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Abstract. The aim of this paper is to describe a conceptual model for
surface representation based on topological coding, which defines a sketch
of a surface usable for classification or compression purposes. Theoretical
approaches based on differential topology and geometry have been used
for surface coding, for example Morse theory and Reeb graphs. To use
these approaches in discrete geometry, it is necessary to adapt concepts
developed for smooth manifolds to discrete surface models, as for ex-
ample piecewise linear approximations. A typical problem is represented
by degenerate critical points, that is non-isolated critical points such as
plateaux and flat areas of the surface. Methods proposed in literature
either do not consider the problem or propose local adjustments of the
surface, which solve the theoretical problem but may lead to a wrong
interpretation of the shape by introducing artefacts, which do not cor-
respond to any shape feature. In this paper, an Extended Reeb Graph
representation (ERG) is proposed, which can handle degenerate critical
points, and an algorithm is presented for its construction.

1 Introduction

Reasoning about shape is a common way of describing real objects in engineer-
ing, architecture, medicine, biology, physics and in daily life. So far, research
in modelling shapes has mainly focused on geometry, with the aim of defining
effective representations and accurate approximations of objects [1]. To describe
geometric objects, however, different levels of mental models can be used. It
is possible to use natural-language terms to qualitatively describe the external
shape of an object, or to draw a sketch of it, or to describe it by listing its dif-
ferences with respect to some other similar objects, or also to define it according
to what it is used for, and so on.

Shape recognition and classification are therefore basic steps for construct-
ing descriptions of objects. These abstraction processes have been effectively
described for example for biological taxonomy, where shape descriptions have
been constructed by finding a good representation and then discarding irrele-
vant details [2,3]. The important point here is that reasoning about shape is an
efficient approach not only for building high-level modelling environments, but
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also for devising top-down simplification methods based on the comprehension
of the object shape [1].

Differential topology and geometry have been often used for surface cod-
ing, [4,5,6], and building shape descriptions which nicely correspond to intuitive
mechanisms of shape cognition and recognition.

For example an interesting method for coding the critical points of smooth
Morse functions of two variables has been studied by Nackman [4]. Pfaltz pro-
posed a similar approach for discrete surfaces defining the so-called surface net-
works [6]. Bajaj et al. [7] propose two different approaches, one bottom-up the
other top-down, to preserve the topology during the simplification of discrete
data. Their method, however, does not guarantee an exhaustive description of
characteristics of the surface. Moreover, it does not allow to extract global prop-
erties of the surface and to detect degenerate configurations.

Major research on the use of topology for surface description has been pro-
posed by Kunii, Shinagawa et al. in [5,8] where a surface coding based on Morse
theory and Reeb graphs has been defined (see next section). Takahashi et al. [9],
use an approach based on surface-networks to reconstruct the Reeb graph of
a 2.5D surface. As the previous references also this approach does not consider
degenerate configurations which are typical of discrete surfaces, such as plateaux
or flat areas.

In this paper, the Extended Reeb Graph (ERG) representation is proposed,
which can handle degenerate critical points, and an algorithm is presented for
constructing the ERG of bi-variate surfaces (scalar fields). The proposed exten-
sion does not distort the semantic meaning of the Reeb graph and faithfully
represent the surface morphology.

The reminder of this paper is organised as follows: first, basic results of Morse
and Reeb graph theory are given to introduce the proposed method; then our
extension from the critical points concept to the critical areas is presented for
discrete surfaces; finally, the proposed ERG representation and an algorithm for
its construction from a set of contour levels are described. Some examples of its
application to real surfaces are shown.

2 Theoretical Background

Morse theory originates from the calculus of variations and it allows describing
differentiable manifolds using a limited number of information, for example by
coding the topological relationships between critical points [10,11]. Using Morse
theory, it is possible to construct topological spaces equivalent to a given smooth
surface, which describe the surface as a decomposition into primitive topological
cells [12]. Some basic results of Morse theory are given.

Definition 1. (Morse function) Let f, f: M — IR, be a real smooth function
defined on the smooth manifold M; f is called Morse function if all of its crit-
ical points are non-degenerate. A critical point is non-degenerate if the Hessian
matriz H of f is non-singular at that point.
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Non-degenerate critical points are isolated, therefore scalar fields having
plateaux or volcano rims do not comply with the definition of Morse function.

An example of a simple Morse function is given in figure 1(a). The figure 1(b)
depicts an example of a complex Morse function, i.e. a function having more than
one critical point at the same level, while figure 1(c) does not comply with the
Morse’s function definition.

Fig. 1. An example of height function with an isolated maximum, (a), a non
simple height function, (b), and a circle of non isolated maxima, (c¢). In (b) the
saddle points as well as the maximum points have indeed the same elevation

The height function can be effectively used to study the surface shape. In-
tuitively, the height function of a smooth manifold M, embedded into the usual
three-dimensional Euclidean space, is the real function which associates to each
point on the surface its elevation.

Therefore, the level sets of a height function associated to a surface are
the intersections of the surface with planes orthogonal to a fixed directions,
which may be shaped in arbitrarily complex ways. If the height function is
Morse, then the contour configuration can be quite simply classified. Moreover,
smooth surfaces satisfy the Euler formula which states that the number of non-
degenerate maximum (M), saddle (p) and minimum (m) points satisfies the
relation M — p +m = 2(1 — g) where g represents the genus of the surface.

Reeb defined a graph to code the evolution and the arrangement of level
curves [5,13]. The Reeb graph of a function is defined as follows:

Definition 2. (Reeb graph) Let f : M — R be a real valued function on a
compact manifold M. The Reeb graph of M wrt f is the quotient space of M xIR,
defined by the equivalence relation “~7, given by

(X1, F(X1)) ~ (X2, f(X2)) & f(X1) = f(X2)
and X1 and X2 are in the same connected component of f~*(f(X1))

A Reeb graph of a compact manifold collapses into one element all points
having the same value under a real function and being in the same connected
component. Moreover, theorem 1 allows us to define a further equivalence rela-
tion among elements of the Reeb’s quotient space.
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Theorem 1. Let f be a real smooth function on a compact smooth surface M,
and assume that the segment [a,b] (where a < b) contains no critical value of f.
Then:

— the level set f~1(a) and f=1(b) are diffeomorfic and they consist of the same
number of smooth circles diffeomorfic to the standard circle;

— let M, be the subset of M defined M, = {x : f(z) < a}, and M, defined
accordingly. Then M, and My are diffeomorfic as two-manifolds with bound-
ary.

In figure 2(a) the points drawn on the manifold represent the equivalence classes:
here the manifold considered is a bi-torus and the function defined over it is
the height function. In figure 2(b) the Reeb’s quotient space is represented as
a “traditional” graph where the equivalence classes are grouped into arcs if
they are representative of diffeomorfic contours, as stated in the theorem 1.
Obviously, since the choice of the mapping function is not unique, a manifold
admits different Reeb graphs.

(b)
Fig. 2. A bi-torus, its contour lines and the equivalence classes defined by Reeb’s

quotient space (a), a possible representation of the Reeb graph wrt the func-

tion f, (b)

A Reeb graph describes a manifold surface by considering the evolution of
the surface sections under a given real valued function. If we have to describe the
shape of a manifold surface M embedded into the Euclidean space, moreover, the
Reeb graph of M under its “natural” height function codes the shape description
of M in terms of critical points of h, corresponding to meaningful semantic labels,
such as peaks, pits or passes. Moreover, under the assumption that the height
function is Morse, the structure of the Reeb graph is rather simple. A Reeb graph
of M under h can be defined as RGp(M) = (Pn(M), Ap(M)) where the node
set is defined by P, (M) = {P; € M, P; is a critical point of h(M)} and the arc
set is given by An(M) = {(P;, P;), P; and P; € P,(M) and the topological type
of M does not change between P; and P; } (see Theorem 1).
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If h(M) is Morse, moreover, the arcs of RG(M) can be oriented and the
nodes have almost degree three.

3 Extended Reeb Graph Representation

Reeb graph theory provides a powerful abstraction mechanism to describe the
shape of smooth surfaces. Even if there are no restrictions in the Reeb graph
definition on the type of f, several authors have in practice limited the use of
the Reeb graph to Morse mapping functions (see section 1). When dealing with
discrete surface representations, such as triangular meshes, problems may arise
due to the loss of properties of the resulting surface which can be assumed to be at
most continuous. The straightforward application of the Reeb graph definition to
a generic polyhedral surface (e.g. a 3D triangulated manifold) requires at first the
definition and extraction of the critical points. The possible definitions of discrete
critical points, however, generally suffer of instability since small perturbations
of the vertex coordinates may result in rather different configurations [9,7].

This problem is particularly crucial for surfaces defined by measurements of
some natural or physical objects, as in digital terrain modelling or reverse en-
gineering, where the position of the mesh vertices may have some uncertainty
associated. Therefore, we have adopted a different approach based on the com-
putation of a ”sufficiently” dense number of contour lines and the definition of
the Reeb graph from the contour set. The evolution of contour lines is less sen-
sible to local perturbation of vertex position and, globally, provides a faithful
description of the surface shape. The same approach has been adopted by Ku-
nii, Shinagawa et al., [5,8], for smooth surfaces for which the height function is
Morse, while here generic continuous surfaces are considered for which a set of
contour levels is given (or computed).

An extension of the Reeb graph representation (FRG) is introduced, which
can handle degenerate and non simple critical points, and an algorithm is pre-
sented for constructing the ERG automatically from the set of contour levels of a
discrete surface. The proposed extension does not distort the semantic meaning
of the Reeb graph and faithfully represents the surface morphology.

The innovation of this method is both the way of constructing the graph and
the efficiency in dealing with degenerate situations. The proposed approach is
actually not an extension of the Reeb graph itself, but rather a full application of
its definition in the discrete domain, which does not require the height function
to be Morse. The quotient space defined by the Reeb equivalence relation can
be represented in terms of a graph representation, which formally represents
the contour containment and the adjacency relationships. In this way, with an
extended definition of critical areas, the application domain can be enlarged to
generic continuous scalar fields, without any artifacts [14].

3.1 Definition of Critical Areas and Influence Zones

First of all, to get a more general and unambiguous shape description, we
extend the idea of critical points to critical areas as well. With respect to other
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definitions, the idea of critical areas provides a more general approach as it
takes into consideration the behaviour of a surface in a neighbourhood rather
than locally around a point.

Formally, let M be a continuous surface defined by a scalar field f : D C
IR? — IR, that is, M = {P = (z,y, 2)|z = f(x,y)} and let h be the height func-
tion naturally defined over M, h(P) : M — IR such that h(P) = h((z,y, f(x,y)))
= f(x,y) and let P; be the critical points of h(M). Under the assumption that M
is Morse, f~1(P;) is an isolated critical point of the surface, while if we do not
require M is Morse, f~!(P;) generally represents a critical area of the surface, a
level region of M. Let C'(M) be the set of contour levels of M; we assume that
C(M) is a set of unorganised polygonal contours, which are either simple closed
polygons or polygonal lines with the end points on the boundary of the surface.

Let Cp(M) be the Delaunay triangulation of C'(M) constrained to all con-
tours lines. The critical points of h(M) can be efficiently detected by classifying
the flat regions of C'r(M), that is, the connected regions of Cp (M) composed
by triangles having all the three vertices at the same elevation [15,16,17].

The flat regions of Cr(M) correspond either to simply or to multiply-con-
nected areas. Let Br(M) be the boundary of a critical area R of Cp(M), in
general Br(M) = By U By U...U B, where B; represents the ¢ — th con-
nected component of the boundary. According to the definition of critical area,
each B; may be either a contour in C'(M), having elevation h(B;) or may be a
sequence of edges of Cr(M), as for saddle areas. Simply-connected critical ar-
eas, for which Br(M) = By, correspond either to isolated or degenerate critical
points of M. A multiply- connected critical area divides the surface into two
parts: an “outer” part which is defined by the portion of the surface outside
the boundary of the multiply-connected area, and as many “inner” parts as the
multiplicity of the critical area boundary. Let By be the outer boundary compo-
nent and B;, with ¢ > 1, the inner ones. The following classification scheme is
adopted:

— Bgr(M) is a simple maximum area (resp. simple minimum area) iff n =
1 and the outgoing direction from B is descendent (resp. ascending), see
figure 3(a);

— Bpr(M) is a complex maximum area (resp. complex minimum area) iff n > 1
and the outgoing directions from each B; are descendent (resp. ascending),
(see figure 3(b));

— Bgr(M) is a simple saddle area iff n = 1 and there are at least four outgoing
directions alternatively descendent and ascendent;

— Bgr(M) is a complex saddle area iff n > 2 and the outgoing directions are
descendent for some B; and ascending for some other B; or the outgoing
direction for By are either descendent and ascending.

When considering surfaces defined by scalar fields or more generally manifold
surfaces with boundary it is necessary to give a unique interpretation to critical
points occurring along the surface boundary by considering a global virtual min-
imum point as a virtual closing of the surface with descending directions from
the boundary to a global minimum.
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Obviously, the flat regions of Cr(M) do not always correspond to critical
points of the height function: for example, ridges and ravines of M will cause
level regions to appear as well, with a step-like effect which is a very well-known
problem in digital terrain modelling. These areas, however, can be easily de-
tected considering the number of the ascending or descending directions of the
region boundary, as explained in details in [14,17]. Therefore, let us assume from
now that the critical areas only correspond to critical points of h(M), either
isolated or degenerate. Generally for polyedral surfaces the Eulero formula given
in section 2 is not verified. Nevertheless considering the above defined critical
areas for Cp(M) the Eulero formula is still satisfied if they correspond to non-
degenerate critical points .

Fig. 3. Critical areas of M correspond to flat regions in Cp(M): areas of maxi-
mum are depicted in dark and saddle areas in light grey

It is important to show the link between critical areas and Reeb graph nodes.
By applying the definition of Reeb graph (cf. definition 2) all points belonging to
a simply-connected critical area are Reeb-equivalent and may therefore collapse
into the same node. If the isolated critical points of M were known, moreover, a
simple labelling of the graph’s node set would be sufficient to distinguish them
from degenerate critical points. Similarly, the behaviour of arcs incident to simple
critical areas is equivalent to the behaviour of arcs incident to isolated critical
points. Therefore, simple critical areas can be represented in the ERG by simple
nodes as in the normal Reeb graph representation.

Multiply-connected critical areas correspond to macro-nodes: that is partic-
ular nodes having at least one arc connected to an inner node.

With respect to the Reeb graph arcs we have introduced the concepts of in-
fluence zones which are defined using adjacency among contours: two contours
are adjacent if they are edge-adjacent in the constrained triangulation. To con-
nect critical areas in the Reeb graph, an influence zone is associated to critical
areas, which intuitively spans the surface between adjacent Reeb graph nodes.

First of all, if R is a simple saddle critical area, its influence zone is defined
as the surface region delimited by the contours which are directly edge-adjacent
to R, in other words contours which are at a distance 1 from the saddle area.

Then, if R is a maximum or minimum critical area, the influence zone of R
is the portion of the surface identified by growing Bi, the outmost component
of the region boundary, until the boundary of another critical area is reached.
Therefore, if the critical area is a simple maximum its influence area is the
maximal region in Cr (M) containing R and non containing other critical areas.
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Similarly, the influence zone of a multiply-connected area does not contain any
other critical areas except those located in its internal boundary components. In
practice the influence zone definition for minimum and maximum areas strictly
relates with the theorem 1: in fact the expansion process allows to connect level
sets which are diffeomorfic. For saddle areas, indeed, the influence zone represents
the portion of the surface where the topological change arises. In figure 4, some
critical areas are shown with the corresponding influence zones. The dark colour
identifies maximum (a) and saddle areas (c), their corresponding influence zones
are depicted in medium grey colour, (b) and (d).

(a) (b) (c) ()

Fig. 4. Critical areas, (a), (¢) and their influence zones (b), (d)

3.2 Construction of the ERG Representation

In this paragraph a short description of the algorithm to extract the critical
arcas is given. First of all it is important to notice that each contour Cp (M)
is edge-adjacent to the previous and the next one, in the height sequence of
C(M); therefore the ascending/descending directions between contours can be
simply checked. Then, critical points of h(M) can be efficiently detected by
classifying the level regions of Cp(M), that is, the connected regions of Cp (M)
composed by triangles having all the vertices at the same elevation [15,16,17].
The classification of flat areas as critical areas, simple or complex, is done by
checking the number of non-constrained edges in the boundary:

— simple saddle areas are detected in Cr (M) as flat areas with more than one
edge in the boundary, which does not belong to the constraints, that is to
the contours;

— maximum or minimum areas, either simple or complex, and complex saddles
are detected in Cp(M) as flat areas whose boundary is fully composed by
constrained edges of Cp(M).

The distinction among the different types of critical areas is done by analyzing
the coordinates of the vertices which are edge-adjacent to the region boundary,
that is, by checking the ascending/descending directions, as in section 3.1.
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According to the graph representation of the Reeb’s quotient space, each
node of the graph corresponds to a critical point, or area, and each arc corre-
sponds to a connected component of the manifold between two critical levels of
the height function. This suggests to follow a similar approach for automatically
extracting the Reeb graph, based on tracking the evolution of contour lines.
First, the critical areas are recognised, and the FRG is initialized by creating
the node corresponding to the virtual minimum, VM. The VM is connected to
the saddle (complex or simple) having the minimum elevation and external to
each macro-node. If such a saddle does not exist, then the VM is connected to
the first complex maximum area, otherwise the FRG is a trivial graph connect-
ing the VM to the only simple maximum existing. Then, using the notion of
influence zone, the Reeb graph arcs are partially computed from the adjacency
relationships between influence zones. In this manner the arcs connected to the
terminal nodes of the FRG are identified. To complete the FRG construction
the links between saddles and, in general, complex areas, have to be determined.
Intuitively, arcs correspond to ascending paths between critical areas which are
determined by expanding the associated influence zones, following free direc-
tions in the outmost boundary component (see figure 5). Free directions are
those which do not correspond to an already identified arc.

In the following, the construction algorithm is described using a C pseudo-
code. At each step, if the critical region is multiply-connected, then a macro-node
is defined, with as many arcs as the inner components of the critical region. Note
that the definition of influence zone guarantees that the Reeb graph is correctly
constructed.

ERG_Construction(N,A)

/* The ERG is defined by the set of nodes, N, and of arcs, A */
{ N=CriticalAreasRecognition(tin, contours);

/* Identify critical areas and initialize the virtual minimum */
OrderAreas(N); /* Order the Critical Areas by elevation */
InfluenceZoneDetection(N) ;

/* Influence zones are associated to saddle areas */

and then to maximum and minimum critical areas */
LinkNodesbyInfluenceZone(N,A) ;
/* Create a subset of A directly by checking the adjacencies
between Influence Zones */
CompleteArcSet (N,A); }

For the sake of clarity the function “CompleteArcSet” is here expanded:

CompleteArcSet (N,A)
/* N=nodes, A=arcs */
{for (each node in N)
{if (IsGrowingArea(node))
{for ( each non visited growing direction node)
{while ((not(findBoundarySurface)) or
(not (findOtherInfluenceZone)))
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ExpandToUpperLevel (node) ;

if (R=0therAreaReached)
ConnectWithArc(node, R);
¥ r r o3}

The function “IsGrowingArea(node)” returns a boolean value which is TRUE
if the critical area has at least one growing direction which has not been visited
yet.

Fig. 5. Two steps of the Reeb graph reconstruction process

Some examples are given: in figure 6(a), a test surface is depicted with the
critical areas identified on the triangulation; its Reeb graph is depicted in 6(b)
and 6(c). The surface that can be trivially reconstructed by triangulating only
the critical sections of the ERG is shown in 6(d): even if rough, the reconstruction
still faithfully reproduces the original surface morphology. Finally, in figure 7,
another example of our characterisation method applied to a natural surface (a)
is shown, then the reconstructed Reeb graph is depicted in (b) and (c) and the
surface reconstructed considering only the critical sections is shown in (d).

4 Conclusions and Future Developments

In this paper a model has been defined which provides a high-level description of
the surface shape. Morse theory concepts and Reeb graph properties have been
used and translated to the discrete domain in order to define a sketch of the
surface usable for classification or compression and decompression purposes [18].

With respect to previous work in this field, the proposed Extended Reeb
Graph is able to faithfully represent the surface shape, even in case of degen-
erate critical points. The algorithm for constructing the ERG of scalar fields,
represented as contour lines, is efficient and allows a topologically correct recon-
struction of the surface shape.
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Fig.6. A test surface (a), its Reeb graph (b) and (c) and the reconstructed
model (d)

(d)
Fig. 7. The critical areas of a terrain (a), its Reeb graph (b), (¢) and the re-
costruction from the critical sections (d)
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Future developments are currently under consideration, mainly for the ex-
tension of the method to three dimensional surfaces, with or without boundary.
Moreover, the shape decompression process is also being developed, taking into
account several shape reasoning steps which allow a better definition of shape-
based generation of intermediate sections between critical sections, coded in the
Reeb graph [18].
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