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Abstract. The paper shows that some of elliptic curves over finite fields
of characteristic three of composite degree are attacked by a more effec-
tive algorithm than Pollard’s p method. For such an elliptic curve F, we
construct a Cy, curve D on its Weil restriction in order to reduce the
discrete logarithm problem on E to that on D. And we show that the
genus of D is small enough so that D is attacked by a modified form of
Gaudry’s variant for a suitable E. We also see such a weak elliptic curve
is easily constructed.

1 Introduction

An elliptic curve cryptosystem(ECC) is a discrete-logarithm-based public key
cryptosystem using the Jacobian group of an elliptic curve[9[12]. In ECC, we
must be careful to choose an elliptic curve. Many classes of week elliptic curves
have been found since ECC was presented [L14J[T9T5I8IT6/14].

Recently, Gaudry, Hess and Smart[7] found new week elliptic curves. They
show that some of elliptic curves over finite fields of characteristic two of compos-
ite degree are attacked by a more effective algorithm than Pollard’s p method.
They construct a hyperelliptic curve H on the Weil restriction of such an elliptic
curve E, and show that the discrete logarithm problem(DLP) on E is reduced
to that on H. Moreover they observe that for some such F, the genus of the
corresponding H becomes small enough for the DLP on H to be attacked by
Gaudry’s variant [6].

This paper treats elliptic curves over finite fields of characteristic three of
composite degree, and shows some of such elliptic curves are also attacked by a
more effective algorithm than Pollard’s p method.

We construct a Cyp, curve [I3I3] D on the Weil restriction of an elliptic curve
E over a finite field of characteristic three of composite degree, and reduce the
discrete logarithm problem(DLP) on E to that on D. Moreover, we clarify the
condition for an elliptic curve E to correspond to a Cy;, curve D of small genus, as
well as the method to construct such E. Since Gaudry’s variant is also effective
for Cgp curves with a slight modification [2], this means that some of elliptic
curves of characteristic three of composite degree are also attacked by a more
effective algorithm than Pollard’s p method, and that we can construct such
weak elliptic curves effectively.
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2 Computation of Weil Descent

We treat Weil descent of an elliptic curve F,
Y24+Y =X?]+aYX (1)
defined over a finite field IF4» of characteristic three. Here, for ¢ = 3%, we assume
ged(d,n) = 1. (2)

Note E, is not supersingular for nonzero a (Theorem 4.1. on [I7]).

Let 2 = {w,w3,---,w3" '} be a normal basis for IF3. | IF5. By the condition
@), 2 is a basis also for Fyn over IF,. Substituting ¥ = yow + y1w® + -+ +
Y103 X = zow + 2103 + -+ + 2n_1w® for the defining equation @ of
E,, and comparing coefficients of w’, we get n equations among 2n variables
{Y0, -+ Yn—-1,%0,-.-,Zn—1}. An abelian variety A, = H]Fqn ", E, defined by
these n equations is called Weil restriction of E, [B]. Moreover, taking an in-
tersection of A, and (n — 1) hyperplanes yo = y;(i = 1,...,n — 1), we get an
algebraic curve Cy,. C, is an algebraic curve defined by n equations in (n + 1)-
dimensional affine space.

For an element a € IFn, let A(a) € M, (IF,) be a regular representation of a
with respect to {2 :

Using A := A(a), the defining equations for C, are given by

3 —cay(Anzo + Arsry + -+ Arpxn_1) = —a1y* +y
C. - 8 —c1y(Aoizo + Agexi + -+ - + Aopn_1) = —ay*+y (3)
$§L72 — Cly(An1$0 + AnQZCl + -+ Annwn—l) = _Cly2 +y
Here, we put y = y;(¢ = 0,...,n — 1), and let the minimal polynomial of w be
T+ T 4.
Putting
To 1 0 0 0 1
T 1 1 0 0 0
T = se=| .|, P=f. . . .
Tn_1 1 00 --- 10
(P is a matrix for a cyclic permutation), Equations (@) become
Px? — ciyAx = (—c1y® + y)e. (4)

Here, 22 denotes an vector gotten by cubing every components of x.
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Regular representations A(a) (a € Fyn) are diagonalized simultaneously us-
ing a matrix 7" with the eigenvectors for the Frobenius automorphism x — z4
as columns:

T7'A(a)T = D(@?,a®M, ... a(*=V), (5)
where D(a,b,...,z) denotes a diagonal matrix with a,b,..., 2 as diagonal ele-
ments, and a(®,a®, ... =D (¢ := 49") is a whole of elements conjugate
to a in IFgn over IF,.

Putting
x =Tw, (6)

equation (@) becomes
T'PTOw?® — c1yD(a®,aM - " DNw = (—c19® + y)T e, (7)
where T®) denotes a matrix gotten by cubing every elements of 7.
Lemma 1. T7'PT®) is a diagonal matriz over TFn.
Proof. For any element a € IFy», by the definition of A,
a-[w,w - ,w3"71] = [w, w3, - ,w3"71] - A(a).

Cubing two sides,

The left-hand side is equal to a3 [w,w?, -+, w3 P = [w,w3, -, w®" A(a)3P,
and the right-hand side is [w, w3, - ,w3"71]PA(a)(3). So, we get

A(a)® = PA(a)® P71
Therefore we have

T 'A(a)’T = T 'PA(@)®P'T = T'PT® . T®) " 4(a)®TE) . 7" p-iT,

Thus, for any a € Fgn,

—1

T7'A(a)’T - T PT®) = 771 PTG . TG A(a) )T,

However, T A(a)3T=T® " A(a)®T® = D(a®’ ... oD% So, T-1PT®)
must be a diagonal matrix. O

In equation (), putting

D(bo, -+, bp1) =T PT® (b; € Fyn) (8)
d="T""e, 9)

we get defining equations of Cy over IFgn :
w? — b teraVyw; = b7 di(—e1y? +y) (i=0,1,...,n—1). (10)

We note that b;, c1, d; are determined only by n and d, independent from a € IFgn.
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Example: d=5,n=4

Let d = 5, n = 4. Let & be aroot of the irreducible polynomial 7°+T4+T3+T2—
T +1 over IF3. & is a primitive element of IF,. Let w be a root of the irreducible
polynomial T4 — T3 + T2 + T — 1 over F3(i.e. ¢1 = —1). 2 = {w, w3 w®,w?}
is a normal basis of IF3» over IF3. Since d and n are prime to each other, {2 is a
basis also for IF g over IF,.

For

a = k1003 4+ £Pw? + KPw, (11)

defining equations of Cj over IFy» are given by

wd 4 (K50 + 110302 1 k200 1 k82 g = (k19207 + k290w 1w+ £19) (3 + y)

W4 (KW 4 k2702 4+ k1980 1 k1) = (K200 4 kP k20wt K29 (2 4 )
(K70% + K902 + 1270w + 15 yws = (K1210? + k2w + k1w + K20) (52 + 3)

w3 + (kY70 + k2w + k%0 + k) yws = (kM8w? + W + K w + £70) (¥ +y)

3 A Component D, of the Curve C,

We show that the curve C, has a component D, with small genus for a suitable
a € IFgn. We use notations in section [Z1

Lemma 2. For an element h in a function field of C, over Iy, let h? denote
the image of h by the Frobenius automorphism with respect to q (i.e. the generator
of the Galois group Gal(IF g (y, xo, ..., Tn-1) | Fq(y, 20, ..., 2n_1)) ~ Gal(IFyn |
IF,) ). We have

wi = wy,w] =we, -, wl_; = w
a4 — 4 ga = 4@ " D Z 40
bg:bl,b({:bg,"',bq = by

n—1 7

df =di,d} =ds,---,dl_, =dp

Proof. As aY) = a9, claims for a; are obvious. In equation (&), the i-th column
of the matrix T is gotten by taking ¢-th power of every elements of the (i — 1)-th
column of T'. So, the i-th row of the matrix 7! is gotten by taking ¢g-th power
of every elements of the (i — 1)-th row of T!. From this, we obtain claims for
w; and d;. Claims for b; are also gotten from equation () O

Putting
= —btera®, Bi=0b'di, f=-cy’+y (i=01,....,n—1), (12)
defining equations ([{0]) become
w? 4+ agyw; = Bif (i=0,1,...,n—1). (13)
By Lemma [2] we have

q __ q __ q —
050—051,041 —ag,...,an_l = @y,

ﬁg:ﬁlvﬁgzﬁ27"'a ;17,—1 :60'
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For defining equations (I3), put Fy= Fyn (y, wo), F1 = Fyn(y, wo,wr), ---, F'=
Fr_1=TFyn(y,wo,wr, -, wp—1). F is a function field of C, over IFyn. Put

L={yeEF,m |vf=8+ayd (€ Fi_1)} (i=1,...,n—1). (15)

I; is a vector space over IF3.

3(qi— 3(g—
Proposition 1. Fori=1,...,n—1, put J; = (o (a 1)50, cee 0‘1'27((11 1)@-,1)]&.
Then we have I; 2 J; (i = 1,...,n — 1). Here, for i and j with j < 1,

3 i Ligi—i_
2 Uﬂj € 1; corresponds to § = a? (a 1)wj( see equation ([I3])).

@

Ligi—di_
Proof. Let i > j. For y = (2)% = o2@ "7V

: , we have

(yw;)? + cay(yw;) = 7> (wi + Shyw;)
_ 6T

O O S,
5(¢' -1
= Bjf-

3

So, a2 Vg e1,. O

Theorem 1. If §; € J; holds for some i, then C, has a component
wg + aoywo = Po(—c1y* +y)

wP |+ aimywi—1 = Bimi(—ay? +y)

Da: w; = 0;

Wp_1 = Op_1

(E'(Si, . ,57171 € Fifl).

Proof. Suppose 3; € J; holds for some . For j with j > ¢, we have 3; = ﬁfiii €
J& ¢ J; by ([[@). So, by Proposition M, 3; € I; (Vj > i). Then, by the
definition of I}, this means that the equation w? + ajyw; = B;f (j > 1) for w;
has a root w; = §; already in F;_;. O

From Theorem [I, we see that C, has a component D, of the smaller genus
if we choose a € IF;» such that 8; € J; holds for the smaller i.

Proposition 2. Suppose n is a multiple of 4. Let w € IFyn be a root of the
irreducible polynomial T* — T3 +T?+T — 1 over I3, and v be any (¢ —1)/2-th
root of unity in IF,, and § be a root of 63D = — WP — w9 in IF 4n (the root
exists since the order of the right-hand side is a divisor of 2(¢™ — 1)/(q — 1)).

2
Then for a = —bocflﬁg' Y9, we have By € Js.
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Proof. By equation (IZ), we have ag = —by 'cia. We will find ag such that
3(g%2-1 3(g—1
B=ad'" "V +ar Va1 (16)
By (I4), we see (32 = 582,51 = A, a1 = af. So, equation (I6) becomes
2 3(g2-1 3 (g2
Be = aog(q )ﬁo + ag(q Q)ﬁg-
_2
Putting e = 3, ®, § = eay, this becomes
§3(a* 1) 4 53(a"-a) — 1,
Moreover, putting z = (5%(‘1_1), this is
294 27 = 1. (17)

By condition (2)), the extension IF» | IF, and the extension IF3. | IF3 has the
isomorphic Galois group. So, Frobenius automorphism z +— z¢ in IF;» becomes
x — x% when restricted to IF3n. Therefore, equation (7)) becomes 2% + 23 = 1
over IF3». This has a root in IF3» when n is a multiple of 4. For example, with
w as above, we can take z = w — w3 —w? O

Example: d=5,n=4

Let d = 5, n = 4. We constructed a in equation (1) using Proposition 2 In
fact, for a in equation (IIl), C, has a component

wg + (H86w3 + K168w2 + H200w + K62)yw0 — (/‘i162w3 + n239w2 +w+ KlQ)(y2 +y)

D . w'f‘ + (H181w3 + n207w2 + HIGSUJ + n182)yw1 — (/‘i142w3 + n41w2 + H239w + n238)(y2 + y)
a Wwo = (K198w3 + H50w2 + Klsﬁw + H223)w0 + (K128w3 + n163w2 + HISSUJ + K223)w1
ws = (K168w3 + fi184w2 + K95w + 5179)7110 + (K184w3 + K198w2 + fi171w + K199)w1

(18)

4 Cgu, Model of the Component D,

In this section, we assume that the curve C, has the following form of component
D, (see Proposition [2)):

wi + apywo = Bo(—c1y® +y)
w + aqywr = Br(—c1y® +y)
D, : Wa = V2 ) (19)

Wp—1 = Yn—-1

where, ¥2,...,Yn—1 € F1 = IFn (y,wo, w1). D, has a unique point Py, at infinity
as a space curve in the space of y, wp, w. In this section, we construct a nonsin-
gular model of the component D, by a Cy curve [I1313] over IFy, and determines
its genus. In the below, we call a model by a Cy; curve just as Cyp, model.
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Because D, has a singular point (at the origin), we need some tasks to
construct its nonsingular C,, model. Theoretically, by computing the integral
closure R of the coordinate ring R of D, using the algorithm of Jong [8] and by
determining functions in R with small pole numbers at Ps, we can construct
a nonsingular C,j, model of D, using those functions [10]. However, we do the
task more directly and easily as seen in Algorithm [Il

Let vp,_ (h) denote an order of a function h on D, at the point Py . Since P, is
totally ramified over IFyn (y, wo), we see vp, (y) = —9, vp, (wo) = —6, vp (w1) =
—6. Comparing the values of wy and wy at Ps, we get vp_ (87 wo — B3 wi) =
-m, m <6.

By Lemma[Determination of defining equations](p1410) in [13], we can con-
struct a singular Ci,, 6,9 model of D, over IFy» using three functions ﬂl% wofﬁéwl,
wp, and y. In order to get a singular C,, 69 model R of D, over IF;, we can use
three functions

1 1
s = Tr(BFwo — G5 w1), t:=Tr(wy), w:=y, (20)
where, Tr is a trace of an extension
Fyn(y,wo, ..., Wn-1) =Fgn(y,z0,...,2n-1) | Fqly,z0,...,2Tn_1).

Note Tr(wg) = wo + w1 + -+ - + wp—1 by Lemmal[2
We normalize the singular C,;, model R as follows:

Algorithm 1 (Normalization of a singular C,; model)
Input: R =Fy[z1,...,2,)/1: Ca, ... q, model
Output: its normalization R

J « the radical of the ideal of singular points in R
WHILE J # (1) DO
y € Hompg(J,J)\ R
n—n+1
Ty — Y
an — —vp ()
R — T [z1,...,25]/I; Cay,.. 4, model constructed by x1,...,zn
J « the radical of the ideal of singular points in R

For the method for computation of Homp(.J, J) (C R), see [20] Section 2.2.

Example: d=5,n=4
Let d =5, n = 4. For a = k?150w3 + k%w? + k%w, the component D, was given

by equation (I8)). In this case, functions s,t,w in 20) are calculated as

s = (n6w3 + 1%49(.«.)2 + HlOOw + I€71)w0 + (H190w3 + HE’(JJZ + HSQW + n192)w1
t = (m151w3+l€200w2 +I€195w+i€66)w0+(,‘€53w3 +l<;113w2+f<;221w+m35)w1 .
w =1y
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First, assuming m = 5, we construct a Cs 6 9 model of D, using functions s, ¢, w
(If m < 5 in fact, then we would fail in constructing the Cj 6,9 model and we
would know it) :

k88sw + k%93 +tw =0
w— k10w + k0463 - k2283 4 w2 = 0 '
(15963 | o181 gd | 423y 4 08843 1 1503, 4 44 ()

This model has a single singular point at the origin, and the radical J of its
ideal is (w, t, s). Calculating Hom(J, J), we get x := (w? +w)/s € R\ R. Since
vp,_ (z) = —13, now we can construct a Cs g 9,13 model of D, using s,t,w, and
x:

k8 sw + k%% +tw =0

)1 + k4263 4 22060 4 43 —

w—sr+w?=0

k%% + k¥sx + kOPw 4 te =0

K590 + k10 s + rs2w + k137t 4 k170634 4 k2036242 4 e —

)10 4 18T B 4 1702y 4 20342 | 981 0 0 562, | 1924 | 295 3,

16 2,2 2 2 142 4 2
+ k10622 + ks + k05 + k1Mt + 22 =0

This model also has a single singular point at the origin, and the radical J of its

ideal is (s,t,w,z). Calculating Hom(J, J), we get u := (k'3stw + k'3st)/z,v :=
(K'70stw + k2032w + k108t + k203t2) /2 € R\ R. Since vp_(u) = —T,vp,_(v) =
—8, now we can construct a C ¢ 7,3 9 model of D, using s,t,u,v,w :

w? + %0 + k1982t + k%% + K sw +w =0

vw + k¥s%u + k0% =0

ww 4+ k3% =0

02 R12628 4 123063 4 o137 cnt esu+ k1 0su+ 1100 st k23062 4 11290+ k2041165 = 0
uv + k19463 + k222 sw + K3 sv + k2 su + K1 st + kBt =0
tw 4+ k%% + k¥sw =0

u? + k%% sw + K23 sv + k12 su + k1905t + K37 g2 + £%®s=0
tv + KB sw + K3 sv + k% su + k% st + k19342 + kB¥ls=0
tu+ k1 sv 4+ k2%su =0

2+ kY su+ k%8st =0

(21)
This is a nonsingular Cj; model.

Thus, for a = £21%w3 + kPw? + k9w, we succeeded in constructing a nonsin-
gular Cyp model 1)) of D,. Since the gap sequence at Py, of 1) is (1,2,3,4),
we know its genus is four.

5 The Reduction

We constructed the Cgp, curve D, of genus 4 over IF, on the Weil restriction
A, = HFqanq E, for the value of a given by Proposition 21 Tracing the route,
we can construct the morphism @ from D, to A, over IF, easily. From the
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definition of Weil restriction, the morphism @ is also the morphism from D, to
E, over IFyn. So, @ induces the morphism ¢* between jacobians over IFn;

D* - Ea(Fqn) — JDa(IFqn).

By taking a composition with the norm map, we get the morphism ¥ from
Eq(Fgr) to Jp, (IFg);

¥ = Normy .|, © P : Eq(IFqn) — Jp, (IF,),

which reduces DLP on E,(IF4») to DLP on Jp, (IF,). Since the genus of D, is
4, Gaudry’s variant against Jp, (IF;) is more effective than Pollard’s p method
against Eo(IFg») [72].

Example: d=5,n=4

Let d =5, n = 4. For a = k2'1%w3 4 kPw? 4 kP w, we constructed a nonsingular
Cup model ZI) of D,. The morphism @ from (the Cy, model of) D, to A, is
given by

. D, — Aq,
(s, tu, v, w) = (%% K709, k2B s 4 K2, 11935 + K299, K505 4 K20t W, w, w, w).

As the morphism from D, to F,, ¢ can be written as

& - D, - E.,
C (s tu,v,w) o (8w + k2020w2 4 K193)s + K209 w).
For example, take a point P, = (k*w? + k22°0w% + k2w + k187 k18703 4

KM%W0? + k70w + k29) of the prime order 78427 on E,. Then P; is pulled back
to Jp,(IFgn) by @ (In the below, an element in the jacobian of D, is expressed
by a Gréebner basis w.r.t. C5 7,59 order of the corresponding ideal ([1])) ;

o (P1)
:( U2 JF (n231w3 +l‘€107UJ2 +I€7OUJ+K}2)U+ (n194w3 +I€2O4UJ2 +l€12w+l€229)s
_'_’1205&}3 +K§43w2 _"_’{/203‘41_"_’{/1187
SU+ (K4UJ3+KJGGUJ2 +l‘€229w+l‘€34)u+(I‘CQOIUJS+l€228w2+/€236w+/€221)8
JF K7UJ3 JF 1'6870.)2 JF "/‘:78(‘.J JF 1'655,
S2+(K/62w3+K/190w2+K)33w+h‘/64)u+(,‘1125w3+K/187w2+:‘€108w+:‘1155)8
+ I"\J?OUJS + 1'6400.12 + KlSSUJ + /i1917
w+l‘€66w3 +K215UJ2 +K}76L/J+K}1187
U+(H183w3+lﬁ362w2+h‘/183)u+(K/208w3+K/72w2+:‘€69w+ﬁ?88)5+:‘1168w3
+ IigGUJQ + I’\}QOQUJ + K}367
t+(1'61140.13+/€235UJ2+/€226)S+/€158w3+/€137UJ2+K}196W+K}99 )
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By taking its norm to IF,-coefficients, we get the element j; in Jp,(IF,)
corresponding to Pi;

v (Py)

= NOI‘IH]Fqn |IF, (Qv)* (Pl))

= ( u? + k230 + K7t + k%5 + K11
tu + k100y 4 203¢ 4 1945 4 4227
su + k5% + k% + k85 + /-@154,

2 + 19 4 k95¢ 4 905 + ;100
st 4+ k11 4 k13t + K385 + KT,
s 4+ k1B + KT0¢ + KOs + K132,
w+ K12+ k193¢ 4 51925 4 188
v+ 113y 4 135 4 30 4 456 ).

Ji

Similarly, for the point P, = 45821 - P, = (k'88w? + x'w? + k0w +
K238 (343 4 18602 1234, | 82) e Tave

Jo= V()

= (u? + KBy 4 104 4 12T 4 130,
tu + K208y 4 K3t 4 k1455 4 k118
su + k1920 + k12 + k25 4 134
12 4 K27y 4 k17t 4 51365 4 k12
st K231y 4 11088 1 1445 4 6
52 + K299 + K70 + k1325 4 K26,
w4 K24y 185¢ 4 k1575 4 106
v+ K20+ k19 4+ k1425 4 1T ).

We verified that js is actually equal to 45821 - 71, using the addition algorithm
in the jacobian of Cy, curve [1].

6 The Cryptographic Implications

We saw an example of an elliptic curve E, over a finite field of characteristics 3,
DLP on which is reduced to DLP on Cyp curve D, of genus 4, and is attacked by
Gaudry’s variant effectively than by Pollard’s p method. The values of a giving
such week elliptic curves F, are obtained by Proposition B. Proportion of such
values of a is small. So, a randomly generated E, is safe.

However, consider the following scenario. First we construct such a weak
elliptic curve E, by Proposition 2l Then, we apply some isogeny against E, to
get a new elliptic curve E’. In the almost case, E’ itself cannot be attacked by
WEeil descent technique. However, since we know the isogeny, we can reduce DLP
on E’ to DLP on E,, and so we can solve DLP on E’ more effectively than the
others without the knowledge of the isogeny.

It seems difficult to check whether the given elliptic curve is obtained as the
image of some isogeny of such a week F,, or not.
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