from them for the amount and quality of the Internet usage. DiffServ flow
concepts can be applied to calculate the usage pattern and appropriate amount of fees.

These high-level management issues are under research currently. In the next

section, we design a DiffServ management system as an initial framework for
supporting the above functions.

5 Developing a DiffServ Management System

In this section, we present a detailed design and on-going implementation processes
of a DiffServ management system based on the SNMP framework. The system is
currently under development in Linux platforms.

5.1 Design Architecture

The architecture consists of three distinct layers, as depicted in Fig. 4. The three-tier
architecture includes a network management system (NMS) client running in a Web
browser, an NMS server containing a Web server and DiffServ manager, and network
elements performing DiffServ routing and SNMP management.

DiffServ Router

DiffServ Manager

Web Server

Configuration
Management System APIs

Packet

Web Integration

NMS Client NMS Server Network Element

SNMP ManagerMIB II

End-to-End Flow
Management

Routing Core

Metering &
Monitoring

Mgmt.
Database

HTTP

Web Browser

SNMP Stack Set of TCBs

SNMP Agent

MIB IISNMP Stack

SNMP

DiffServ
MIB

DiffServ
MIB

Fig. 4. Design Architecture of the DiffServ Management System

Constructing End-to-End Traffic Flows 91

 The NMS server is a central server for managing a set of DiffServ routers and
providing management interfaces to a set of Web browsers. The Web server located

in the NMS server layer has a role to provide a Web-based management interface in
Web browsers. The integration of the Web server and the DiffServ manager can be
accomplished in various ways such as a basic HTML file access method, a Common
Gateway Interface (CGI) method, and a Java applet/servlet method.

The DiffServ manager performs three high-level DiffServ management functions,
which are configuration management, metering and monitoring, and end-to-end flow
management. The management database is used for storing and retrieving the
combined and analyzed data from the MIB II and DiffServ MIB. At the bottom of the
DiffServ manager, an SNMP manager communicates with a set of SNMP agents
running in different DiffServ routers within a DS domain.

Three high-level DiffServ management functions perform sophisticated and
extended management functions. Configuration management function performs
remote configuration provisioning. Every DiffServ parameter is determined and
enforced via the configuration management function. Metering and monitoring
function periodically observes the status of DiffServ routers and compares the results
with predefined desirable performance metrics. Such conformance test results are
necessary for modifying behaviors of a DiffServ router. Flow management function
summarizes all the DiffServ flows in a DS domain and provides the end-to-end
DiffServ flow characteristics. The function collects routing tables and DiffServ flow
information and constructs overall end-to-end parameters of each DiffServ flow.

DiffServ routers are managed network elements in the design architecture. A
DiffServ router contains a routing core module to control a set of TCBs that execute
packet forwarding according to various DSCP values, and an SNMP agent module to
handle SNMP manager requests for the DiffServ MIB. System-dependent APIs are
used to connect the SNMP agent module and the routing core module. The values of
DiffServ MIB variables are determined by specific system-dependent system calls.
The methods of retrieving and setting DiffServ parameters in the routing core module
need not be the same among different implementation architectures.

Within a DiffServ domain, numerous DiffServ routers and DiffServ management
clients interwork with each other. The three-tier architecture offers distinct advantages
in such environments. One centralized DiffServ manager controls a set of DiffServ
routers while providing management interfaces to a set of management clients at the
same time. However, by separating the management user interfaces from the manager
itself, the DiffServ manager is able to concentrate on management functions and thus
the performance of the DiffServ manager can be improved.

5.2 Implementation

Linux, a shareware operating system, supports QoS features in its networking kernel
from the kernel version 2.1.90 [17]. The QoS support offers a wide variety of traffic
control functions, which can be combined in a modular way. Based on this Linux
traffic control framework, W. Almesberger et al. have designed and implemented
basic DiffServ classification and manipulation functions required by DiffServ
network nodes [18]. The extended DiffServ features are freely available in the form of
a kernel patch package [19]. By installing the DiffServ package, a Linux system is

Jae-Young Kim et al. 92

able to perform DiffServ router functions.
However, the current Linux DiffServ implementation does not show sufficient

management functionality. There is no management architecture and every script
setup must be manually configured and modified in local machines. Further, metering
and monitoring functions of DiffServ are not fully supported. Our work focuses on
this lack of management functionality.

A DiffServ agent is an SNMP agent with MIB II and DiffServ MIB running on
the Linux DiffServ router. Basically the agent extracts DiffServ parameters from the
Linux traffic control kernel and modifies the appropriate MIB values on the request
from a DiffServ manager. The agent also receives management operations from a
DiffServ manager and performs the appropriate parameter changes in the Linux traffic
control kernel.

The organization of our Linux DiffServ router implementation is explained in Fig.
5. There are two process spaces in the Linux operating system, the user space and the
kernel space. Extending from Linux traffic control framework, the Linux DiffServ
implementation resides in the kernel space. In the user space, the DiffServ SNMP
agent is implemented. Communication between the DiffServ agent and the Linux
traffic control kernel is effected via NetLink sockets [20]. The NetLink socket is a
socket-type bidirectional communication link located between kernel space and user
space. It transfers information between them.

Kernel Space (Linux 2.2.10)

User Space

Linux Traffic Controller

DiffServ Extension (DS-8 patch)

UCD SNMP 4.1.2

SNMP Stack DiffServ
MIB

DiffServ Agent Traffic Control (tc)

PHB Scripts

Packets

SNMP

NETLINK Socket

MIB II

Fig. 5. Organization of Linux DiffServ Router Implementation

The agent has been implemented by using UCD SNMP agent extension package
[21]. UCD SNMP 4.1.2 provides the agent development environment. The DiffServ
agent uses the traffic control program (tc) or NetLink socket directly for accessing
DiffServ parameters in kernel space and manipulates the values of MIB II and
DiffServ MIB.

A Web-based DiffServ management system is currently under development in our
work. Java programming language is chosen as our development environment
because Java applets can be executed in Web browsers very conveniently.

The central DiffServ manager integrated with a Web server is also being
developed in a Linux system. It can configure, monitor, and report the characteristics

Constructing End-to-End Traffic Flows 93

 of DiffServ routers and DiffServ networks. A set of DiffServ flow information is
constructed by following the method in Section 4 and stored in a PostgreSQL

database of version 7.0.2 [22]. For human managers responsible for a DiffServ
network, network topology management function and bottleneck detection and
rerouting function are in a prototyping stage.

6 Conclusion and Future Work

Differentiated Services (DiffServ) is gaining acceptance as a promising solution for
providing QoS support in the Internet. This paper has proposed a method to manage
DiffServ using the SNMP framework. Since current research efforts from the IETF
DiffServ working group focus mainly on the operational and functional descriptions
of DiffServ, a detailed management framework for DiffServ is urgently needed. We
have overviewed management concepts for DiffServ by categorizing management
operations in the layered architecture and then presented on-going work to define
MIB for managing DiffServ-enabled network nodes in the IETF working group.

To overcome current management functional limits and extend the management
capability to sophisticated high-level functions, we have suggested a method to
construct and maintain end-to-end DiffServ flows by combining MIB II and DiffServ
MIB, and showed the applicability of DiffServ flow information. And then we have
proposed a DiffServ management system with a flexible three-tier architecture using
the SNMP framework. Further, we have developed a DiffServ agent system working
in a Linux platform and a Web-based manager system. Management interfaces
running in a Web browser enable users to control DiffServ routers conveniently.

In order to improve the proposed DiffServ management system, we are currently
working on the following topics.

A systematic method for representing the proposed DiffServ flow information is
needed. The proposed construction process must be extended to produce a formal and
graphical description of the DiffServ flows. Standardized data formats and graphical
representations such as a directed graph with different shapes of vertex are currently
being developed.

Scalability of the proposed system should be improved. Current management
framework needs constant polling to every router in the management domain. This
might not be appropriate, especially in large ISP backbones. To address the scalability
problem, the three-tier architecture can be extended to support distributed
management functionality with multiple DiffServ managers located in the middle
layer. Also instead of polling the routing table, the agent can initiate sending routing
change notification to managers by using the SNMP trap method.

Integration with a policy framework is highly recommended. To simplify the
system, we have excluded policy management features in this paper, but such a policy
framework needs to be integrated with the current SNMP framework for flexible and
intelligent configuration and adaptation of DiffServ routers. Future work includes
studying the meta-information model for policy representation and designing policy
operational modules.

Finally, performance evaluation of the management system we are developing is
considered. Because general DiffServ routers handle a huge amount of high-speed

Jae-Young Kim et al. 94

traffic, the DiffServ agent must not affect the routing performance of the DiffServ
routers. A DiffServ management system needs to be implemented in such a way as to
minimize performance degradation.

References

1. R. Braden, D. Clark, and S. Shenker, “Integrated Services in the Internet Architecture: an
Overview,” IETF RFC 1633, June 1994.

2. R. Braden et al., “ReSerVation Protocol (RSVP) Version 1 Functional Specification,” IETF
RFC 2205, September 1997.

3. R. Rajan et al., “A Policy Framework for Integrated and Differentiated Services in the
Internet,” IEEE Network, September/October 1999, pp.36-41.

4. J. Heinanen, “Use of IPv4 TOS Octet to Support Differential Services,” IETF Internet-
Draft, draft-heinanen-diff-tos-octet-01.txt, November 1997.

5. B. Carpenter and D. Kandlur, “Diversifying Internet Delivery,” IEEE Spectrum, Vol. 36,
No. 11, November 1999, pp.57-61.

6. K. Nichols et al., “Definition of the Differentiated Services Field (DS Field) in the IPv4 and
IPv6 Headers,” IETF RFC 2474, December 1998.

7. J. Heinanen et al., “Assured Forwarding PHB Group,” IETF RFC 2597, June 1999.
8. V. Jacobson, K. Nichols, and K. Poduri, “An Expedited Forwarding PHB,” IETF RFC

2598, June 1999.
9. S. Blake et al., “An Architecture for Differentiated Services,” IETF RFC 2475, December

1998.
10. Y. Bernet et al., “A Framework for Differentiated Services,” IETF Internet-Draft, draft-ietf-

diffserv-framework-02.txt, February 1999.
11. Y. Bernet et al., “Requirements of Diff-serv Boundary Routers,” IETF Internet-Draft, draft-

bernet-diffedge-01.txt, November 1998.
12. Y. Bernet, A. Smith, S. Blake, and D. Grossman, “A Conceptual Model for Diffserv

Routers,” IETF Internet-Draft, draft-ietf-diffserv-model-03.txt, May 2000.
13. J. Boyle et al., “The COPS (Common Open Policy Service) Protocol,” IETF Internet-Draft,

draft-ietf-cops-07.txt, August 1999.
14. R. Yavatkar et al., “COPS Usage for Differentiated Services,” IETF Internet-Draft, draft-

ietf-rap-cops-pr-00.txt, December 1998.
15. F. Baker, K. H. Chan, and A. Smith, “Management Information Base for Differentiated

Services Architecture,” IETF Internet-Draft, draft-ietf-diffserv-mib-03.txt, May 2000.
16. W. Stalling, SNMP, SNMPv2, SNMPv3, and RMON 1, 2, 3rd Edition, Addison-Wesley, 1999.
17. S. Radhakrishnan, “Linux – Advanced Networking Overview – Version 1,” a technical

paper of Department of Electrical Engineering and Computer Science, University of
Kansas, August 22, 1999.

18. W. Almesberger, J. H. Salim, and A. Kuznetsov, “Differentiated Services on Linux,” IETF
Internet-Draft, draft-almesberger-wajhak-diffserv-linux-01.txt, June 1999.

19. W. Almesberger, Differentiated Services on Linux, Internet Web site,
 http://lrcwww.epfl.ch/linux-diffserv/.
20. ITU-T Recommendation M.3010, “Principles for a Telecommunications Management

Network,” 1996.
21. UCD-SNMP homepage, http://ucd-snmp.ucdavis.edu/.
22. PostgreSQL homepage, http://www.postgresql.org/.

http://lrcwww.epfl.ch/linux-diffserv/
http://ucd-snmp.ucdavis.edu/
http://www.postgresql.org/

	Constructing End-to-End Traffic Flows for Managing Differentiated Services Networks
	1 Introduction
	2 Architecture of DiffServ
	3 Management of Differentiated Services
	4 Constructing End-to-End DiffServ Flows
	4.1 Method
	4.2 Management of DiffServ Flows

	5 Developing a DiffServ Management System
	5.1 Design Architecture
	5.2 Implementation

	6 Conclusion and Future Work
	References

