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Abstract. In this article we study digital topology with methods from
mathematical morphology. We introduce reconstructions by dilations
with appropriate continuous structural elements and prove that notions
known from digital topology can be defined by continuous properties
of this reconstruction. As a consequence we determine the domains for
tunnel-free surface digitizations. It will be proven that the supercover
and the grid-intersection digitization of every surface with or without
boundary is always tunnel-free.

1 Introduction

Various approaches have been made to study geometrical and topological prop-
erties of binary digital images. Discussing the advantages and disadvantages of
them would be far beyond this paper. However, there is a growing interest in
relating these approaches to each other in order to develop a foundation for a
mathematically consistent theory.

The most well-known approach, known as digital topology [KR89], is derived
from graph theory. Elements of Z

n are interpreted as vertices. Edges are defined
by different adjacency relations between object and background points. This
approach serves well for two-dimensional image analysis. The 3D case [MR81]
is far more complicated and a generalization to higher dimensions has not been
made yet.

A cellular approach has been applied by Kovalevsky [Kov89] in 2D and by
Herman et al. [HW83] in 3D. Voss [Vos88] studied a dual cell-structure in Z

n and
Khalimsky [KKM90] developed a topological approach based on connected or-
dered topological spaces. The structure studied in these approaches is the discrete
or Alexandrov topology. It is equivalent to a tessellation of R

n by n-dimensional
unit cubes. Each approach maps Z

n onto different elements of the structure. In
the first case an element of Z

n is associated with an open n-dimensional unit-
cube, whereas Voss interprets Z

n as the set of the vertices of these cubes. In the
third approach, every element of that structure is associated with an element
of Z

n.
Bertrand and Couprie [BC99] proposed a model for digital geometry that

associates two orders to each subset of Z
n. These order relations correspond to
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the different adjacencies as used in digital geometry. Moreover, the authors have
proven that the notion of surfaces and simple points in their model correspond
exactly to that very notions in digital topology. This justifies the original graph
based approach for 2D and 3D space.

Digital images can also be investigated using a digitization approach [Ser82].
A discrete object has a certain property if it is a digitization of an appropriate
continuous object with that property. Dual to this is the embedding approach in
which continuous analogs [KR85] of discrete objects are studied. Both approaches
define properties of discrete objects by well-known continuous, usually Euclidean,
notions.

Reveillès [Rev92] introduced the arithmetical geometry approach. He defined
discrete analytical objects as discrete objects which are the integer solution of
a finite set of inequalities. Recently, Andres studied the supercover digitization
of m-flats in the context of discrete analytical objects [And99]. In [LW00b] we
generalized these results to linear analytical objects.

The digitization approach has been related to digital topology. Various re-
searchers [Pav82,Ser82,GL95] studied the preservation of topological features of
continuous objects under digitization. Bærentzen et al. [BŠC00] presented a cri-
terion for determining whether a 3D solid is suitable for digitization at a given
resolution. Although these articles make different assumptions, the common idea
is to consider objects that are morphologically open and closed by a closed ball
whose radius depends on the grid resolution.

We applied a similar approach to study the digitizations of surfaces without
boundary [LW00a]. Since the opening of a simple surface is the empty set, we
employed morphologically closed surfaces with respect to a ball of a radius r. We
called these objects r-surfaces. Contrary to Bærentzen et al. [BŠC00] our ap-
proach did not take a reconstruction kernel into account, but this article explains
that properties from digital geometry, such as connectivity and separability, can
defined by a dilation of the discrete object with a continuous structural element.

An extension of these results for surfaces without boundary to surfaces with
boundary is essential, because many real-life objects can be described as the
union of surface patches. To evaluate the quality of digitizations of surfaces with
boundary Cohen-Or et al. introduced the notion tunnel-free [CK95]. This notion
has been applied successfully to polygons and polyhedra [ANF97]. In this paper
we develop a theoretical framework for digitizations of surfaces with and without
boundary which is based on mathematical morphology [Ser82,Hei94]. The same
theoretical background has been used by Schmitt to study digitizations and
connectivity [Sch98].

This article is outlined as follows: Section 2 states the basic definitions from
differential geometry, digital topology and mathematical morphology. In sec-
tion 3 important results about surface digitizations and digitizations by dilation
will be recalled. In the following section reconstructions by dilation will be intro-
duced and in section 5 this notion is employed to prove a condition under which
a surface digitization is tunnel-free. We conclude with a summary and remarks
on future work.
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2 Basic Definitions

2.1 Differential Geometry

In differential geometry continuous objects are studied as their parametrization.
Curves are basically 1-dimensional and surfaces are (n − 1)-dimensional para-
metrizations in R

n. Thus, in R
2 curves can be considered as surfaces.

A set of points C ⊆ R
n (n ≥ 2) is said to be a Cr(I)-curve (r ≥ 1) if there

exists an open interval I ⊆ R and an r times continuously differentiable function
γ : I → R

n such that C = γ(I). The function γ is called parametrization. A
curve γ is smooth if, for all t ∈ I, the first derivative exists and is non-zero. A
curve is simple if it has no self-intersection.

From now on all curves will be considered to be smooth and simple. A curve
C = γ([a, b]) with end points γ(a) and γ(b) is a subset of curve γ(I) that is
defined on an appropriate open interval I that contains [a, b]. Let C = γ((a, b))
be a simple curve and let γ(a) = γ(b), then C = γ([a, b]) is a simple closed curve.

A set of points S ⊆ R
n (n ≥ 2) is said to be a Cr(U)-surface (r ≥ 1) if there

exists a non-empty open set U ⊆ R
n−1 and an r-times continuously differentiable

function f : U → R
n such that S = f(U).

Again, only simple, smooth surfaces with or without boundary are considered.
A simple surface without boundary is either a closed surface, such as a sphere, or
an infinite object homeomorphic to a hyperplane. These notions are intuitively
clear and similar to those for curves. For a detailed definition the reader is
referred to text books on differential geometry such as [LV85].

2.2 Digital Topology

We define a discrete object A as a subset of Z
n. Its complementary set AC =

Z
n \ A is called the background. We think of Z

n as a subset of n-dimensional
Euclidean space R

n. An element z ∈ Z
n is called a grid point.

There are various equivalent ways to introduce the basic notions of digi-
tal topology. We define the neighborhood of grid points through Voronoi sets
[Kle85,Wüt98]. Other definitions are based on distances or differences in the
coordinates of these points.

The Voronoi set V(z) of a grid point z is the set of all points in R
n which are

at least as close to z as to any other grid point. V(z) is a closed axes-aligned n-
dimensional unit cube with center z. The Voronoi sets of a 2D and 3D grid point
are known as pixel and voxel, respectively. Neighboring n-dimensional Voronoi
sets can share a point, a straight line segment, up to an (n − 1)-dimensional
cube.

Two grid points z, z′ ∈ Z
n are said to be k-neighbors (0 ≤ k ≤ n − 1) if

their Voronoi sets share a point set of dimension k or higher, i.e. if dim(V(z) ∩
V(z′)) ≥ k.

A sequence (z0, . . . , zl) of points of an object A ⊆ Z
n is said to be a k-arc

from z0 to zl in A if successive elements are k-neighbors. K ⊆ Z
n is a (simple

closed) k-curve if each point of K has exactly two k-neighbors.
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A

B A + B
A – B

Fig. 1. Dilation A⊕B and erosion A
B of a set A by a structuring Element B

An object A ⊆ Z
n is k-connected if there exists a k-arc in A from z to z′

for any points z, z′ ∈ A. A k-component of A ⊆ Z
n is defined as a maximal k-

connected non-empty subset of A.
A discrete object A ⊆ Z

n is said to be k-separating if the background Z
n \

A consists of exactly two k-components. A k-separating object A is called k-
minimal if for any z ∈ A A \ {z} is not k-separating. A k-separating surface
(without boundary) is a minimal k-separating object.

To avoid pathological situations in 2D, a 1-curve must consist of at least 8
points and an 0-curve of at least 4 points [KR89]. A discrete surface should have
no touching points. Traditionally [KR89], in Z

2 1- and 0-neighbors are called
4-neighbors and 8-neighbors, respectively, and in Z

3 26-, 18- and 6-neighbors
are common notions.

2.3 Morphological Definitions

In this article, morphological operations [Ser82,Hei94] on point sets will be re-
quired. Let A and B be two subsets of R

n. Since Z
n ⊆ R

n, the following opera-
tions can be applied to continuous as well as to discrete point sets.

A ⊕ B = {a+ b : a ∈ A, b ∈ B} is called Minkowski addition and A 
 B =
{p : b+ p ∈ A for all b ∈ B} is the Minkowski subtraction of A and B. In math-
ematical morphology, A⊕B and A
B are known dilation and erosion of A by
the structuring element B, respectively. Fig. 1 shows an example.

The operation A ◦ B = (A 
 B) ⊕ B is called the opening and A • B =
(A ⊕ B) 
 B is called the closing of A with respect to B. A is morphologically
open (closed) with respect to B if A ◦ B = A (resp. A • B = A).

Finally, Az = A ⊕ {z} is the translate of A by z and Ǎ = {−a : a ∈ A}
denotes the reflected set of A.

3 Surface Digitizations

In our previous work [LW00a] we studied a class of digitizations, commonly
known as digitizations by dilations [Hei94]. The grid-intersection [Kle85] and
the supercover [CK95] digitization schemes, which are common for surfaces, are
special cases of digitizations by dilations.
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Fig. 2. Digitization of a curve as the set of translated basic domains Dz hit by A
(left) and as the set of grid points contained in A ⊕ Ď

A digitization by dilation with domain D ⊆ R
n is a function ∆D

⊕ : ℘(R
n)→

℘(Zn) that is defined as ∆D
⊕(A) = {z ∈ Z

n : A ∩ Dz �= ∅} for every continuous
object A ⊆ R

n.
By virtue of this definition, a grid point z belongs to digitization ∆D

⊕(A),
if and only if Dz, the domain translated to z ∈ Z

n, hits the continuous ob-
ject A. ∆D

⊕(A) is called digitization by dilation because it is the set of grid
points contained in the dilation of A by the reflected domain Ď, i.e. ∆D

⊕(A) =
(A ⊕ Ď) ∩ Z

n [Hei94].
If the domain of a digitization is not specified then ∆(A) is any subset of

Z
n that is intended to serve as a discrete approximation of a continuous object

A ⊆ R
n. It does not need to be a digitization by dilation when we focus on

criteria for the quality of these approximations.
The criterion “k-separating”can only be applied to discrete surfaces without

boundaries. To overcome this limitation the notion of a k-tunnel-free digitization
of a surface has been introduced [CK95].

Let (z0, . . . , zl) be a k-arc. Then the continuous polygonal arc consisting of
the straight line segments [z0, z1], [z1, z2], . . . , [zl−1, zl] is called a continuous k-
path. A continuous path π hits a surface S ⊆ R

n in a point p ∈ S if p ∈ π ∩ S.
A continuous path π crosses a surface S ⊆ R

n in p ∈ S if there exists an ε > 0
such that π hits two different components of Bε(p) \S. Bε(p) denotes the closed
ball of radius ε with center p.

A digitization ∆(S) ⊆ Z
n of a continuous surface S ⊆ R

n is k-tunnel-free
(0 ≤ k ≤ n − 1) if every continuous k-path in (∆(S))C = Z

n \ ∆(S) does not
cross S. A continuous k-path in (∆(S))C that crosses S is called k-tunnel.

If ∆(S) ⊆ Z
n is a k-tunnel-free digitization of S then ∆(S) ∪ A is also k-

tunnel-free for every A ⊆ Z
n. As illustrated in Fig. 3, a k-tunnel-free digitization

of a continuous surface without boundary is not necessarily a k-separating dis-
crete object.

4 Reconstructions by Dilation

The foundation of digital topology is the notion “k-neighbor”. In Section 2 k-
neighborhood of grid points was defined by means of their Voronoi sets. In this
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Fig. 3. A 1-tunnel-free (left) an 0-tunnel-free (right) digitization of a simple
closed curve, that are no discrete curves

section will be shown that two point z, z′ ∈ Z
n are neighbored if Rz ∪ Rz′ =

({z} ⊕ R) ∪ ({z′} ⊕ R) is a connected set in R
n for an appropriate structural

element R ⊆ R
n. Consequently, if A ∈ Z

n is a discrete object, we can think of
the continuous set (A ⊕ R) ⊆ R

n as its reconstruction by dilation.
Let x = (x1, . . . , xn) and y = (y1, . . . , yn) be two points in R

n then [x, y]
and [(x1, . . . , xn), (y1, . . . , yn)] denotes the straight line segment between these
points. R(n)

k ∈ R
n is the union of all line segments [(0, . . . , 0), (x1, . . . , xn)] with

the property that at least k (0 ≤ k < n) of the coordinates xi are 0, while the
others are either 1

2 or − 1
2 .

For simplicity the index for the dimension will be omitted if it is clear by the
context. Fig. 4 shows the sets R0 and R1 in R

2 and R0, R1 and R2 in R
3. The

following lemma is a simple conclusion of the definitions of Rk and k-neighbors.

Lemma 1. Two grid points z, z′ ∈ Z
n are k-neighbors (0 ≤ k ≤ n − 1), if and

only if the reconstruction {z, z′} ⊕ Rk is a connected set in R
n.

There exists a straight line segment between k-neighbored two grid points
in the reconstruction by Rk and, conversely, if there is a straight line segment
between two grid points z and z′ in {z, z′}⊕Rk then these points are k-neighbors.
Notice that there may exist other continuous paths between these points. Only
for (n− 1)-neighbors this path is unique. A k-arc from z to z′ in A ⊆ Z

n exists,
iff there exists a continuous path between z and z′ in A ⊕ Rk.

Lemma 2. An object A ⊆ Z
n is k-connected if and only if the reconstruction

A ⊕ Rk is a connected set in R
n.

R1 R0 R2 R1 R0

Fig. 4. R1 and R0 in R
2 and R2, R1 and R0 in R

3
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Proof. Assume A ⊆ Z
n is k-connected. Then, for any z, z′ ∈ A, there exists

a continuous path between z and z′ in A ⊕ Rk. Rk is a connected set. Hence,
for every z′′ ∈ Z

n there exist a continuous path between z′′ and every point of
{z′′}⊕Rk. Consequently, there exists a continuous path between any two points
in A ⊕ Rk, i.e. A ⊕ Rk is connected in R

n.
Conversely, suppose A⊕Rk is connected in R

n. By construction of Rk there
exist a continuous k-path between any grid points in A and A is k-connected.
q.e.d.

As a result of this lemma k-components can be defined as continuous compo-
nents of the reconstruction by Rk. The proofs of the following two lemmas will
be omitted. They are similarly simple.

Lemma 3. A discrete object A ⊆ Z
n is k-separating iff (Zn \ A)⊕ Rk consists

of exactly two continuous components.

Lemma 4. A k-separating object A is k-minimal iff ((Zn \ A) ∪ {z}) ⊕ Rk is
not separating for all z ∈ A.

Let us conclude this section with some remarks. The reconstruction by dila-
tion with a structural element Rk represents only the number of components of
a discrete object. For example the reconstruction of a discrete curve or a surface
is not a continuous curve or surface. It also does not reconstruct the number of
background components.

Instead of Rk we could have used other structural elements such as the convex
hull of Rk or the smallest closed ball that contains Rk. For these examples all
results of this section would still hold.

We have chosen the term “reconstruction by dilation” to represent a dual
or opposite operation of digitization by dilation. It should be pointed out that
this term is also used in mathematical morphology with a different meaning. In
the context of geodesic transformations there is a notion of “reconstruction by
dilation of a mask image from a marker image” [Soi99] which is not related to
our definition.

5 Tunnel-Free Surface Digitizations

In this section tunnel-free digitizations by dilations will be studied for surfaces
with or without boundary. The first theorem establishes a sufficient condition
such that a digitization by dilation is tunnel-free.

Theorem 1. Let ∆(S) be a digitization of a surface S ∈ R
n such that the

reconstruction of the background (∆(S))C ⊕Rk does not hit S. Then ∆(S) is k-
tunnel-free.

Proof. Let us assume ∆(S) is a digitization of S ∈ R
n such that (∆(S))C ⊕ Rk

does not hit the surface S. Suppose that there exists a k-tunnel in ∆(S). Then
there exists a continuous path in (∆(S))C ⊕ Rk that hits the surface S, which
is a contradiction to our assumptions.
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Note that the condition “the reconstruction of the background by Rk does
not hit the surface” is not necessary for a k-tunnel-free digitization. Using this
theorem, a relationship between existence of k-tunnels a digitization by dilation
∆D

⊕ and the choice of the domain D can be proven.

Theorem 2. Let ∆D⊕ be a digitization by dilation with the domain D ⊇ Rk.
Then ∆D

⊕(S) is k-tunnel-free for every surface S ⊆ R
n.

Proof. Let ∆D
⊕ be a digitization by dilation with the domain D ⊇ Rk. For

every S ⊆ R
n, ∆Rk⊕ (S) is a subset of ∆D

⊕(S). The digitization ∆Rk⊕ (S) contains
all points z ∈ Z

n such that z ⊕ Rk hits S. The construction of its background
(∆Rk⊕ (S))C ⊕Rk does not hit S. Hence, ∆Rk⊕ (S) is k-tunnel-free and so is ∆D

⊕(S).

This theorem justifies the grid-intersection [Kle85] and supercover digitiza-
tion [CK95] as appropriate digitizations schemes for surfaces with or without
boundary.

The grid-intersection digitization is a digitization by dilation whose domain
is Rn−1. As a consequence of Theorem 2 every grid-intersection digitization of
surfaces is always (n− 1)-tunnel-free. The domain of the supercover digitization
is V(0), which is a superset of R0. Hence, the supercover of every surface is 0-
tunnel-free.

6 Summary and Future Work

In this article we investigated digital topology with methods from mathemat-
ical morphology. We introduced reconstructions by dilations with a structural
element Rk. We have proven that important notions from digital topology, such
as k-neighbors, k-connected and k-separating objects, can be defined by contin-
uous properties of the reconstruction dilation with Rk.

As a consequence the new notions have been used to prove that every digi-
tization by dilation whose basic domain is a superset of Rk is k-tunnel-free. In
particular the grid-intersection digitization and the supercover of every surface
is always 0-tunnel-free and (n − 1)-tunnel-free, respectively.

Currently we are relating our work on r-surfaces [LW00a] to the results of
this paper in order to obtain a theoretical framework for the digitization of
surfaces with boundary. Our future work includes also an algebraic study of
the relationship between digitizations and reconstructions by dilations on the
abstraction level of windowing functions.
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