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Abstract: Fault management systems detect performance problems and
intermittent failures by periodically examining a metric (such as the
utilization of a link), and raising an alarm if the value is above a threshold.
Such systems can generate numerous alarms. Various schemes have been
proposed for reducing the number of alarms, or filtering out the important
ones. The time over threshold detection algorithm reduces the volume of
alarms at the source detector. This paper describes an experiment that
compares time over threshold against simple threshold crossings. The
experiment demonstrates that it reduces the number of alarms raised by a
factor of 25 to 1 without any significant reduction in the problems detected.

1 Introduction

Concord s Network Health“ product, a member of the eHealth product suite,
collects performance and fault management information from networks, systems, and
applications. It stores the information for historical analysis, and presents the
information in report format on the web or on paper. The information collected is used
to analyze the overall health of the networks, systems, and applications, and to support
capacity planning.

Concord has recently added LiveHealth to the eHealth product family. LiveHealth
analyzes the information Network Health already collects in real time to detect faults
and performance problems. Because Network Health maintains a historical record of
past performance and faults, it was natural to use that data to improve the detection
capabilities of LiveHealth.

Most fault and performance management systems depend on simple threshold crossing
events to detect problems. They periodically sample the value of some performance or
fault metric, and compare it with a fixed value, called a threshold. If the value of the
metric is greater (or less) than the threshold, an alarm is raised. When the alarm is
raised, a notification is sent to a network management system (an NMS), generally in
the form of an SNMP trap, a CMIP notification, or in some proprietary format.

While simple threshold crossings are effective in detecting problems, they generate far
too many alarms. The metrics indicative of performance problems show a wide
variation, with little predictability in their pattern. For example, Fig. 3, shows a graph of
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the utilization of a link over three days measured at 5 minute intervals. As is well
known, such metrics vary widely. Other metrics, discarded packets, error rates,
congestion indications, disk I/O rates, CPU Utilization, application workloads
(transaction rates), all show similar high variation. This variation guarantees that some
samples will be above any achievable threshold. No matter how high the threshold is
set, sooner or later, that threshold will be exceeded and an alarm will be raised. These
alarms are a form of false alarm.

False alarms have a serious impact on any real time fault or performance management
system. If there are too many alarms, operators will tend to ignore them all, including
the alarms that indicate real problems. Even if the operator is conscientious, finding a
particular alarm from a list of thousands of alarms is difficult.

One approach to dealing with this flood of alarms is to filter, classify, and prioritize the
alarms in the network management system receiving the notifications. For example, an
NMS might filter out unimportant alarms based on a severity field included in the
notification. An NMS might classify the alarms based on fields in the notification, the
element (object, or host) raising the alarm, the type of alarm, the variable which
exceeded the threshold, and other fields. Once classified, an NMS might simply count
the number of events of a class. Based on the count or the class, the NMS might
prioritize the alarm, or take action on the alarm. The kinds of actions an NMS might
take include actions to notify an operator (for example by paging the operator). Another
is to change the state of the NMS, for example, receiving an alarm of a particular class
causes a change in the rules so subsequent alarms of that class are discarded. While all
these are appropriate actions, they can be difficult to set up, and may not reduce the
overall alarm rate.

With LiveHealth, we attempt to decrease the flood of alarms at the point of detection,
rather than provide a better means of handling a flood of alarms generated by the
detector. The technique adopted for reducing alarms is based on a heuristic detection
algorithm called time over threshold.

2 Related Work

A common technique used to decrease the flood of alarms has been to use thresholds to
drive an alarm state. When the threshold is exceeded, an alarm is raised. When the value
falls below a threshold, the alarm is cleared. In some of these systems, the falling
threshold can have a different value than the rising threshold. This technique was
standardized in [5], implemented in commercial Network Management Systems such as
[3], and implemented in agents within network devices such as [6]. While these
techniques help, experience shows they do not reduce the alarms enough. Further, they
depend on setting the falling threshold correctly, yet there is no obvious value that is
appropriate.

More recent work has focused on using statistical approaches to setting the threshold
[7], or in using statistical techniques to detect points of change that may indicate a fault
[2]. These approaches improve the quality of alarms by more accurately predicting
when an alarm is likely. Part of the implementation of Live Health exploits very similar
techniques to set better thresholds. This work is not covered in this paper. Our
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experience so far is that these approaches do not lower the alarm rate, in fact they tend
to increase the number of alarms, as they detect problems that previously were missed.
Approaches combining improvements in detecting problems (such as statistical
thresholds) with good noise reduction techniques such as described here are needed to
provide users with high quality alarms.

3 Operation of Network Health

Network Health periodically polls counters from elements (managed objects) in the
network. It computes and stores the differences in the counters between the samples,
and the difference in time between the samples, which is stored in the database as a
statistics record. From the statistics record, performance and fault metrics (called trend
variables in Network Health) can be computed. These trend variables are often rates,
such as bytes sent per second. The value of a rate trend variable is the average rate over
the interval covered by the sample period. From these basic statistics records, and trend
variables, Network Health computes numerous reports on the performance of the
network, systems, and applications.

With the addition of Live Health, Network Health takes those same statistics records,
and passes them to an evaluation engine called the LiveExceptions Engine (LE engine)
in addition to, or instead of, the database. The purpose of the LE engine is to detect
performance or fault problems. The LE engine detects problems by evaluating current
metrics against a set of rules. Live Health includes a rich collection of default rules.
When a rule detects a problem, the LE engine raises an alarm. When the rule detects
that the problem has gone away, the alarm is cleared. Alarms are displayed in the Live
Exceptions alarm browser. An alarm can be sent as a trap to an NMS where it is
displayed with other events, or can be used to drive the status (color) of objects in the
NMS map.

4 Time over Threshold

The time over threshold algorithm is implemented in the LiveExceptions Engine. When
a statistics sample is received for an element the engine analyses the statistics against all
the applicable rules. Each rule defines a detection algorithm to apply to the data, and
any parameters used to control the algorithm. The time over threshold algorithm
computes the value of a trend variable over a time period called the analysis window,
and compares it with a threshold. It then determines how long the variable was over the
threshold. If that the variable was over threshold for a length is greater than an alarm
window, then an alarm is active for the sample period. When an alarm changes from
inactive to active, we say the alarm is raised. When an alarm changes from active to
inactive, we say the alarm is cleared.

A typical example is an alarm on the CPU Utilization of a Unix server. We raise an
alarm if the CPU Utilization is greater than 90% (the threshold) for more than 15
minutes (the alarm window) out of the past hour (the analysis window).

More formally, the time over threshold algorithm can be defined as follows.
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Let R be a time over threshold alarm rule defined for a trend variable x(z) , where the

rule defines a threshold, 7", an analysis window, W, and an alarm window 4 .

Assume at time 7, the engine receives a new statistics sample X, of the trend variable

x(t) and this sample covers the period #,_, <t <f,,ie. forall i =1..n
x(¢) = x, forall ¢ suchthat f,_ <t <t
Further, assume that the samples X, for i = j..n cover the analysis window, i.e.,

t,, <(t, =W)<t, <t,, <..<t,

Let the threshold state of sample I, ¢, represent whether X, exceeds the threshold, ¢;
be defined as

a, x,>T
c, = .
%), otherwise

Then we compute, bn , the time x(#) is over the threshold T in the analysis window

W for sample 1 as

b, =, =, e, + S (4 1),

i£7H
Finally, let @, represent the alarm state of a rule for sample 7 be defined as

0, b >4
a =
" %), otherwise

We use the alarm state to raise and clear alarms as follows. If a, | = 0 and a, = 1
then we raise an alarm at time 7, . If @, = 0 and a, = 1 then we clear that alarm at

time 7, . If a, = 0 we say the alarm is inactive, if a, = 1, we say the alarm is active.

This definition describes the basic idea behind time over threshold. We have
generalized the definition in two ways.

First, the time over threshold computation of the condition state can use more general
expressions to compute the threshold state. Live Exceptions supports expressions such
as
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(x, <T)
(x, >T) & (v, > S))’

Live exceptions also supports dynamically computed thresholds based on long term
historical analysis of the behavior of the variable. That part of the work is not covered
here.

Second, the samples may not perfectly cover the analysis window. Failures in the
polling process or in the devices being monitored can lead to gaps in the data. When the
system initially starts monitoring a rule, there is some start up period where the samples
will only cover a portion of the analysis window. In these cases, the threshold state

a(t) of any period that is uncovered by a sample is assumed to be 0 (false).

The time over threshold algorithm is similar to, but not the same as an algorithm based
on the number of samples over the threshold. We used time rather than samples for a
number of reasons.

e Samples cannot be collected on precisely regular intervals. A small jitter in the time
between polls on the order of a few seconds is introduced because:

e The network introduces delays in packet latency.

e Other activities on the system running Network Health add jitter to the
sampling process.

e Other activities in the system being monitored generate jitter in the sampling
periods.

e Polls may be lost.

e Communications problems in the network can cause SNMP requests or
responses to be lost.

* Agents may sometimes fail to respond. An agent may have limited memory to
buffer requests or have other limitations that cause them to drop SNMP
requests.

Network Health can and does recover the data for those missed polls. When it does
recover the data, the resulting sample covers two or more of the scheduled sample
periods.

For these reasons, using the time each sample covered, rather than the number of
samples collected is a better measure of behavior.

The time over threshold algorithm is designed to handle a number of common behaviors
in trend variables.

Many variables experience isolated spikes such as those in Fig. 4 that graphs the
percentage of frames which had an error on a WAN link. In many cases, a single,
isolated spike is not a real problem. Only when enough samples are bad should an alarm
be raised. By setting the alarm window, A , to a longer period (say 15 minutes), we can
ensure that an alarm is raised only when the problem persists long enough to impact the
system.
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When a variable crosses over a threshold, there are likely to be periods when the
variable will fall below the threshold for a few samples, only to return above the
threshold shortly thereafter. The analysis window (or more precisely, the analysis
window, less the alarm window) controls how long the variable must remain below the
threshold before the alarm is cleared. In general, increasing the analysis window reduces
the probability that when an alarm is cleared, it will simply be raised again within a
short time. Fig. 5 shows a typical situation where a variable crosses above a threshold
and stays above for most of the time, but occasionally falls below the threshold. In this
case the time over threshold raises the alarm at the beginning of the problem, and keeps
it active throughout the period.

5 Experiment

As we were developing the set of default rules used to detect problems we ran numerous
experiments on many live networks, and on saved databases of data collected by
Network Health. We developed a tool to replay a database by reading the collected
samples, and passing them to the LE engine as if they had been polled. This tool
allowed us to compare the behavior of different rule sets, and to fine-tune the thresholds
and parameters that control the rules. The tool also allowed us to evaluate and compare
the detection algorithms with more conventional methods against data collected from
real networks. One of these experiments is reported here.

The database used in the experiment covers a period slightly more than three days of
monitored data. Each element was polled at a 5 minutes rate. The number of samples for
each rule is approximately proportional to the time duration, in this case about 900
samples. 1274 elements were monitored, including networks, systems, and applications.
The types of elements monitored included: 43 routers or switches, 9 servers, each
running from 1 to 3 applications, 5 Network Access Servers, 69 frame relay circuits, 68
LANS, 326 WAN links, and 2 ATM channels. Each element was evaluated against the
complete set of default performance and fault rules. Each element had from 5 to 15
alarm rules applied to it. The network is a fairly typical enterprise network. Although
only a portion was monitored, the elements were representative of the whole network.

The goal of this experiment was to compare the detection effectiveness of three
algorithms: Time over Threshold (TOT), Threshold Driven State (TDS), and Simple
Thresholds (ST).

The Simple Thresholds (ST) algorithm simply tests the sampled trend variable against
the threshold, and raises an alarm whenever the variable is above the threshold. Because
a trap is sent for every sample over threshold, it does not send alarm clear traps. One
apparent problem with ST is that it raises so many alarms that the important information
to the system manager could be buried in the flood of alarms. The simple threshold
forms a basis of comparison that any algorithm can be evaluated against.

The Threshold Driven State (TDS) algorithm attempts to compensate for the problems
in ST by remembering the state of the alarm for the previous sample, and sending a trap
when the state changes. The TDS algorithm can reduce the number of alarms raised for
when an alarm is caused by a consecutive sequence of bad polls, such as seen in Fig. 5.
However, it has problem when the value bounces up and down crossing the value
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threshold frequently such as that shown in Fig. 6. Variables with high variability around
the threshold cause TDS alarms that babble. One fix to TDS that has been proposed is to
use a lower threshold to clear the alarm than the threshold used to raise the alarm. It is
difficult to find a good clearing threshold. Consider for example the system shown in
Fig. 7, here TDS would raise an alarm on each of the spikes over the threshold, and
clear it on the next sample. Each alarm would be a false alarm, and no reasonable
setting of a falling threshold would correct that problem.

To compare the three algorithms, we ran two replays of the database. First we ran the
default rules using the standard TOT windows against the database. Most of these rules
use an alarm window, 4, of 15 minutes, and an analysis window, W, of 60 minutes.

For the second run, observe that if the TOT algorithm is run on rules where 4 = W is
less than the minimum sample period, then by the definitions above, the alarm state

a, equals the threshold state ¢, of the sample. Since both the ST and TDS algorithms

are based on the threshold state, we can reconstruct how the algorithms will behave. In
particular, by setting both the analysis window size and the alarm window size to 1, we
are able to reconstruct the original binary information whether the variable at each time
interval is above or below the threshold. We then processed this binary information to
determine the behavior of the ST and TDS algorithms.

6 Results

We compute the following 5 performance parameters for each algorithm to determine
their effectiveness at detecting problems.

1. The number of bad samples (samples when the monitored variable is above the
threshold) covered by the raised alarms.

2. The number of good samples (samples when the monitored variable is within the
normal range) covered by the raised alarms.

3. The number of alarm set traps each algorithm sends.
4. The number of alarm clear traps each algorithm sends.

5. The total number of traps (both alarm set and alarm clear) each algorithm sends.
The traps draw the network manager or administrators attention. This number
should be as small as possible to reflect only the real network outages or potential
problems.

The following table summarizes the performances of the three algorithms, for all the
elements and all of the rules.
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Table 1. Comparison of Algorithms

Simple Threshold Driven Time Over Threshold
Thresholds (ST) State (TDS) (TOT)
# bad polls covered 17505 17505 16373
# good polls 0 0 10131
# alarm set 17505 3836 709
# alarm clear 0 3836 709
# traps (set or clear) 17505 7672 1418

The ST and TDS algorithms raised alarms for 223 elements, while the TOT algorithm
raised alarms for 158 elements. An example of a case where TOT did not fire an alarm
is that shown in Fig. 4. These isolated spikes were a source of many false alarms.

The TOT algorithm covered 93.5% (16373/17505) of all the bad polls, or equivalently,
93.5% of the time when the variable is above the value threshold. The number of alarm
sets was reduced by a factor of 25 (17505/709) from ST or 5.4 (3836/709) from TDS.

Note that alarms raised by the TOT algorithm covered a small number of good polls
(10131). These polls lie in the gaps between bad polls and serve to reduce the total

number of raised alarms. This number also indicates the frequency of bad polls

during the alarm periods raised by the TOT algorithm. The frequency of bad polls vs.

good polls during these periods is 8:5 (16373:10131).

The number of traps is reduced by a factor of 12.3 (17505/1418) from ST and 5.4
(7672/1418) from TDS.

Fig. 1. Comparison of Algorithms
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We also examined the behavior of other related algorithms. Roughly, the TOT
algorithm can be viewed as a rectangular window filtering of the binary sequence of a
monitored variable (1 if sample value over threshold, 0 if below threshold). In an effort
to smooth the result, we also tried two other types of window filtering. One is the
exponential forgetting filtering, which uses an infinite length window of all available
data by putting exponentially attenuated weights on historical samples. The other is a
Gaussian shaped window, which has same length as in the TOT but puts more weight
on most recent sample and less weight on the past samples. Similar approaches have
been used in [1].
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The results of these three window filtering are compared in Figure 2. It shows the
behavior of a single rule for a single element. The X-axis shows the time, and the Y-axis
shows the number of bad polls in an analysis window of width 12. As is shown, these
two window alternatives did not improve the TOT algorithm in terms of smoothness
and latency. In fact, these two window alternatives gave less smooth results due to non-
integer operations. Because these alternative filters are more difficult to explain, and
gave no better result, we chose to stick with the simple TOT rectangular filter.

Fig. 2. Comparison of Alternative Window Filtering
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7 Conclusion and Future Work

The time over threshold detection algorithm does a good job of reducing the number of
alarms raised, and therefore the number of traps that must be processed by an NMS. Yet
it does not reduce the ability to detect problems. By far the majority of isolated spikes
are transient conditions, which are not indicative of problems. We have implemented
algorithms that dynamically determine thresholds based on a statistical analysis of
historical behavior. While that work is not covered in this paper, we believe it to be a
fruitful area for further research. We certainly have not examined all of the noise
reduction algorithms that might be applied to performance and fault management. We
believe that any algorithms proposed must be evaluated against real world data such as
used in this work.

Of course the true test of any problem detection system is field experience in detecting
real problems in real networks, systems, and applications. Our experience with Live
Health to date in these real world networks indicates that the basic Time Over Threshold
algorithm is effective at reducing noise.
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8 Figures

Fig. 3. Typical Variation, Outbound Utilization on a 128 Kbit/sec Link
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Fig. 5. Outbound Utilization of a 128 Kbit/sec WAN Link
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Fig. 6. CPU Utilization too High Alarm that Causes TDS Babbling
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Fig. 7. CPU Utilization of a Unix Server
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