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Abstract. In a digital distance transform, each picture element in the
shape (background) has a value measuring the distance to the back-
ground (shape). In a weighted distance transform, the distance between
two points is defined by path consisting of a number of steps between
neighbouring picture elements, where each type of possible step is given a
length-value, or a weight. In 4D, using 3 x 3 X 3 X 3 neighbourhoods, there
are four different weights. In this paper, optimal real and integer weights
are computed for one type of 4D weighted distance transforms. The most
useful integer transform is probably (3,4,5,6), but there are a number
of other ones listed. Two integer distance transform are illustrated by
their associated balls.

1 Introduction

Results regarding the 4D digital space, Z*, are being found more and more in
literature, both regarding theory and emerging applications. Examples where
4D is used are: when processing 3D grey-level images, just as some 2D problems
are solved using temporary 3D images; for volume data sequences, as ultrasound
volume images of a beating heart; or for the discretisation of the parameter space
of a robot or robot arm. Some examples are [6,7,8,9].

In a Distance Transform (denoted DT), each element in the shape (back-
ground) has a value measuring the distance to the background (shape). DTs have
proven to be an excellent tool for many different image operations. Therefore,
distance transforms (DT) in 4D are moving from being a theoretical curiosity, [1],
to becoming a useful tool.

The basic idea, utilised for most DTs, is to approximate the global Euclidean
distance by propagation of local distances, i.e., distances between neighbour-
ing pixels. This idea was probably first presented by Rosenfeld and Pfaltz in
1966, [10]. This approach is motivated by ease of computation. In sequential
computation only a small area of the image is available at the same time. In
massively parallel computation (if such an approach still exists) each pixel has
access only to its immediate neighbours.

Weighted or chamfer distance transforms, denoted WDT. The local steps
between neighbouring pixels are given different weights. In 2D, the most common
WDTs are (2,3) and (3,4), were the first number is the local distance between

G. Borgefors, I. Nystrom, and G. Sanniti di Baja (Eds.): DGCI 2000, LNCS 1953, pp. 325-336, 2000.
© Springer-Verlag Berlin Heidelberg 2000



326 Gunilla Borgefors

edge-neighbours and the second number is the local distance between point-
neighbours, [2]. Weighted DTs can be computed in arbitrary dimensions by two
raster scans through the image, where, at each point, the image values in a small
neighbourhood of the point are used to compute the new point value [1,2]. A
first, not very good, effort of discovering WDTs in higher dimensions is found
in [1].

Important theoretical results on general DTs in higher dimensions have been
published [8] a few years ago. In this paper, necessary conditions for an nD DT
to be a metric are presented. In [3], WDTs in 3D, fulfilling these criteria were
exhaustively investigated for 3 x 3 x 3 neighbourhoods. There proved to be two
types of such DTs, the “obvious” one and one less intuitive. In 4D, the situation
is even more complex, and there are at least eight different cases of WDTs. In
this paper, the most “natural” case will be investigated, and optimal real and
integer weights for this case will be presented.

In Section 2, the geometry and general equations are developed. In Section 3,
optimal weights are computed, where optimality is defined as minimising the
maximum difference from the Euclidean distance in an M x M x M x M image.
In Section 4, the optimal real and integer WDTs are listed and two integer DT's
are illustrated by their associated balls.

2 Geometry and Equations

Denote a digital shape on a hypercubic grid F', and the complement of the shape
F, where the sets F' and F are not necessarily connected. A distance transforma-
tion converts the binary image to a distance image, or Distance Transform (DT).
In the DT each hyzel (hypervolume picture element) has a value measuring the
distance to the closest hyxel in F.

A good underlying concept for all digital distances is the one proposed by
Yamashita and Ibaraki, [11]:

Definition 1 The distance between two points x and y is the length of the
shortest path connecting x to y in an appropriate graph.

They proved that any distance is definable in the above manner, by choosing
an appropriate neighbourhood relation and an appropriate definition of path
length.

In 4D hypercubic space, each hyxel has four types of neighbours: 8 volume
neighbours, 24 face neighbours, 32 edge neighbours, and 16 point neighbours. A
path between two hyxels in the 4D image can thus include steps in 80 directions,
if only steps between immediate neighbours are allowed.

The DT(i, 4, k,1) of a hyxel in F is the minimum length of a path connect-
ing (i,7,k,1) to any hyxel in F, where steps between volume neighbours have
length a, steps between face neighbours have length b, steps between edge neigh-
bours have length ¢, and steps between point-neighbours have length d, and no
other steps are allowed. Due to symmetry, it is enough to consider distances
from the origin to a hyxel (z,y,z,w), where 0 < w < z <y <z < M and M
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is the maximal dimension of the image when computing optimal a,b, ¢, and d.
The distance to be minimised then becomes D(x,y,z,w). A 3 x 3 x3x 3 WDT
will be denoted (a, b, ¢, d).

As the length of any minimal path is defined only by the numbers of steps of
different types in it, the order of the steps is arbitrary. Therefore, we can always
assume a minimal path where the steps are arranged in a number of straight
line segments, equal to the number of different directions of steps used.

Not all combinations of local distances a, b, ¢, d result in useful distance trans-
forms. The DT should have the following property.

Definition 2 Consider two picture elements that can be connected by a straight
line, i.e., by using only one type and direction of local step. If that line defines
the distance between the pizels, i.e., is a minimal path, then the resulting DT is
semi-regular. If there are no other minimal paths, then the DT is regular.

From [3] we have the following result.

Theorem 1 A distance transform in Z™ that is a metric is semi-reqular. A
semi-reqular distance transform in Z? is a metric.

Thus, all suggested DTs should be semi-regular as this is a necessary but, in
higher dimensions, not sufficient condition for being metrics.

As there are four types of steps, there are four types of straight paths pos-
sible in the hypercubic grid. To find the conditions for 4D regularity we must
investigate all the ways these four straight paths can be approximated by paths
using other steps and find the conditions for the straight path being shortest.
The result is that a 4D WDT is semi-regular if the following inequalities hold
(see [3] for a complete description of the method of computation):

4
a<b, b<2a b<c, cggb, c<d, dggc. (1)

These inequalities define a hyperpolyhedron in a, b, ¢, d-parameter space. A cut
through this polyhedron at d = 2 and with a as a scale factor is shown in Fig. 1.

The conditions in (1) may seem restrictive, but they are not sufficient to
determine unique expressions for the WDTs. If we compute the distances from
the origin, choosing the shortest paths and assuming that the local distances have
the properties in (1), we discover (at least) eight different, equally valid cases. For
example, the hyxel (2,2,1,1) can be reached either as (1,1,1,1) + (1,1,0,0) =
d+boras (1,1,1,0)+ (1,1,0,1) = 2¢. The inequalities in (1) do not determine
which is the shorter path. In 3D there is the same phenomenon, but there are
only two cases [3].

In Fig. 1, the eight cases discovered are marked by thin lines. In each of
the Cases, expressions could be found for the distance transforms, and the local
distances could be optimised. However, the area marked “Case I” is the most
interesting and easiest to handle, as there is only one expression valid for all
hyxels, and that expression, moreover, is the one we would expect, as it is an
extensions of the equation in 2D and in Case I 3D. In the triangular hypercone

b<2a, c<d, a+c<2b, b+d<2ec (2)
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Fig. 1. The hyperpolyhedron in a, b, ¢, d-space that results in semi-regular 4D
weighted distances (thick lines). The thin lines separates different cases. The
grey area is Case I, which will be covered in this paper

the distance between the origin and (z,vy, z, w) is
Case . D=wd+ (z—w)c+ (y—2)b+ (x —y)a, for 0<w<z<y<z (3)

This equation, without the limitation of parameter space (2), is found in [1].

The 4D DT analogous to the chessboard DT in 2D is (1,1,1,1), or D%,
where the distance to all 80 neighbours is set to 1. The 4D DT analogous to the
city block DT in 2D is (1,2,3,4), or D® (not to be confused with chessboard
DT in 2D), where the distance to the eight volume neighbours is set to 1. Both
D® and D8 are semi-regular (but not regular) according to the inequalities
in (1). The equations for the distances can be expressed as in (3), still with
0<w<z<y<ua:

D® =x+y+z+w, (4)
D8 = g, (5)
3 Optimality Computations

In this Section, the optimal local distances for the Case I 4D WDT will be
computed. Optimality is defined as minimising the maximal difference between
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the WDT and the Euclidean distance in an image of size M x M x M x M.
The choice of optimality criterion is somewhat arbitrary. However, this one has
the advantage that is does not depend on any non-digital structure, such as
an imbedded Euclidean sphere, which would be necessary to, e.g., minimise the
average error.

The maximum of a particular type of function will often have to be computed.
The following Lemma is used.

Lemma 2 The function f(£) = a& + B — A\/y + k&2, where |a| < VE|\| and

|[v| > 1 has the mazimum value

a\/_
max — M — A2 — —
f g VT for \/ k2A2 — ka?
Proof: The extremal value is found by setting the derivative of f'(£) to zero,
solving for ¢ and simplifying the resulting expressions. O
The difference between the computed distance, see (3), and the Euclidean
distance is

E(z,y,zw) = (d - o)w + (c — bz + (b — a)y + za — /2% + 2 + 22 + w?, (6)

where 0 < w < z < y < x < M. This difference is to be minimised in an
M x M x M x M image. Put the origin in a corner of the image. We can then
assume that the maximum difference, denoted maxdiff, occurs for x = M. As
0 < w < z, the maximum of E(w) occurs for w = 0, §/0wE(y, z,w) = 0, or
w = z. The difference in these three cases are found by simple insertion or by
using Lemma 2 with § = w,a = (d—¢),8 = (c=b)z+ (b—a)y+ Ma,\ =k =1,
and v = M? + 3% + 22. We get:

Ei(y,z)=(c—=b)z+ (b—a)y+aM — \/M?+y2+ 22 for (M,y, z,0),
Ex(y,2) = (c—b)z+ (b—a)y +aM — /T —(d—c)2\/M2 + y2 + 22

for (M, y, z, Wmax),
Es(y,z) = (d—=b)z+ (b—a)y+aM — \/M? +y? + 222 for (M,y, z,2).

For each of these three expressions the maximum can occur for z = 0,
0/0zE(y,z) = 0, 0or 2 = y, as 0 < z < y. We get the following nine differ-
ence expressions, using insertion and Lemma 2.
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En(y) = (b—a)y+aM — /M2 + 2 for (M,y,0,0),
Elg(y):(b—a)y—i—aM—\/l— (c=b \/M2+y for (M, y, Zmax, 0),
Eis(y) = (¢ — a)y + aM — \/m for (M, y,y,0),
Eoi(y) =0, as0=2z < w= Wnax,
Epn(y) = (b—a)y+aM — /1= (d—c)? — (c = b)>\/M? +y?

for (M, y, Zmax, Wmax)-
Eos(y) = (c —a)y +aM — /1~ (d — ¢)2\/M2 +2y% for (M, y, Y, Wmax),
E31(y) = En(y),
Es(y) = (b—a)y+aM — /1 — 3(d = b)2\/M? + y2 for (M,y, Zmax, Zmax);
Ess(y) = (d —a)y + aM — \/M2+3y for (M,y,y,y).

(7)
For each of these seven expressions the maximum can occur for y = 0, 9/9yE(y)
=0,ory=M,as 0 <y <z= M. We get the following 21 expressions, again
using insertion and Lemma 2.

E111 ( ) for (M,0,0,0),
Ei10 = ( - (b - a)Q)M for (M; Ymax, 0, 0)7
Ei13=(b— \/_)M for (M, M,0,0),

Ei91 =0, as0=y <2z = Zmax,
Ei92 = (a — \/1 —(c=b2=(b—a)*)M for (M, Ymax, Zmax, 0),

Ei93 = (b—v2/1— (c —b)2)M for (M, M, zmax, 0),
Ey31 = B,

Eiss = (ay/1 — L(c—a)®)M for (M, Ymax, Ymax, 0),
Ei33 = (c — V3)M for (M, M, M, 0),

E31 =0, as0=y < 2z= 2Zmax
By =(a—+/1-(d=c)2=(c—b)2—(b—a)2)M

for (M, Ymax, Zmax> wmax)a
Eoo3 = b - \/_\/1 - - C ( - b)Q)M for (M, M, Zmax, wmax)7
Es31 = O, asO:y:z<w7wmax
Easz = (a— /1= (d— 0 — - DM 1o (M, gonues Yo Wines)s
Bogz = (¢ = V3y/1—(d - ¢))M for (M, M, M, wWmax),
Es1 =0, as0=y < 2= Zmax,
FE390 = a — \/1 — %(d — b)2 — (b - G)Q)M for (M, Ymax; Zmax; Zmax)7
Eso3 = (b - \/i 1- %(d - b)Q)M for (M, M, Zmax, Zmax)7
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Es31 = Fi1,
E330 = (Cl —2y/1- (d - a)2)M for (M; Ymaxs Ymax, ymax)7
Eg333 = (d —2)M for (M, M, M, M).

Thus 15 difference expressions Fjj;, remain. The maximum of these 15 expres-
sions should now be minimised by varying a, b, ¢, and d. Numerical experimen-
tation show that max (Eijk) is minimal for E222 = —E111 = —E113 = —E133 =
— F333. Solving these equations yields

Qopt =1 — R ~ 0.9048,
bopt = V2 —TR ~ 1.3191,
Copt = V3 —TR ~ 1.6369, (8)
dopt =2 — R ~ 1.9048,

with maxdiff = RM ~ 0.0951M,

where Rz%(l—\/i\/\/é—i—%/g—i—\/_—?).

The optimal solutions for ¢ = 1 are needed when computing integer DT, as
then a becomes a scale factor. In this case, we solve Ejyy = —Ef |3 = —Ej33 =
—E355, where the star denotes that a = 1 has been substituted in the expressions.
The solutions are

Aot =1,

by =V2-38 ~ 1.2796,

it = V3-8 ~ 1.5975, (9)
diy=2-8 ~ 1.8654,

with maxdiff* = SM =~ 0.1346M,

where S:%ﬁ—\/\/é—i—%/g—f—\/_—?.

In both situations, free ¢ and a = 1, it is easy to check that the optimal
solutions fulfil the inequalities (2), and thus are in the allowed hypercone in
parameter space. Also, in both situations the maximum difference from the Eu-
clidean distance is a fraction of the size of the image, as can be expected.

Using real valued local distances in digital images is generally not desirable.
Integer local distances are preferable. Candidate integer approximations of the
optimal values, denoted A, B, C, and D, are found by multiplying the optimal
local distances by an integer scale factor and rounding to the nearest integer.
Then the maximal differences are computed (all expressions are available from
the computations of the optimal local distances), to check the approximations.
The smallest local distance, a, will act as a scale factor, therefore the result-
ing WDT will become (1, B/A,C/A,D/A). It is of course important to check
that (2) are fulfilled, otherwise the difference expressions are invalid. The best
approximation result possible is maxdiff* and the optimal local distances to be
multiplied by the scale factor are b}, c;,;, and d7,,. Good integer 3 x 3 x 3 x 3
WDTs are listed in the next Section.
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Table 1. Integer 3 x 3 x 3 x 3 distance transformations

Case a b C d  maxdiff

DB 1 - - - 2.00000
D®° 1 1 1 1 100000
real Gopt bopt Copt dopt  0.09515
real 1 by Copt bope  0.13456
integer 2 3 4 4 0.29289
integer 3 4 5 6  0.18350
integer 6 8§ 10 11  0.16667
integer 6 9 10 11 0.16667
integer 7 10 12 13  0.15485
integer 8§ 11 13 15 0.14304
integer 15 20 24 28  0.13590

4 Results

In this section the results of the optimality computations are summarised and
illustrated. Table 1 lists a number of distance transforms. First, the simple D8
and D3 are listed, with their associated maxdiff. These are easily computed
from the expressions (4) and (5). Next in Table 1 comes the optimal values for
Case I, both for free a and a = 1.

After the real valued WDTs, the best integer approximations, using scale
factors (= A) up to 20, are listed in Table 1. For practical purposes, (3,4,5,6)
is probably the best choice. The maxdiff is reasonably good, with a small scale
factor. Note that it is hard to improve on (15,20,24,28). Note also that all
integer DTs are on the border of the allowed hypercone defined by (2), except
(7,10, 12, 13), which should thus exhibit the most “typical” traits of Case I DTs
in 4D.

It must be remembered that even if Case I is the “natural” one of the Cases
for 4D DTs, there is no guarantee that it is the best Case. In 3D, the analogous
Case I3 gave the best maxdiffs but the other case, Case II3, gave the best maxdiffy
(with a = 1), so better integer approximations could be found for Case II3 than
for Case I3, see [3]. The same may well be true in 4D.

A good way to characterise a DT is the shape of its associated ball, defined
as all pixels/voxels/hyxels with a distance less than or equal to the radius from
a single central element. In 2D, the city block and chessboard distance balls are
a diamond and a square, respectively. In 4D, the D® and D?° balls are a hyper-
octahedron and a hypercube, respectively (the tetrahedron, the octahedron, and
the cube are the only “Platonic” solids that exist in any dimension, see [4]). In
4D, the Case I 3 x 3 x 3 x 3 WDT balls are hyperpolyhedra.

Tllustrating hyperpolyhedra is, however, not very easy. One way of doing this
was presented in [5]. A 4D digital image is created, with a single object hyxel
in the middle. The DT is then computed from this object into the background,
in the standard way. If this image is thresholded at a suitable level, a ball with
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the radius of the threshold value is created. The threshold should be as large
as possible while the ball created is still completely within the image. We now
have a binary 4D image containing the ball we wish to visualise. If we fix the w-
level in this image, we will get a 3D image with a “hyperslice” of the 4D ball,
which is in itself a polyhedron. This 3D object can be visualised using a simple
binary 3D imaging technique. Ideally, the consecutive hyperslices can be shown
as a sequence, a “movie,” but here we are constrained to show a few sample
hyperslices. In Figs. 2 and 3, we show the (3,4,5,6) and the (7,10, 12,13) balls
with radius 46. The six “hyperslices” were chosen so that the different shapes
the ball has at different levels are shown. They are not equally spaced in 4D,
see the Figures for the chosen w-values, where w = 1 denotes the slice with the
“first” ball hyxel. These two WDTs were chosen, as the (3,4,5,6) is the one
most probable to be used and the (7,10, 12, 13) is the only one exhibiting all the
faces that a general 4D Case I WDT can have. The “mid-slice”, w = 46, is a
(3,4,5) ball and a (7,10, 12) ball, respectively (see [3]).

5 Conclusions

Optimal weighted distance transforms in 4D using 3 x 3 x 3 x 3 neighbourhoods
have been investigated. The best possible such DT, using real-valued weights,
has a maximal difference from the Euclidean distance of 9.51%. The best possible
integer valued DT is proven to have a maximal difference of 13.46%. The most
useful WDT is probably (3,4,5,6) with a maximal difference of 18.35%. This
was, in fact, what was suggested already in [1], but there the motivation was
much weaker. A number of other integer WDTs with higher scale factors, but
with smaller maximal differences are also listed.
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w =14 w =38

Fig. 2. The ball of the (3,4,5,6) distance transform, shown as 3D cuts through
4D space at six different levels



336 Gunilla Borgefors

Fig. 3. The ball of the (7,10,12,13) distance transform, shown as cuts

through 4D space at six different levels
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